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NONSELFADJOINT OPERATORS IN
DIFFRACTION AND SCATTERING

A. G. RAMM

§1. Introduction.

Consider the following problem

(4 +1%)u = 0 in Q, | (1)
3u|aN = f on r, . ‘ (2)
|x|(3u/3|x| - iku) + 0 as [x] + =, (3)

where Q is an unbounded domain with a smooth closed compact surface r,
2

l'eC .
If we look for a solution in the form
exp(ikr )
us= [ — g(Ndy, r o = [x-yl, | (4)
xy
then
g = Ag - 2f, (3)
where
exp(ikr_ )
t
be = [ 5 T 8y ©
t ty

If the boundary condition is of the form
u=fonT, €))

then the integral equation for g takes the form

Tg = f, (8)
where
exp(ikrt )
Tg = [, —5— g(y)dy. (9)
, T éﬂrty ‘

If one wishes to solve equations (8), (5) by means of expansions in root




vectors, one must prove that the root vectors of operators A and T
form a basis of H = L2(F). Both operators are compact and nonselfadjoint.
Apriori it is not clear why these operators have eigenvectors: e.g.
Volterra operator has no eigenvectors. 1In applications it is more con-
venient to use only eigenvectors, because calculations with the root
vectors are more complicated. This leads to the following question:
when does a nonselfadjoint operator have no root vectors? Here and
belo% we use the word root vectors meaning associated root vectors.

The definition is: if Ag‘= Ag, g ¥ 0, then g is an eigenvector; if
equation Ahl - Ahl = g is solvable, then hl is an associated vector

(or root veétor); the set (g, hl,...h85 is called a Jordan chain with

the length s + 1, if (A - ) g = 0, (A - A) hy =g, (&4-1) LY N

2 <k <s, vectors‘hl,...h; are called root vectors. An isolated
eigenvélue A is called a normal eigenvalue if its algebraic multiplicity
is finité and the Hilbert space H caﬁ be decomposed into the direct sum
of subspaces H = LA ; RA’ where LA is the root subspace of A and RA is
an invariant subspace for A in which (A - )\I)-l exists. The root sub-
space LA is the linear span of all eigen and root vectors of A corres-

ponding A. It is well known that XA is a normal eigenvalue iff the

projector P = —(Zni)—l f (A T zI)-ldz is finite-dimensional [1]).
z-A |=¢

If X is a normal eigenvalue of A then (A - zI)_l =R, has a fimple
pole at A i£f the length of the Jordaﬁ:chain is equal to 1. It means
that the eigensubspace of A corresponding to A coincides with the root
subsapce of A corresponding to A. From the definition given above it

follows that the pole XA is simple iff (A - AI)2 £f=03(A-AI) f = 0.




In physical literature there is a great interest in equations of type
(6), (8) and in their counterparts in the electromagentic wave scattering
theory [2]. Engineers used the singularity and eigemmode expansion -
methods for solution of exterior boundary value problems [3], [4].

What they call eigenmode expansion method (EEM) is actually an old
Picard's method for solution of selfadjoint integral equations of the
first kind. They suppose that the operator T defined by.(9) has eigen-

vectors

TE, = ME, 3= L, 2,...,]xl| > |A2| >t : (10)

has not root vectors and the set of his eigenvectors {f } forms a
Riesz basis of H = L (). We remind the reader that {fj} is a Riesz
basis of H (or basis equivalent to an orthonormal basis {h } of BH) if
a bounded invertible linear operator B exists such that th = fi. We

call an operator B invertible if B -1 is bounded and defined on H. Under

such an assumption engineers solve equation (8) using the formula

g = jzl_xj (k)(f,fj) £, \ (11)

The following questions are open and of interest to mathematicians:
1) when do the eigenvectors of T and A form a basis of H?

2) when there do not exist root vectors of T and A?

These questions are far from trivial. In fact for the basic equation

of'.the theory of lazers

fl exp {i(x—y)z} f(y)dy = A (x) (12)
-1

nothing is known about the existence and properties of its eigen functions

until now. Fortunately the situation is much better for the operators




A and T and later we give some reasons for this statement.

The singularity expansion method (SEM) consists in the following.
Given the nonstationary problem:

/’u = AMu, £t >0, xanR3,

tt .
, u/3N = 0 on T, . (13)
U(O,X) = 0, ut(OQX) = f(x)’

and assuming

v(x,k) = f: exp(ikt) u(x,t)dt ' (14)
we obtain:
| Av + k2v = -f, ov/O0N = 0 on T,
(3v/3]x| - ikv) = o (|x|™Y) | ' (15)
if G(x,y,k) is the Green function for this problem, then
v = fQ G(x,y,k) fdy , . (16)

From (14), (16) we obtain
. 1 P : X
u(x,t) =5 f_m v exp(-ikt)dk. ‘ 17

For the sake of simplicity we ass;me that feCS(Q). The function g(x,y,k)
can be continued analytically on the whole complex plane k. It is
analytic in the upper half plane Imk > 0 and meromorphic in the lower
half-plane Imk < 0. For details see [5], [6]. Suppose that

IVIi——C———;,a>0, Imk > -b, b > 0, a > 0.5. (18)
1+ |k

Then we can move down the contour of integration in (17)
1 ~icee
u(x,t) = Tz?f v(x,k) exp(-ikt)dk, 0 < ¢ < b. (19)

-jig=

From this it follows that




u(x,t) = exp(-ct) w(x,t), 0l< c < b, (20)

where

w(x,t) = -2-,1; fm v(x,-icty) exp(-iyt)dy o (21)

From (18) it follows that veLz(EU and weLZOR). Suppose that the poles

k.j of v(x,k) satisfy the inequality

Imkj < =F ([Rekj]), (22)
where F(x) is a continuous positive function,
F(x) > 0, F(~x) = F(x), F(x) > + ®» ag x + =, (23)
If (18) holds in the domain.
Imkj > -F (lRekjl), (24)

then by moving the contour of integration in (17) we get the asymptotic

expansion (singularity expansion):
v o-ikt -|mk_|t) '
u(x,t) = ) e v (x) + o (e n (25)
i=1 '

This leads to the following questions:

3) What can be said about location of the poles kj? When does (18)
hold? Wwhen does (18) hold in the domain (22)?

4) What can be said about the properties of the poles {kj}? How to

calculate these poles? Do these poles depend continuously on the

- boundary?

B

5) To what extent does the set of poles {kj}, Imk.:j < 0 determine the

shape of the obstacle?

These questions are discussed in this paper. They are of interest
in appliéations and difficult from the mathematical point of view.

All of the results concerning operators A and T can be obtained

for the analogous integral operators in the electromagnetic wave

o
\
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{ (:) scattering theory. 1In what follows formula (1.6) will denote formula

(6) in 51. We use autonomous numeration throughout the sections.

§2. When do the eigenvectors of T and A form a basis of H?

1. Bases with brackets. Tests for completeness and basisness.

Let {hj} be an orthonormal basis of H, m < mz...a sequence

of integers, m, > = as £ > =, and let HZ be the linear span of

the vectors h , h sse.h
mz m£+l m

-1° Let {f.} be a complete minimal
L1 J

system in H, and FK be the 1linear span of vectors fm ,...fm 1
4 2+1"

By basisness we mean the property of a system of vectors

or subspaces to form a basis of H.
Definitionl. If a linear, bounded, invertible bperatdr B exists

,(:> such that BHﬂ = FZ then the system {fj} is called a Riesz basis of H

with brackets (notation: {fj}eRb(H)).

Remark 1. It is known [1], that {fj}eRb(H) iff cl'f'gj?zf'z < czlﬂz,

where

L]

is the norm in H, Cz‘i Cl > 0 are constants, P£ is the projector
on Fi’ feH is an arbitrary element of H. Projector PE is defined by the

direct decomposition H = FK + GK’ where GK is the union of the subspaces

Fj for j.# L.

Definition 2. Denote by Q, the orthoprojector on . If
2

oo

! 1P, - q
o oko Te T %

|2 ¢ » then the system {fj} is called a Bari basis with

brackets (notation {fj}eBb(H)).

Definition 3. A linear closed densely defined operator.L on a

" Hilbert space H is called an operator with discrete spectrum iff its




spectrum o(L) consists only of normal eigenvalues A Ikll < A

ol <een
lAj] +® as j > w,

Remark 2. If L is'a normal operator with discrete spectrum,
O4¢o(L), then vt is compact.

In what follows we assume for fhe sake of,simplificity that L
is a selfadjoint operator with a discrete spectrum {A } 0¢o (L),

)\j=CJp+O(J ),aSJ->°°,p>0,c>0,pl<p. (L

Consider the operator

1

A=L+4Q (2)

where Q is a (nonselfadjoint) linear operator,

IL™%qf| < C,If], ¥feH, a < 1, D(Q) D D(L). (3)

Since ‘ .k

@C+Q-aD" = 1+ - a0t @ - L for Ao(L)  (4)
it is clear, thﬁt

Ago(A) if |(L - AI)"lLal- < cgl. - (5)
It is clear that
™y 12

(L - u)"lLa( < sup ij - A . (6)
k|

If lAj - X]Z_|}jla Caq, where q > 1 is arbitrary, then (5) holds. Hence
we have proved the main part of the following lemma.'

Lemma 1. Suppose that L is a selfadjoint operator with a discrete
spectrum, Q is a linear operator, A = L + Q, and (3) holds. Then o(A)XK,
where

K = jlzllplx = < DylTea, 95 1 _ X2

and o(A) is discrete.

jli--'




Proof. It remains to prove the last statement of Lemma 1. The
statement follows immediately from the compactness of (L - >\I)-l and
boundedness of the operator {I + (L - )\I)-]'LaL"aQ}_1 in (4).

Remark 3. Estimates of tyée (6)Iwere used.earliepby Kacnelson
[18], [3]. We made no usé ﬁf assumption (1) so far.

The following theﬁrem is due to Kacnelson [18], [3];

Theorem 1. Under the assumptions (1), (3) Ast(H) if p(l-a) =1,

and Ast(H) if p(1 - a) > 1.

Remark 4. We write AeRb(H) (Bb(H)) if the foot vectors of A form
a Riesz (Bari) basis of H with brackets.

Remark 5. Actually for Theorem 1 to be true it is sufficient
to use the following estimate instead of (1): Aj i_éjp (see [18]).

Remark 6. Under some additional assumptions M. §. Agranovich.
proved that the series in'rbot vectors of A converges rapidly (see
Appendix in [3]).

Remark 7. Completeness of the root system of a linear operator
A in a Hilbert space H can be proved by means of the following theorems.

Theorem 2 ([1]) If L is a selfadjoint operator on a Hilbert
space H with a discrete spectrum, Oic(L), Q is a linear operator
D(Q) 2 p(L), L-l Q is compact and p(L-lQL—l) < o, then the system of
root vectors of A =L + Q is complete in H.

Remark 8. The symbol p(A) < = means that A is compact and
Z: SE < o, where s, = An {(A*A)l/z} are the s-values of A.

Theorem 3([1]). The system of root vectors of a compdct dis-

sipative operator A with nuclear imaginary component is complete in

H if liminf nsn(A) = 0.




Remark 9. A linear operator A is called dissipative if Im (Af, f) >0

¥£eD(A). A compact linear operator is called nuclear if Z: sy (A) < =,

Theorem 4[11]. If A > Q is compact, B is dissipative and nuclear
then the root system of A + B is complete in H. -

Example 1[11]. Opérator (1.9) can be split into the sum_
T = TO + Tl, where Ty8 = fr(énrtyS;(y)dy, Ty > 0, and T, =T- TO is
nuclear and dissipative. The last'statements is easy to verify (see [11]
for détails). Thus from Theorem 4 it follows that the root system of
operator (1.9) is complete in H = LZ(F). Actually this system forms -
a Riesz basis as we shall prove later.

2. Elliptic pseudo-differential operators‘(PDO) on T.

In order to explain how to prove that the root systems of operators
A (formula (1.6)) and T (formula (1.9)) form a Riesz basis of H we
start with the operator T. It is clear that

T=T,+ T

0 1
where TO’ T1 are defined in Example 1. It is easy to verify that T

0
is an elliptic pseudo-differential operator on I' of order -1 and Ty is
a PDO of order y < -1 (in fact y = -3). Suppose that Ker Ty = {0}.
Then L = Tal exists, L is a selfadjoint operator with discrete spectrum.
If Rer T = {0}, then
-1 -1 -1 -a
(Tp+Ty) © = (I+LT;) "L = L + Q, where Q = -(I+LT) LT L, |L Q| < ¢ for
a=2+vy<1 (8)
because ord LTlL =2 + y<1l. Condition (1) is valid for PDO under very

general assumptions [20]. Therefore one can apply Theorem 1 and obtain

Proposition 1. The root system of operator T defined by formula (1.9)

forms a Riesz basis in H = LZ(P).

10
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Remark 10. It is easy to verify that Ker TO = {0} and Ker T = {0}.

Remark 11. One can find e.g. in [21] how to calculate the order

of an elliptic PDO.
Remark 12. It is possible (and in a way more reasonable) to
choose To = 0.5 (T + T*), because in this case.Tl will be of the order

sinkrt ©
is——r—lec .

Consider now the operator A defined by formula (1.6).

-» for real k > 0 since the kernel of Tl

It is easy to verify that A is a pseudo-differential elliptic
operator, and ord A = =1. If AO = 0.5 (A + A%), A1 = A - AO’ then
ord Ay = -1, ord A} < -1. If ker Ay = {0}, and ker A = {0} one can
use the arguments similar to ones used above and obtain the aﬁalogue
of Proposition 1 for the operator A. If ker Ay # {0} then dim ker Ay < @
and ker AO(: c . This étatement follows from the apriori estimates for
elliptic PDO [21]. Thus, one can add a finite dimensional operator P
to A0 and subtract this operator from Al. Since ker AO CZCoo operator
P can be chosen so that ord (AO + P) = ord AO = -1 (ord P = -w),

and ker (AO + P) = {0}. Hence, one can assume that ker Ay = {0}. 1If

ker A0 = {0} then Agl exists and has a discrete spectrum. Since ord A1 <

ord A0 the operator AO A1 is compact in H. From this argument
and the formula A = AO (I-FAal Al) it follows that the root subspace N
of A corresponding to A = 0 i; finite-dimensional. Therefore one can
split' H into a direct sum H = N ; K, where N and M are invariant sub-
spaces of A and ker AlM = {0}, A[M denoting the restriction of A to M.
Hence, one can assume that ker A = {0}. This completes the proof of
the following proposition.

Proposition 2. The root system of operator A defined by formula

(1.6) forms a Riesz basis of H.

11




§3. When do T and A have no root vectors?

1. A simple sufficient condition was given in [11]: in order
‘that T (or A) has n§ root vectors it is sufficient that T is normal.
This condition T*T = TT* can be written explicitl& [11] and it is a
condition conderning the su:face I'. In [11] it was verified that for
operator T this condition is satisfied if T is sphere. For linear

antenna this condition is also satisfied [11]. of course, this condition

is not necessary. In a finite~dimensional Hilberﬁ space H every
linear operator A without root vectors is similar to a normal operator.
Indeed, if A has no root vectors then its eigenvectors {fj} form a
basis of H. 1If {hj} is an orthonormal basis of H,Afj = Ajfj and

fj = Chj, then C-lAChj‘a Ajhj' It means that operatér C_lAC is normal.

In infinite-dimensional Hilbert space H this is not true: there
exist compact oherators whose eigenvectors span H but these operators
are not similar to a normal operator (an example is given in [24]).

2. In [23] the following observation was formulated: the eigen-
subspace and the root subspace of a compact operator T, corresponding
to the number A, coincide iff 1) A is a simple pole of the resolvent
(T-AD7, or 162 2) (T - AD? £=0 (T - ADE = 0, or iff 3) the
operator T - AI does not have zeros in the subspace R (T - A\I), where

R(A) denotes the range of A.

§4 What can be said about the location and properties of the

complex poles?

1. Consider the Green function G(x,y,k) of the exterior

Dirichlet problem:
6+ 6= -8(x - y) in 0 &)

GII,==O (2)

12



|x|(36/3]x| - 1kG) + 0 as |x| - =, k > 0. . (3)
-1
Let GO (4ﬂrxy) exp (iery). Then

. 3G
. G(x,y,k) = Go(x,y,k) - fP &O(x,t,k)u(t,y,k)dt, u = 3§: , . (4)

where N is the unit of the outer normal to I at the point t, and p satisfies

the equation

: BGO ,
WA= 2 —, (5)

where A is defined by formula (1.6). ‘Operator A = A(k) is an entire
function of k and A(k) is compact in' H = LZ(F) for any k since T is
smooth. It is invertible for Imk > 0. Hence, (I + A(k))‘l is meromorphic
and is defined oﬁ the whole complex plane k. Since BGO/SN for y4r is

an element of H which is an entire function of k, one can see from (5),
that y = 2 (I + A(k))'l aGO/aN is meromorphic. From this argument and
formula (4) it follows that G(x,y,k) is medomorphic in k.

In §1 we emphasized that the location and properties of the
complex poles of G are of interest in applications. By the properties
of the poles we mean mostly whether the poles are simple or not.

Proposition 1. The set of the poles of G coinﬁide with the set
of the zeros of functions'kn(k), n=1, 2, 3..., where A (k) are the
eigenvalues of the operator T(k) defined by formula (1.9).

Proof. Let z be a pole of G,

Gz—R-giz-L)..’..

.. (6)
(k-2)"

From (4), (6), (2) after multiplying (4) by (k-z)% and taking k = z we

obtain

[r Gylsrt,z) BBET) 4e = 0, ger, )
) t

Since R(x,y) is a degenerate kernel it follows from (7) that a function

13




£(t) # 0 exists such that
fr Gy(s,t,2) £(t)dt = 0, sel. ‘ (8)
It means that An(z) = 0 for some n.

Conversely, let equation (8) has a nontrivial solution. The

function

u(x) = fr Go(x;t,z) f(t)de (9)
is a solution of the exterior Dirichlet problem

(4 + 2% u =0 in 2, uf, =0, | (10)
and u satisfies the asymptotic condition at infinity. (11)

If z is not a pole of G, Imz # O,then u = 0 in Q and in D. It means
that £ é 0 according to the jump relation. This is a contradiction.
If z is not a pole of G and Imz = O, thenu =0 1in Q and u # 0 in
D only if z2 is an eigenvalue of the interior Dirichlet problem for
the Laplace operator. But such an eigenvalue is a (real) pole of
G(x,y,k). Again, wé obtain a contradiction. This completes the proof.
Remark 1. 1It is possible to find other functions whose zeros
are poles of G [12].
Not much is known about the location éf the complex poles of G:
1) It is proved in [33], [19] that the complex poles kj of G
(only Dirichlet boundary condition was considered) satisfy the following
inequality:
Imkj<“a+b1n ijl,b>0 (12)
2. In [7] it was proved that a strip -e<Imk < 0, ¢ > 0 is
free of tﬁe poles of the resolvent kernel of the Schrédinger operator

with a finite potential q(x)sCl for the exterior Dirichlet problem.

This result shows that there exists a function F(x) with the properties

14




(1.23) such that the complex poles of the resolvent kernel of the
Schrodinger operator with q(x)ecé satisfy inequality (1.22) for the
exterior Dirichlet problem.

3. In Il9] a study of the poles kj = icj, oj < 0 was cafried
out.” It was proved that there exist infinitely many of such poles,
and the number of poles with hﬁ‘ < 0 was estimatedlasymptotically for

g >

4. The resolvent kernel of the Laplace operator of the exterior
boundary value pfoblem with the third boundary condition can have a pole
k = 0. 1In this case the solution of the cortesponding nonstationéry
problem for the wave equation does not hecessarily decay as t > », An

example is given in [34] where the problem

u = 4uin Q= {|x| >R, t >0} - (13)
u(x,0) = O,ut (x,0) = £(r), (14)
su/or + R Ty = 0, forr= |x| =R, t >0 ‘ (15)

was considered. The solution can be found in the form

w= ] w58 v (W), (16)
n,m

where Yom 2F€ the spherical harmonics. From the explicit formula for
u o it can be seen that uoo(r, t) does not decay as t > » if £(r) >0
and is finite. Another example is given in [32].

5. In [22] a criterion is given for an operator function
(I + A(k)].l to have only simple poles. If z is a pole of this function,
I+A(k) =1+ A(2) + (k - 2) A1 +...then z is a simple bole ?ff

H =R (I+A(z)) +A, ker {I + A(z)}. (17)

1

Unfortunately in order to apply this criterion in practice it is necessary

15




to have such information about I + A(z) and A;, which is usually
unavailable.
§5; How to calculate the poles of the Green function? Do

the poles depend continuously on the boundary of the obstaclef
1. '

in diffraction and scattering was given in [12], [13]. The poles

coincide with the numbers kj for which I + A(k) is not invertible (see

equation (4.5)). Let‘{fj} be an orthonormal basis in H = LZ(T),
o= I ¢5y- b
Substituting (1) in (4.5) and multiélying in H by fi one ;btains the
system for‘unknown cj: ‘
n
121 bjy(R)e, = 0, bij = ([1+ Al IE,, £). @

Here (.,.) denotes the scalar product in H. System (2) has a non-

trivial solution iff

det [bij(k)] = 0. (3)
The left-hand side of this equation is an entire function of k. Let

k(nz =1, 2, 3,...be its roots. In [13] the following proposition

is proved.

o (n)
Proposition 1. The limits limkm - km exist and are the poles
n--c

of the Green function G(x,y,k) of the exterior Dirichlet problem.
Every pole of G(x,y,k) can be obtained in such a way.

Remark 1. The same approach is valid for various boundary condi-
tions (Neumann and third boundary conditions included;, and for the

potential scattering by a finite potential [12].

16

A general method for calculation the poles of Green functions




.Remark 2. This approach is a variant of the general projection
method.

Sketch of Fhe proof. First we show that k;n) > km as n + «, " In
the complex plane we choose a circle KR of arbitrary radius R. Suppose
that the points kl,...,ks for which I + A(k) is not invertible lie
inside KR and the remaining points km lie outside KR. Denote by
€ > 0 a small number, by D g = (k: |k - kjl > ¢, |k| < R}). We assume
that the circles |k - kj] <€, 1 <3j < s do not overlap. The operator

[T + A(k)]ml is unfiromly bounded on D8 :

R’
-1
mI+M©]|IimkarM—M%y (4)
Equation (2) can be written as
wy + By A(k)un =0, (5)

where Pn is the pfojector on the span of fl,...,fn. Since Pn - I,

where > denotes strong convergence»of the operators on H, and A(k)

is compact, we conclude that|lA(k) - PnA(k)” + 0 as n > », Therefore
T + A(k) - [T + PnA(k)]H >0 as n > . It means that for n sufficiently

large operators I + PnA(k) are invertible in D because I + A(k)

e,R’
is invertible in De,R' Therefore all roots of equation (3) for n
sufficiently large lie in the union of the circles

!k—kjlf_e, |k| < R. - (6)
Since €>0 is arbitrarily small, this means that uniformly in the domain

[ | < R the limits exist:

tim k™ =, 7)
oo J i

Conversely, let kj’ lkjl < R be an arbitrary pole of G(x,y,k). Then

operator I + A(kj) is not invertible. Suppose that in the circle

17




]k.j - k| < € there are no numbers kén) and no points ki for i # j. (:)k

Then ”[Ik+ A(k)]-l” < M for |k - kjl = € and for n sufficiently large
Ilx + PnAfk)]-l” S M;. Since there are no numbers k;n) inside the
circles |k - kjl < €, the operator I+ PnA(k) is invertible for

[k - kjl < e and [I + PnA(k)]-l‘is an analytic operator function for
|k - kjl X €. From the maximum modulus principle we obtain a uniform

(with respect to n) estimate Il + PnA(k)]-l” <M, for |k - kj] < e.

But from this estimate we conclude that the operator [I + A(k)]-1
exists for |k - kjl X ¢, which is a contradiction. This completes the
proof.
Remark 3. The method gives a uniform approximation to the
complex poles in any compact domain of the complex plane k. |
2. In this section we show that in any compact domain of the
complex plane the complex poles depend continuously on the boundary in (:)
the following sense. Consider a parametrized equation of the boundary T
Xy = X, (tl,tz),lijiB,Oit

£, < 1. (8)

1°
where xjsCZ.

Assume that a bound?ry Pe obeys the following equation

xj(e) = xj(tl,tz) + eyj(tl,tz), 1 <3 <3. 9)

Where yjecz. Let G(Ge) be the Green function of the exterior Dirichlet
problem in Q, 3Q =T (Qe’ aQE = Fs). Let kj (kj(s)) be the poles of G(GE).

Proposition 2. If € > 0 then kj(e) - kj uniformly for |kj[ < R,
where R > 0 is an arbitrary large fixed number.

Proof. Denote by A = {0 f_tl,tzvf_l}.‘ Then kj, |kjl <R are

the points of the complex plane k at which the operator I + A(k)
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defined by formula (4.5) is not invertible. Operator I + A(k,e) is
not invertible at the points kj(s). Here the operator A(k,e) is the

counterpart of A(k) for Fe' Both operators can be written in the form °

9G
Ak, e) = [, w30t a,, - Ao

where J(t',s)dtl dt:2 i; the element dt of the area of TE; for e = 0
we obtain the opgrator A(k). Since Xj’ yjecz the function J(t,e) is
continuous (actually J(t,e)eCl)
lim J(t,e) = J(t) as ¢ » 0. (1)

Thus, 7 |
| laCk,e) -~ AK)[| > 0 as ¢ » 0, |k| < R. | (12)
Now we can use the arguments given in the proof of Proposition 1. The
role of n is played by €. Consider the union K5 of the circles
[k - kjl < 6, where § > 0 is an arbitrary small fixed number,
[kjl <R1l<j i_s.and the circles do not overlap. By DR,G we denote
K\K, Ko = {k:|k| < R}.

In DR,6 operator I + A(k) is invertible. Because of condition
(12) for ¢ sufficiently small the operator I + A(k,e) is also invertible
in DR,G' This means that kj(e)EKﬁ for an ¢ suffic?ently small. Since
§ >0 is arbitrarily small the proof of Proposition 2 is complete.

Remark 4. It is possible to estimate kj(s) - kj’ In a general

setting this type of perturbation theory was studied in [40], [41].
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Appendix 1. Losses in open resonators [14].

Diffraction losses for the n-th mode in an open confocal resonators
can be calculated by the formula |
n=0,1, 2..., | (1)
where An are the eigenvalues of the following operator

Af = \f, Af = E% IS exp‘{-ib(x,u)}f(u)du, | (2)

and S<:1R2 is a central-symmetric domain, b > 0. 1It is easy to verify
that A is normal. Thus IAnI =5, where s, = An {(A*A)llz} are the
s=numbers of A. From the result, given in [36] it follows, that

s, (8)) s, (8,) if 5,C s,. (3)
From this we obtain the following inequalities

%e SO0 S, n=0,1,2,..., | (%)
where 2 e (ani) are the losses for the mirrors Se (Si)’ Se D2SD Si.
In [14] the following formula was also obtained:

0gl? = min max Jag|?, 0 =0, 1, 2,..., ®
\ L f|L : | .
n

n
llg = 1
where Ln is a n-dimensional subspace of H = L2 (S). The following
conjecture was discussed in [14]: among all central-symmetric mirrors

S with a fixed area |S| the circle has minimal diffraction losses.

Appendix 2. An example on complex scaling.
In connection with spectral properties of the Schrddinger operator
recently the complex scaling technique has attracted much attention [16].

The main idea is to consider solutions of the Schrbdinger equa-

tion for complex values of r = |x|.

This idea was used by the author as early as 1963 in order to

prove the absense of positive discrete spectrum of the Laplace operator
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of the Dirichlet problem in some infinite domains with infinite
boundaries [15]. The arguments given in [15] are not elementary. Here
we use the same idea as in [15] and give a very simple proof of the
following (known) proposition.

Proposition 1. Let D C:ﬁ? be a bounded domain with a smooth

closed connected boundary T, Q = RB\D,

(A + kz)u = 0 in Q, K > 0, (L
ueL?(9), (2)
uIF = 0. (3

Then u(x) = 0 in Q.

Proof. By the Green formula we have

exp(ikr )

+ 3 +

u@ = - Jpgudt, w=gh, gl = (4)
: Xy

(From (2) it follows, that-VueLz(Q) and hence a.éequence r, > exists
such that
f 2 2 | ;
{|ul® + [3u/3N “}ds + 0 as n + . (5)
|x|=x
n
Therefore the integral over the large sphere in the Green formula tends
to zero). Let x = rw, where w is a unit vector, and let z = rexp(if).

The function u(x) = u(rw) is considered as a function of the complex

variable z. Since

+ {ik /42 - 2r{t]cosa+|t|2}
g = exp '

, a = wt, (6)

/;2 - 2|t|rcosa+[tl2

it is clear, that GO is analytic in z = rexp(if) for iz] > R, where R

is sufficiently large, such that if r > R then the inequality holds:
2 5 2rd + d2, d = max|t]. (7
tel
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Thus for |z| > R the function /QZ - Zzltlcosa+[t|2 is analytic if we

fix some branch of the radical. From (3) it follows that

o = exgéikz) fl(z)’

(8)
where fl is analytic in‘[zl > R and
£, = 0(1) for |z| > R. (9)
Exactly the same arguments lead to the formulas:
exp(-ier )
= - - T XYV
u=- [ ghudt, g - : (10)
Xy
u = EEEé:&EEl fz(z)’ (11)
where £,(z) is analytic in |z| > R and
£, = 0(1) for |z| > R. | (12)
Hence
e1kz ~-ikz
u(z) = ——f, = - £,(z) for |z| > R. ! (13)

Formula (12) is contradictory unless u = 0. To prove that we use a
known uniqueness lemma for analytic functions.

Lemma. Let D be a domain on the complex plane z, C be its
boundary. Let D contain the half plane Rez > a. Let f(z) be analytic
in D, continuous in D + C and

In|f(z) | < Alz]| for |z| > R, zeD, (14)
where A = const > 0, and R is an arbitrary large fixed number,
In|f(z)| < - h(|z]), zeC, (15)

where h(t) > 0 is a continuous function such that
[ -2
1 t "h(t)dt = =, (16)

Then f(z) = 0 in D.
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In our case f(z) = u(z), D can be chosen so that C coincides

outside of some large circle with the rays argz = 3n/4, arg z = 5wv/4,

h(t) = const + %: » so that (16) is satisfied. We have
2
1n|u(z) | < klz| - lnlzl + ln|f1| < Alz|, zeD,

(since Ifll §;C1 we have lnlfll ::Cz).

1n|u(z) | 5_—-E£§l + const, for|z| > R, z = |z|exp(i3n/4).
' ' 2

Similar estimate holds on the ray argz = 57/4. From the preceding
lemma it follows that u(z) = 0. Thus u(r,w) = 0 for r > R. By the

unique continuation theorem we conclude that u = 0 in Q.

Appendix 3. ‘Variational principles for eigenvalues of compact

nonselfadjoint operators.

Let T be a linear compact operator on a Hilbert space, A be‘its

b
eigenvalues, ]All 3_|A2| > ., rj(tj) be the moduli of the real
(imaginary) parts of the eigenvalues, r; >, i"'(tl > t, >.0d).

Let Lj’ &j’ Nj be the eigenspaces of T corresponding to Aj’ rj, tj

. We

respectively. Note that rj is not necessarily equal to lReAj
can set a one to one correspondence between rj and {Rekj‘, and Mj and

Lj’ putting Mi = Lj(i) where j(i) is so chosen, that IReAj(i)[ =r,.

The same is true for L, and N,. Let L, = % + 1, and M, N are
3 j S i

defined similarly.
Theorem. The following formulas hold:

IAjl = max  min [(Tx,y) | : (1)
' ‘ xeb%;l yézjhl
(x,y)=1
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rj = max min [Re(Tx,y)l " ' (2)

~

X€E -1 ye -1

(x,y)=1
tj = max min | Im(Tx,y) | . ‘ (3)
xeﬁJL_‘l yes;JL_l
(x,y)él

Here (x,y) denotes the scalar product in- H.

Proof. We prove formula (1) for j = 1. The proof of other

- statements of the Theorem are similar. For j = 1 formula (1) can be

written as

A, = max min [(Tx,y) | (4)
xeH yeH :
(x,y)=1
For a fixed x we write Tx = Ax + z, where zéxl, xl is the subspace of
all vectors orthogonal to x and A is a number. Thus (Tx,y) = X + (z,y).

Let us represent y in the form Yy = ux + u, uexiu From the condition

(x,y) = 1 it follows that u = [xl—z._ Thus (Tx,y) = A + (z,u). We have

min  [(Tx,y)| = min |} + (z,u)] = '3' Iy (5)
yeH .
(x,y)=1 ue

Formula (5) implies (4).

Remark 1. 1If in is compact and |IT - Tn” + 0 as n > », then
Aj(Tn) - Aj(T), Vj. This fact permits an'approximate calculation of
the spectrum of T using in (1)-(3) the operétor Tn instead of T. 1In

particular one can take n-dimensional operator Tn (dimrange Tn =n).
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Bibliographicai notes.

Section 1. Quesﬁions discussed here are of interest for engineers

and physicists [2]-[4], [32]. They attracted considerable attention

of mathematicians in recent years [1], [19], [3, Appendix ]. Our

knowledge of the spectral structure‘of nonselfa@joint operators is’very

limited. For example, it is not known(how to investigate this structure

-of the equation (1.12). 1If a nonselfadjoint operator is a weak

perturbation (in the sense defined in section 2) of a selfadjoint operator

some information is available (see A. Marcus [17], V. Kacnelson [lSi;

M. Agranovich [3]). For dissipative operators there exist some

theorems about completeness of their root systems [l], [11]. ©No answer

to question 5) is known.
Section 2. Properties of the bases of a Hilbert space are de-

scribgd in [1] in the form convenieﬁt for our purpose. A rigorous

study of the spectral properties of the integral operators arising

in diffraction theory was initiated in [12], [11], [13]. Questions put

forward by B. Kacenelenbaum were stimulating for these studies.

M. S. Agranovich [3] has made further contribution to this theory.

Essential to his results were the results due to A. Markus [17] and

V. Kacnelson [18]. The theory of pseudo-differential operators is

now well developed. A summary of main results of this theory is given

in [20], [21]1, [3], [38].
M. S. Agranovich [3] applied the theory of pseudo-differential

operators to the integral equations of diffraction theory.
Section 3. References are given in the section.
Section 4. The questions discussed here are of interest in

applications. Proposition 1 was proved in [29]. A part of it was

proved in [12]. The scheme for the study of analytic continuation of
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the resolvent kernel of the Schrodinger operator was given in [5], t6],
[25], [26]. Analytic properties of the scattering matrix for ac§ustic
wave scattering by an obstacle was studied in [39]. Eigenfunction
expansion theorems for nonsglfadjoint Schrodinger operator afe préved
in [8], [9] and the properties of the resolvent in the complex plane

of the spectral parameter k were used in the proofs. 1In [19] a study
of the purely imaginary poles of the Green function of the exterior
Dirichlet and the Neumann problem is given. The known criteria for a
pole of an operator-valued function to be simple, including criterion
(4.17) unfortupately are difficult to apply: so far no applications of
these criteria appear to be known.

In [27] it is proved that for the complex poles of the Green
function of the 'exterior Ngumann problem for a convex domain in R3 with
a smooth boundary which has a positive Gaussian curvature, the function
F(x) in formula (4.2?) can be taken as F(x) = e{xll/3, for some small
€ > 0. In [28] it was shown how to pose correctly the problem of finding
root vectors corresponding to the complex poles of the Green functions.

In [42] the analytic continuation of the resolvent of some
general differential operators is studied.

There is an example in [37] which schows that a root system of
a nonselfadjoint operator may form a basis of H, but some other root
system of the same operator may not form a basis of H.

In the literature the radiation condition in the form
u ” 95253551 (1 + o(%&) as r > « isg often used for Imk < 0, i.e. for

exponentially increasing solutions of the problem (4.10). It is assumed
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in such cases that the solution of the boundary value problem satisfying
the radiation condition is unique. This is false. A simple example

is the function u = g *f - g *f, where g , g are defined by formulas

(3), (9) of Appendix 2, feC0 is arbltrary, * denotes convolution. It is
clear that (4 + k ) u=20in R; and u satisfies the radiation condition
for Imk < O, but u # 0. The right asymptotic condition for'exponentially'
increasing solutions is given in [28], where it is proved that for Imz < 0
the solution of the problem (4.10) has, in a neighborhood of infinity

L,

"the following form u = r-l exp(izr) z f (a)r3 , = |x|, a= x|x

and the series converges absolutely aizounlformly for sufficiently large r.
Section 5. The simple method for calculation of the complex
poles is given in [12], [13]. It is essentially a variant of the
brojection method and the arguments show that the complex poles depend
continuously on the bouﬂdafy. The same arguments prove the continuous
dependence of these poles on the parameters if the kernel depends
continuously on these parameters.
The results of Appendix 3 was proved in [29]. 1In [30], [31]
it was shown rigorously that the solution of the exterior Dirichlet
boundary value problem is the limit of the solutions of the potential
scattering problem when the potential goes to infinity in D and is equal
to 0 in Q. Here asusually D =£R3\Q, Q0 is the exterior domain. In [10]
[35] behavior as t > = of the solution of the wave equation in exterior
domain was studied in case when the resolvent kernel of the corresponding
stationary problem cannot be analytically continued through the continuous

spectrum.
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It is possible t§ conclude from formula (12) 1in Appendix 2 that
u(z) = 0 without making use of Lemma of this Appendix. Indeed, since
fl’ f2 are analytic and‘boupded ig some neighborhood of infinity they
behave asymptotically as an—n’ n>0. If z= iy in formula (12) of

Appendix 2 and y > + ©, then the left-hand side of this formula goes

to zero, while the right-hand side goes to infinity unless f1 =f, =0.

2
This simple argument was pointed out by B.A. Taylor. In [15], where

the boundary of the domain was infinite it was necessary to use Lemma
from Appendix 2. It is interesting to mention that exactly the same
arguments‘prbve the following proposition.

Proposition 1. Let u be a solution of the problem (1)-(2) of

Appendix 2. Then u = 0.

Note that no assumptions about boundary values of u are made

in this proposition.

Unsolved problems

1. To what extent do the complex poles of the Green function determine

the obstacle?

2. 1Is it true that the complex pole of the Green function for the

exterior Dirichlet problem are simple?

3. Does the order of a complex pole coincide with the order of zero

of the corresponding eigenvalue? (see Proposition 1 in §4).
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