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Abstract

Norms of vectors and matrices are reviewed; this concept i
extended to a norm based on the eigenvectors (left and right) of
some square complex matrix of interest. The properties of this
norm are discussed and special cases are noted depending on the
assumed form of the generating matrix for the norm. The eigenve
norm is related to the euclidean or spectral norm (or magnitude)
under certain conditions related to the defining matrix and its

eigenvectors. Some applications of the eigenvector norm to phys

(electromagnetic) problems are pointed out.
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I. Introduction

In the analysis of dlstrlbutlons of electromagnetic fields,
current densities, etc. one may w1sh to assign some single scalar
number to such spatial and frequency or time functions as a means
of comparing one such function to another. This scalar number
might'be something which is to go to zero as the function itself
goes to zero in some sense; if the function of interest is some
. kind of "error" field (say the difference of between the '"real"
‘field distribution from an "ideal'" one) then such a scalar number

is quite appropriate. Another use of such a scalar might be to
represent a maximum or minimum of the function in some sense.

One way to reduce such functions to a single scalar is to
define what is often referred to as a norm in the mathematical
literature. As will be discussed such norms have some useful
propertles

For present purposes norms are discussed in the: context of
vectors (of finlte,dlmens1on) which can also be.cons1dered.as func-
tions of a discrete variable (the vector-component 1ndex (1nteger
'subscrlpt)) This simplifies matters somewhat - The concepts are.
readily generalizable to the contlnuous case (functlons '1nc1ud1ng
vector functions of any number of ‘variables). . Mvhwfi“ﬁi f

Having considered vector norms the property of matrices in
transforming one vector into another vector“is used to define
appropriate matrix norms. Such matrix norms can also be applied
to more general operators encountered in the case of functions of
continuous variables.

After revie&ing»commonly used vector and matrix norms, a
special kind of norm, the eigenvector norm (or eigenmode norm) is
defined and its properties discussed. Thie'kindfof norm has some
important applications in electromagnetic interaction problems for
which an appropriate set of eigenmodes of the object of interest
can be defined (say from some integral equation describing the
electromagnetic interaction process).




This note is intended to lay some of the groundwork for the
use of norm concepts in EMP problems. Applications include bounds
on EMP response (interaction), accuracy of EMP'simulatibn,>bounds
on response to EMP criteria from EMP test data, accuracy of nﬁméri~

cal electromagnetic calculations, and perhaps various other areas
to be investigated.




II1. Vector Norms

Following a traditional definition’[G]‘let us call something
a vector norm if the following properties are satisfied o

’H(an)n 2 0 with [|(ay)l| = i) iff (ap) = (0)

loCa DIl = |a| [iCa )l
n n (2.1)

lCap) + I < [IKapIl + (ko) (triangle inequality)

v”(anﬂl depends continuously on (a )
where

(an),(bn) are N-component complex vectors
(n =1,2,...,N)

H(anﬂ| = norm of (a,)

(2.2)
o is a complex scalar

|o| = magnitude of a

For the special case of one-component vectors (scalars) this
reduces to

lle + il <llall + |[ol|

(2.3)
labll = [allbll = ]l Ib]

One can consider the notion of norm as a generalization of

the magnitude concept. For scalars (the one-dimensional case) we
have
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N=1

(ay) = a, (b))

'n = b 4 (2.4)
la] = {[Re[a]]? + [Im[a]]z}%:
One choice for norm is then
llall = |a] (2.5)

since the magnitude satisfies all the properties (2.1). Another
possible choice for norm would be a positive constant times the
magnitude. In general one might wish to define a particular norm
so that (2.5) is satisfied in the case of one-component vectors.

A common vector norm is the vector magnitude or euclidean
norm given by

I

lCa )] Iolagl®i = ey » a7 (2.6)
where *‘indicates complex conjugate. For N = 1 this reduces to
the usual magnitude of a complex scalar.

Another common type of vector norm is referred to as the p
norm defined by

N P 1/p ‘
Ity = | I 1a07| (2.7)

n=1

This has important special cases

N
I Ca)lly E'ngl la, |
N 3 3
. 2 * |2
lfcally, = %nzl la | 1 = {(an)- (a,) g z |(an)l(2.s)
I, = jmex lagl




The 2 norm is then the euclidean norm or magnitude which has a
common interpretation in physical problems in terms of energy con-
cepts. The » norm or maximum norm is also useful in physical
problems; this might represent, for example, the maximum of a set

of signals of interest. Note again for the case of one-dimensional
vectors we have

N=1
(an) z a g (2.9)
lIcagll, = llall,

so that all p norms reduce to (or are consistent with) the magni-
tude of a complex scalar.
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ITI. Matrix Norms

(:> Norms can also be defined for matrices (and for more general
operators as well). Let us first consider general matrix norms,
and then associate them with vector norms.

In a form similar to (2.1) let us call something a matrix
norm if the following properties are satisfied [5]

I Cdy W)l 2 0 with [[(d, D]l =0 iff (dy ) = (O 1)

laCdy 11 = lalllcd, ol
(3.1)

ICep m) + (dy Il < IlCey DI+ 1I¢d, Il (triangle inequality)
1CEn @) = Cep < 1CE, DIICe, DIl (Schwarz inequality)

)

”(dn,m)ll depends continuously on (dn,m

with the additional multiplication property for the norm of matrix
(:) products (as compared to the list in (2.1)).

For the above relationships to be meaningful we must have
matrices of compatible order [3]. In general we allow the matrices

to be rectangular, say NxM (N rows, M columns). In (3.1) this

requires
(c ) , (d ) have same number of rows and same number
n,m n,m
’ ’ of columns
Nc = Nd s MC = Md
(3.2)

(fn m) has number of rows equal to number of columns

of (gn,m)

Mf = Ng

Other terms are as defined in (2.2).




There are some interesting properties which follow from (3.1).
If (dn m) is a square matrix we have . <:>

ea, D <llca, pIf

(3.3)
g = positive integer

Considering the special case that one of the matrices reduces to
a vector (Nx1 or 1 xM matrix) we have

1(dy ) = Capdll < flCay Il
(3.4)
Il(oy) = (ay < T IIca, Il

~with again the requirement that the vectors be of compatible order

to the N xM rectangular matrix. Furthermore if both matrices are
reduced to N-component vectors we have

12y = < i) o (3.5) O

One can also choose the special case of matrices as scalars which
gives

lla+bll < llall + [||b]]
(3.6)
llabll = la] [Io]l = l[2]] |b] <[[a][{[P]| |

which are evidently satisfied for the case of norm being defined

as magnitude for complex scalars. In general for scalars the
above gives the requirement

lall 2 |al | (3.7)

One might wish to choose the definition of a particular norm of
interest so that (3.7) gives equality.




O There are many ways of defining a matrix norm consistent
with (8.1). For our purposes we will only consider matrix norms
associated with (or generated from) vector norms.




IV. Associated Matrix Norms

A common way of constructing matrix norms uses the role of
matrices in relating vectors via dot multiplication as in

(b)) = (d_ ) * (a)

n,m n

(dn,m) = NxM complex matrix

(4.1)
(an) = M-component complex vector '

(bn) = N-component complex vector
Assume that we have defined a vector norm which applies to vectors

of arbitrary numbers of complex components; examples are given in
section 2. Then we can write

eI =11Ca, ) - apll (4.2)

If we define a matrix norm via

lca, ) - Capli

l(a, Il =  sup
m.m (2 )#(0) Capl (4.3)
sup = supremum = least upper bound
then we have
oIl < 1lcay Il (4.4)

which makes the matrix norm a least upper bound over all (an) in
this inequality (4.4). Hence the associated matrix norm can be
thought of as a minimum norm consistent with the chosen vector
norm.

| One can take definition (4.3), make various substitutions

for (dn m), apply the vector-norm properties in (2.1), and generate
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(:> the matrix-norm properties in (3.1) showing that the assbciated
matrix norm is a true matrix norm.

For the special case of square matrices (N'= M) we can write
the identity (1n m) where

1 for n = m

lim =
O forn # m
(4.5)
g pll = 1
which is easily seen from the defining relation (4.3) since
(1, )+ (ay) = (ap) ; (4.6)

If we let the N xM matrix degenerate to a complex scalar (1 x1
matrix) we then have from (4.3)

O (dy ) =4

(an) z a
i (4.7)
da
d = |ldlf =
I ¢ n,m)ll (1]l i;g =]
d| llall

m T
= |d|

Hence for all vector norms the associated matrix norm reduces to
magnitude in the scalar case. Compare this result to (3.7) which
has the magnitude as the lower bound |for the matrix norm of a
scalar. This shows that the associated matrix norm is a generali-
zation of the magnitude of a scalar.
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V. Eigenvector Expansions

For use later let us review some concepts concerning the
eigenvector expansion of matrices. For a square complex matrix
(N xN) we define

(d )+ (r ) = Ar,(r.)
n,m n’g B ' n 8
(L) = (d_ ) = A ()
n’g n,m B*"n 8
det((dn,m) - AB(lh’m)) =0 for B =1,2,...,N
(5.1)
(rn) £ right eigenvectors
B
(Zn) = left eigenvectors
B
AB = eigenvalues

For the case of distinct eigenvalues we have the usual result

(rn)B . (“n) ;= 0, xsl # ABZ (5.2)

which is the biorthogonalization property. Note that for our pur-
poses in electromagnetics which uses in general non-hermitian
matrices and operators, orthogonality is most conveniently defined
via a zero dot product (or symmetric product as distinguished from
inner product) without conjugation of one of the vectors. This
convention is addpted throughout.

For present purposes let us assume that one can construct
N linearly independent (rn)8 and N linearly independent (Zn)B with
the property '

(ma),  (2a) =0 tor sy v, (5.5

12




which can still allow for some cases of degeneracy (Agy = Agy for
Bl # 82). This assumption is equivalent to assuming that the
right and left eigenvectors each span the N-dimensional complex
space with thé biorthogonalization property (5.3) even in cases
of degeneracy. For a degeneracy (say p fold) with p equal eigen-
~values we assume there’is a set‘of,p assqciated (rn)B which are
linearly independent, and likewise for a set of P of‘the (zn)B;
Then a biorthogonal set of p pairs is constructed in a Gram-Schmidt
type of manner.

With the assumption of spanning the space we can expand an
arbitrary vector (N-dimensional complex) as

N
(a ) = a(r ) (5.4)
n le B n7g
Dot multiplication with (zn)s,using(B.S), gives
(2.) =+ (a ) =a (& ) « (r ). - (5.5)
n 8 n g "n B n 8 ~
Choose the special case:
= * (5.6
(ap) = (%) (5.6)
' B
and note
(L.) <« (&) =) |7 #0 (5.7)
°n 8 n 8 n 8 V |
(unless (zn)B = (On) which violates our assumptibn). Now since
' *
L)+ (e
ap = —= 8 (5.8)
() s (r)
" "
and since each aB,must exist (be finite) for’anﬁ choice of (an)
then we have ‘ ‘ o '
(2) = (x)) #0 o (5.9)

B B




This allows us to normalize our eigenvectors as a biorthonormal
set ' '

(zn)él k (rn)82 B l81,82 _—— : »(5'10)

So a biorthogonal set spanning the space can be biorthonormaliZed.
For the special case of a symmetric matrix

_ T
(dn,m) _'(dn,m)
T‘E transpose ' ' ‘ (5.11)
dn,m = dm,h
and we can set
(&) = (r) = (e) o - (5.12)
"g g " | : .

The assumption of spanning the: space now gives an Qrthonormal set
of eigenvectors with

(en)Bi ' (en)sz = .8, | (5.13)

Matrices for which the right and left eigenvectors are each
a set of N linearly independent eigenvectors can then be writteh
in the dyadic form '

‘ N
(a_ )= ] A (r ) (&) ‘ ) (5.14)
n,m B=1 B*"n B n 8 o
_ This form has all the properties of (d, ), not only by-clegrly
satisfying the eigenvector/eigenvalue equations (5.1),7but‘also
by correctly giving (d, ) ° (an) for all (a,) due to the represen-
tation of (an) by (5.4) and (5.5) and the biorthonormalization
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(5.10). If we have some function F()A) of a complex variable X,
with appropriate attention to a single-valued definition of F, we
(:> have the convenient result

N , ; ‘ ‘
F((d, )) = )} F)(r ) (&) : o (5.15)

n,m g=1 B, n B n 8
The eigenvalues of F((dn m)) are then the N eigenvalues F(AB) and

the eigenvectors are unchanged. There are some convenient special
cases

N ‘ :
- o _ . .
(ln,m) B (dn,m) = 621-(rn)s(2n)3 (identity)
(5.16)
(d )—1 = ? l~1(r ) (£.) (inverse, if the matrix
o =1 8 ng ‘ : 1

B is non-singular)

The eigenvectors can also be combined to form matrices as

(2,) SRR |
/ m) ‘
O U, | i
‘ o (zn,m) = . (eigenvector rows)
(Rm)N
(5.17)
(rn,m) = ((rn)l,(rn)z,...,(rn)N) (eigenvector columns)
which by (5.10) are related as
(zn,m) . (rn,m)'= (1n,m) (5.18)

so that the left and right eigenvector matrices (normalized) are

mutually inverse to each other. Hence we also have
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’

‘(rn,m) . (zn’m) = (1n m) el | (5.19) .(:)
These eigenvector matrices can also be used to give a

generalized form to the eigenvalue/eigenvector equations

(d, ) * (v

n,m n,m n,m n,m
(Rn,m) * (dn,m) = (An,m) ' (zn,m)
(5.20)
(An,m) = diag(kl,kz,. ,AN)
A

]

These also give

(d, m) = (rp w) ° (1\n m) * (zn,m)
’ ’ (5.21) O
(An,m) = (zn,m) : (dn,m) ' (rn,m)
qu symmetrical (dn m) we have
(em)1
(ﬁn’m) =z (en,m) E (em)z
(em)N
. T _ T
(T m) = (p,m) = pm)
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VI. Spectral Radius

The spectral radius, often designated p, of a square matrix

(dn,m) is given by
spectral radius = p((d, ))
= sup IABI
B , (6.1)
= 2 dy N

max

where |A|max is defined as an eigenvalue of (dn,m) with maximum

magnitude.

18
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VII. Hermitian Matrices

In the discussion of norms, hermitian matrices play a
significant role. By a hermitian matrix is meant

oz T* = T : (7.1)

conjugate transpose or adjoint

In another form

Re[(dn’m)] (Re[(dn"m)])T (symmetric)

(7.2)

Im[(dn,m)] = —(Im[(dn’m)])T (antisymmetric)

Note that only sQuare matrices can be hermitian.

Applying (5.1) to a hermitian matrix we note that we can
choose ‘ ‘

' *
2,) ='(rn)B u(7.3)

with 8

= i.e. 1 .
AB A, , i.e., 38 rea . (7.4)

Assuming N linearly independent eigenvectors, as in section 5, we
have a property of conjugate orthogonality

*
(rn)B . (rn) = 0 for Bl # 82 | (7.5)
| 1 Ba
Then from (5.9) we can normalize the result as
NES)
1

which makes the eigenvectors a conjugate orthonormal set of vectors.

) (rn)B - 161,62 | | (7.8)
2
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As shown by Franklin [6] such a set of conjugate orthonormal
eigenvectors, as in (7.6), can always be constructed for an
arbitrary hermitian matrix. He also shows that for real hermitian
matrices, i.e., for symmetric real matrices (and hence square),

" the eigenvectors can always be constructed as real orthonormal
vectors. The eigenvalues are of course already real.

Related to hermitian matrices we have positive definite
matrices

(20" + (4 )+ (a) 2 0 for all (ap) # (0)  (7.7)

“and positive semidefinite matrices
(a)) + (d ) + (ay) 2 0 for all (a,) (7.8)

 Merely requiring that the above quadratic form be real for all
(an) gives

(a)" -+ (4 )+ (ap) = [ap™ -+ (a1 - @p]”
= (ay) 4y o - @’
= (a" oy " @ (7.9
w‘hi‘ch implies
(dy ) = (dn’m)dr (4hermit‘iari) ' | (7.10)

Expahding hermitian (d ) in its eigenvectors as.

N
(a_ )=}

*
A (r.) (r.) (7.11)
g=1 B D7g Mg

1
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and substituting in (7.7) and (7.8) with (an) chosen as an arbi-
(:) trary one of the eigenvectors leads to the standard result

Ag > 0 for all B (positive definite)
f | (7.12)
AB > 0 for all B8 (positive semidefinite)

Positive definite matrices and positive semidefinite matrices are
then subsets of the set of hermitian matrices.

Suppose now that (dn,m) is an arbitrary complex Nx M matrix.
A hermitian matrix can be formed from this from either of the

relations
+ + T, ‘
[(dn,m) . (dn,m)] = (dn,m) : (dn,m)
+ ‘ (7.13)
.r = . —1- - B
[(dn,m) . (dn,m) 1 = (dn,m) (dn,m)
i.e., both (dn’m)+ (d, ;) which is MxM, and (d; ) - (dn,m)+
which is Nx N, are hermitian. Note that both of these hermitian
(:) matrices in (7.13) are positive semidefinite since
* F
(an) . (dn,m) . (dn,m) (an)
= [(dy ) * (ad]” + (dy o)+ (ap)
= J(d, )+ (a)l%20 (7.14)
n,m n
and
* +
(ag) » (dy )+ (dp ) (a,)
_ * +
= [y 7 - a1 a7 - ap)
= ¢a, " - (an)l2 20 - (7.15)
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An important property of hermitian matrices concerns the

3
quadratic form (an)~ + (d ) - (an). For hermitian (d ) we

n,m n,m

have the Rayleigh principle [6]

(a ) =+ (d. ) * (a))
A ((d. )) =  sup L UL L

max' " “n,m (a,)#(0,) (an)* - (a)

(7.16)

where Am is the maximum eigenvalue of (dn m). There is also a

ax ,
related result for the minimum eigenvalue of a hermitian matrix as
: *
o (ap) = (dp o) * (a)
)\min((dn m)) = inf % -
H .
(a,)#(0,) (a,)" - (a)

(7.17)

inf = infimum = greatest lower bound

These results are related to the spectral radius (section 6)
applied to hermitian matrices giving

spectral radius = p((d; .))
= [A((d, 1))
RAQC N |maxv
=max[[A__ |, A jpl]
*
(ap) = (4 ) - (a)
= sup x
(a,)7#(0,) (ap) * (a,)
[(a )™ = (a, )+ (a)l
= sup * .
(a)#(0) . (a) - (ay)

(7.18)
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The eigenvector matrices (5.17) take the form for hermitian

(:> matrices as

(7.19)
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VIII. Some Common Associated Matrix Norms.

Corresponding to various commonly defined vector norms (as
for example in section 2) one can define the associated matrix
norms. ' .

Consider first the matrix norm associated with the vector
euclidean norm, 2 norm, or magnitude. Let us define this accord-
ingly asvthe matrix euclidean norm, 2 norm, or magnitude. This
norm is also called the spectral norm. The magnitude symbol will
be used to signify this particular matrix norm as

| = [Epm) * ()]

NIEERKES sup
2 (2 )#(0)) | (a )|

X€:

n,m n,m (8.1)
Here (fn,m) is a general complex rectangular (N x M) matrix;
vaccordingly (an) is an M-dimensional complex vector. Note that
in the definition the matrix is to the left of the vector. One
then might think of this as a left norm; the right norm corres-
ponds to the left norm of (fn,m)T' The right and left associated
matrix norms are not in general equal.

Squaring (8.1) we have

2 e, ) - (a2
)&= sup >

| (£ 5
(a,)#(0,) | (a )|

n,m

(£, )+ (a)]™ « (£, )« (a)

n,m n,m n
sup *
(a )#(0,) (ay) - (a,)

1]

CT0 LRI € U LS S S P

n n,m n,m
sup

* .
(2,)#(0,) ()" + (a,)

(8.2)
However this is just the Rayleigh principle (7.16) for the Mx M
.1..
)

hermitian matrix (fn,m . (fn,m) giving

. ‘ —f' 1
Moo= D () = (017

n,m

| (£ (8.3)
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Note the order (fn m)*.- (fn'm) since our definition of matrix

norm is a left norm. Also note that all the eigenvalues AB of
(fn m)+ . (fn m) are non-negative (AB 2 0 for 8 = 1,2,...,M) by
~ (7.12) since this is a positive semidefinite matrix by (7.14).

In the case that (fn m) is hermitian (N XN) we have

- N 3
I(fn,m)l‘— [Amax((fn,m) ' (fn,m))]
= Dpax((fy ®1%
= !X((fn m))l
’ max
= p((fn,m)) £ spectral radius of (fn,m)
(8.4)

where the result is used from (5.15) that thé eigenvalues of
(fn,m)z are the squares of the AB’ the eigenvalues of (fn,m)' For
hermitian matrices the magnitude, euclidean norm, or spectral norm
is then just the spectral radius, a rather simple result.

There are other common matrix norms. Corresponding to the
vector p norm, (2.7), there is an associated matrix p norm. For
special cases we have the results [6]

‘ N
H(fn Il = max ) lfn ol = maximum column
’ 1 m=1,2,...,M n=1 ’ magnitude sum
M ' (8.5)
H(fn,m)ll = max ) |fn,m| = maximum row

o n=1,2,...,N m=1 magnitude sum

These results apply to general complex N x M matrices.

Thére are some bounds that have been obtained concerning
associated matrix norms. For general complex square (N xN)
matrices we have [4]

Iy Il 2 oCCE, 1D) = [ACCE, 1)) (8.6)

n,m max

25




so that the spectral radius is a lower bound for'a11~a8s0ciétedv

matrix norms (for square matrices). Note that equality in (8.6)

is achieved if (f, ) is hermitian. Combining (8.6) with other

matrix norms for square matrices (as -in (8.5)) we have eigenvalue
inequalities ' ' ‘ ' ’

N
IA((fn m))|‘ < max -y |fh ml = maximum column
! ‘max m=1,2,...,N n=1 ’ magnitude sum
. M . (8.7)
|>\((fn m)) | < max ) £, | = maximum row
’ max n=1,2,...,N m=1 ’ magnitude sum

Combining (8.3) with (8.6) we have

(g HF

| 3
RS D] I S (€ S L C SO D) LI (8.8)

max
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IX.  Eigenvector Norm for Vectors

After the "preliminaries'" our odyssey has come to the eigen-
vector norm, a norm with potential appllcatlon to. the elgenmodes
of electromagnetic scatterlng/antenna problems ;

Consider a square (N xN) complex matrix (d ) and assume
that it is diagonalizable as in section 5 so that | |

v o N
Cp,md = L Rl ()
(9.1)
BB
1 B2 172
Expanding an arbitrary N-dimensional complex vector (a ) as 1n
(5. 4) we have

i
(ay) = ag(r, )
=1 P ®

8 B
ag = (!Ln)B * (a) | | (9.2)
(ap) = 2y W) ()

where the last expression combines the g coefficients as a vector.
Let us define something which will be referred to as the
eigenvector norm (with respect to a set of (rn)B) by

oy 0 - N 2]%
lapll = [2 1el?] = [ 1 10« ap
=1, W) ¢ ()l (9.3)

The last equivalent form uses the matrix of left eigenvectors in
(5.17) and thereby defines the eigenvector norm in terms of a
magnitude or euclidean norm. |

For (9.3) to be a vector norm conditions (2. 1) must be sat-
isfied. First we note that

27




N 2 3 .
el = [ I lagl?] = apl 2 0 (9.4)

Furthermore a value of 0 would imply that all ag = 0 which would

imply (a ). = (0 ) in (9.2) since the eigenvectors span the N-
dimensional complex space by hypothes1s Hence

H(an)IL > 0 and H(an)lL 0 iff (ay) = (0) (9.5)

Second we have

]
]

lacay) |
e

[(zn,m) . [a(an)]l lul [(Qn’m) . (an)l

lalll(an)lL (9.6)

For the third property we have

I
~
bl
N
L)

Ieg) + o [(ay) + (b)]]

St
.

(g m) = (ap) + (2 1)+ (b))

)

< l_(gn,m (ap) ] +‘l(ﬁn,m) '(bn):|

=ll(an)IL + H(bn)IL
(9.7)

In
+

I Cay) + (b“)|L H(an>lL H(bn)IL

where both (a ) and (bn) are arbitrary N-component complex vectors.
Here the inequallty is obtained via the triangle 1nequa11ty for the
vector magnltude or euclidean norm, 'operatlng on transformed
vectors. This points out that the eigenvector norm is the same

as magnltude or €uclidean norm in a new complex N-dlmen31ona1 space
defined by the transformation matrix (2 ) which maps vectors into

this new space.
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Fourth, since the aB are continuous functions of (an) in

(9.2), and since H(an)lb is a continuous function of the ag in
(9.3) we have

Il(an)ll depends continuously on (a,) (9.8)
e

Thus H(an)IL satisfies all the requirements of a vector norm.

Note that the particular eigenvector norm being considered
depends on the particular matrix being used to construct the
eigenvectors. One can define various different eigenvector norms
to suit one's purposes. To distinguish the different eigenvector
norms one might subscript the norm with the matrix being used.
For example, if one uses (dn,m)T we have

- N 2]%
lell o pm (L1 - Gl = ey

) |
T n,m
e, n,m)

(9.9)
showing that the right eigenvector norm just interchanges the

roles of the left and right eigenvectors.

A special case of interest is for symmetric (d ), for which
both left and right eigenvectors are the same and are de31gnated
(en)B, these eigenvectors form an orthonormal set as in (5.13).

The norm for this important case is

[ ? I(en)B . (an)lz]

%

Il

]

ey )+ (apdl = [(a) + (e, DY (9.10)

n,m

Another speéial case of interest is for hermitian (dn m)
s

which gives
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t t

Il = 1ty 7« (ap] = [(ap)™ + (ry 0+ (rp )

T 0

(2™« (1 )+ (a1? = 1ap” - (a1?

]

| (ay) | " (9.11)

Hence for hermitian (dn m) the eigenvector norm-:for vectors is the
b
same as the magnitude or euclidean norm.
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X. Eigenvector Norm for Matrices

The associated matrix norm corresponding to the eigenvector
norm for vectors is defined for a general square complex matrix

(£, ) bV
e, )+ el

Co : n,m
(£, Il = sup = (10.1)
e (a0 Icapll

Restricting the discussion to square matrices allows the eigen-
vector norms (in the numerator and denominator of the right side
of (10.1)) tooperate on vectors of the same dimensionality, and
hence to use the same set of eigenvectors. For rectangular
matrices one might use two different sets of vectors (eigenvectors
if one wishes) of different dimensionalities, but these possibili-
ties are not considered here. For our present purposes let us
reserve (dn,m) and its eigenvector decomposition (9.1) for our
definition of the eigenvector norm.

For general Nx N complex matrices (fn,m) we have

.H(fn’m) . (an)IL

g, DIl = sup
Sl (a )#(0,) ||(an)”e
= sup |(2n’m) ) (fn,m);' (an)l
(2 @) (ap)F0) [y ) o (2]
) -~ [ ) = ) () =B ) s (ap) |
Ay ) (@#0) | [ (2, W)+ (2l

(10.2)

Now with the eigenvector norm of (fn m) represented in terms of

magnitude, or euclidean or spectral norm, we have
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(10.3)

Consider the special but important case of the eigenﬁector

norm of (dn3m)‘as,
“ll(dn,m)ne aEAC AR C OIS C )
= [y ol
) 'A(dn’m)lmax ; Bél,g?f..,ﬁ %! |
= p((dy 1)) | | | - (10

Notice with our diagonalized form of (dn m)'and the functional
form for functions of (dn m) in (5.15) we have

max
-1

IFCCay )= 7O
' (10.5)
-1, :
(dy ) = [
1¢dq, ™l = Thagl 3

with the maximum and minimum being taken over all 8=1,2,...,N.
So the eigenvector norm is a very natural one to use with expres-
sions that involve the'matrix_(dn ﬁ) used to define the norm.

b

Let (dn m) be specialized to a hermitian matrix. Then for
a general N x N matrix (fn m),we have

’

it O

L [E N U E N I NN
) [)\max((rn,m)lr (fn,m)+ " (Thm) °(rn,m)+ "y ) °(rn;m))]%
= [Xmax((rn’m)’f . (fn,m).{- . (fn’m) . (rn,m))]& (10.6)
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However

n,m) | | B (10.7)
so that (rn,m) (fn,m) . (fn,m) (rn’m) is a slmllarlty trans-
form of (fn m) . (fn m) and both have the same eigenvalues, giving

e Ht

max{{Tp ) = (£5 )]

It = [

2wl
= l(fn,m)’ (10.8)
Hence for hermitian (dn m) the eigenvector norm of (square)

matrices is the same as the magnitude, or euclidean or spectral
norm.
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XI. Relation of Eigenvector Norm to Euclidean Norm or Magnltude
of Vectors for Case of Symmetrlc (dn m)
Having defined the elgenvector norm of vectors in section 9,
and having noted that ‘based on a hermitian matrix, the elgenvector

norm is equlvalent to the euclidean norm or magnitude (see (9. 11)),

O

let us relate the eigenvector norm to the vector magnitude for
other types of eigenvector norms.

For the general eigenvector norm of vectors defined in
section 9, we have the definition

Il(an)llé =1y p) = (3] (L
Using a property of the associated matrix norm (ilQl) becomes

H(an)IL sty D)l C(11.2)

n,m

giving an upper bound for the eigenvector norm. Rewriting (an)
via an identity as

o)t (3 (11.3).

and taking‘the vector magnitude (euclidean norm)

(a) = (r, ) - (&

n,m

I(an)| = |(r ) . (& ) . (an)l l (11_4)

n,m ‘n,m

with an inequality for matrix norms gives a lower bound for the
eigenvector norm as

[Capd] < ey D 12y )+ (2]

= |(rn,m)||l(an)|L | (11.5)

Combining these results we have lower and upper bounds as
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[(rg M < Il < 1eay 1 ICal  (11.6)

These are general bounds; how tight they are depends on (2 m)
and (rn m)’ and thereby on (d m) "
If (dn m) is symmetric w1th right and left eigenvectors

(en)s, then the eigenvector matrices are

n,m n,m
(11.7)
= T _ -1
(rn,m) B (en,m) N (en,m)
For the euclidean or spectral norm we have
T 2 T+ T
[Cep ) 1 = A (Cep 07 (e m))
= (e, T ¢ (el )
max n,m n,m
_ 2
[Cep )] (11.8)

where it is noted that a square matrix and its transpose have the

same eigenvalues. The double inequality for the eigenvector norm
then becomes

I(en,m)l'll(an)l < H(an)IL < ey ol I(an)l' (11.9)

This brackets ||(a o) llg both above and below with respect to [(a)]
by a common factor I(e )| While (11.9) implies

(e ) 21+ (11.10)

one might like to have |(en m)| close to one so that H(an)lg
approximates l(a ).

Consider the eigenvector norm (10.3) of the elgenvector
matrix as
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Il e

n,m)|L - J(en,m) "o m) T (e )= ey ) 1y )l
= |(ey I
= Dhpax(Cey 7+ e 1 | (11.11)

Conveniently then the eigenvector norm and euclidean or spectral
norm of (en m) are the same. Our problem then reduces to finding

2
the spectral norm (spectral radius) of the hermitian matrix

(Ey ) = (en,m)+ - (e ) (11.12)

Since (En m) is positive semidefinite and all its eigen-
?
values are non-negative we can write

l(E»n,m

Y= ((E )

max* ' n,m

(11.13)

Rewrlting’(En’m) as

(E, ) = (e, )+ (e )

n,m n,m n,m

= {(ey )" = 23ImlCey DT}« (e 1)

= (ep )’ ¢ Cey T+ 2iImlCe, DTY

. T
= (Qy,m) - 23ImlCey D71+ Cep 1)

-’.

= (1, )+ 2iCey 7 - Imice, ] (11.14)

n,m

“the norm becomes
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[CE_ )] =2 =1+ A

max
'k
A A L R

*
(a )#(0,) () = (ap)

n

n,m

7 (11.15)

n,m = -ZJIm[(en,m) ] - (ep,m’

~
>

A
]

..}.

* Im[(e_ )]

2j(en,m) n,m

where A is real and (An,m) is hermitian.

Let us assume that (en’m) is approximately real, or equiva-
lently that all the (en)6 are approximately real. Then (An,m) is
proportional to the assumed small Im[(en’m)] to first order. Then
one can say that A is proportional to the imaginary part of the
(en)B to first or higher order. Note that

| (e

= {'(En,m)|}% =1 + % + O(Az) as A > O (11.16)

n,m|

so that A/2 gives the deviation of the eigenvector norm from the
euclidean norm of vectors.
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XII. Application to Integral Equatlons of Electromagnetlc
Scattering

One of the uses for the norm concepts concerns the response
of electromagnetic scatterers/antennas which are described in
terms of integral equations of the form

<<2§??,?';s) 3 3(?’,si:>> = %(? s

3

1]

vector response current density

(12.1)

vector incidence quantity (typically an electric or
magnetic fleld distribution)

=2
m

T = dyadic'kernel (related to a Green‘é:functiOn)

<,> indicates domaln of integration over common spatial
coordinates (r’ above) with dot above comma indicating
dot multiplication--can be surface, volume, or line
integration depending on nature of body and approximations

=Y
Y
1"

space vectors .

o
m

complex frequency

In solving an integral equation as in (12.1) one can compute
the eigenmodes and eigenvalues of the integral operator via

T 550 3 5,30> =i G
<ﬁs<%,s> L HE e > - Xg(s) Ug(F1,9)
<:i . (12.2)
> > 3 >
b (F,5) 3 3 (r,s>> =1
B1 Ba

B1:By

which takes the same form as for matrices as in (5.1). This method
of solution is referred to as the eigenmode expansion method (EEM),
and has many important features in describing electromagnetic

scattering and antenna problems [1,2,8]. Here a discrete spectrum

of eigenvalues is assumed.
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In solving equations (12.1) and (12.2) approximations are
often 1nvoked for numerical computations. By expanding the
response J in (12.1) in a set of basis functions, and the source
T in a set o0f testing functions (usually orthogonal to the basis
functions), and by truncatlng each of these sets of N functions
we obtain the moment method (MoM) [7]. The coefficients of these
functions form N-component complex vectors related by an N x N
matrix in the form

(T m(s)) + (J,(8)) = (I (s)) - (123

This form is the same as for the vectors and matrices considered
earlier in this note. Furthermore the matrix (F (s)) can be
used to define eigenvectors and eigenvalues in N-component complex
numerlcal form, directly correspondlng (as a numerical approxima-
tion) to the distributed form (vector space functions) in (12.2).

In a more general sense we can look at the integral equation
- (12.1) to define our norms. Vector norms become functional norms
with summation replaced by integration. The vector norms of
section 2 may be generalized to functional norms with appropriate
care. In particular, for norms that involve integration, such as
ythe euclidean norm ‘

. . . 3 |
> > = > > o >k, >
lla(r,s)ll2 [<a(r,s) ) a (r,s)>] (12.4)

we should generalize the definition in the first equation of (2.1)
to allow a zero norm to imply a zero function "almost everywhere,"
i.e., the function be non-zero (such as at discrete ?) to the
extent that the integral (as in (12.4)) is zero.

The eigenmode norm is the generalization of the eigenvector
norm in terms of the eigenmodes in (12.2). Considering a vector
space function a(r s) defined over the same domain gives

. . . ) 3 |
3 > 3> > > > 2
la(r,s) = | u,(r,s) 5 a(r,s) | g (12.5)
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provided the sum converges. Now if 3 represents the difference

of some quantity (such as the,éurrentwdensity) on an object of

interest from its desired or ideal functional form, then

]IE(?,S)He,is a measure of the '"error." s | o
Analogous to (10.1) one can define the aééoéiéfed kerne1>,LﬂH

(or operator) norm Eo'the eigenmode norm. In thewsbeéial‘case ,>

that the kernel‘is'?*we have, corresponding-to:(10{4),‘ihe’fesu1t,

1T 300, = TG F ) (12.6)

sup

provided the supremum exists.

There is a special case of interest for‘whigh?f+is symmetric,
for the impedance or E-field integral equation, as [1r2n8],

VERITIE 3(?‘,S)> -, (.9, L
o (12.7)

V. %’(r,,r;' ;8) = %'T(?‘,?‘";S)
;%(;,’;;S) ; |
_ BT e
In this case we can set )
f]B(I‘«,s) z?e(?,s) | (12.8)

As discussed in section 11, then the eigenmode norm apgrogimgtesrr
the euclidean norm for this symmetric case, provided 36(;,8),cank

be considered almost real. Since the impedance igtegral equatipgx

~has important properties for understanding electromagnetic response,

the eigenmode norm in this symmetric form can be quite interesting
for considering the errors in various approximations to theidesired
electromagnetic response.
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XIII. Summary

This note has begun an inquiry into the application of
norms to physical problems such as as3001ated with electromagnetlc
scatterers/antennas. /

Norms have important prdperties fdr bouﬁding vectors,
functions, etc. in some sense defined by the particular norm.
Such concepts are important for‘bounding electromagnetic response
over. some range of parameters such as those ass001ated with the
excitation.

Norms also have application to‘estimating the "errors" in
electromagnetic space functions, including both excitation and
response functions. In the case of EMP simulation norms can be
used to quantify simulation errors.

A particular norm, the eigenvector or eigenmode norm, has
been introduced énd its properties discussed. This norm has some
special- conveniences when used in conjunction with integral equa-
tions of electromagnetics if the eigenmodes have been generated
from the same equation under consideration.
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