A

Mathematics Notes
Note 56

August 1977
Pole Measurements for the ATHAMAS Pipe Test

J. T. Cordaro
University of New Mexico
Albuquerque, New Mexico

Abstract

In the ATHAMAS pipe test, surface current and charge density
response data were recorded for a metal cylinder illuminated by
EMP. Poles and residues describing some of these data have been
computed using an iterative technique. Some poles can be identi-
fied as corresponding to natural modes of the cylinder. Others
match the incident field poles. Most poles in the incident field
are shown to be due to ground reflection.
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POLE MEASUREMENTS FOR THE ATHAMAS PIPE TEST

Section 1
INTRODUCTION

In the ATHAMAS Pipe Test, surface current and charge density
response data were recorded for a metal cylinder illuminated by
EMP. The test objective was to measure the responses of a simple
object‘exposed to ATHAMAS test facility fields and to compare
these responses with predictions. According to the Singularity
Expansion Method1 the transient response of a body exposed to EMP
can be characterized by the poles and residues of its Laplace
transform. These poles and residues in turn are determined by
the incidént fields and by the body itself. Shumpert2 and Marin
have done theoretical work that can be used to predict cylinder
pole locations for the pipe test data. The purpose of this report
is to present a method for calculating poles and residues from
transient data and to show the results of applying this method to
pipe test data.
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Section 2
METHOD

Let Vi k =1, N, be samples from an observed transient

waveform. We want to approximate Yk by a sequence of the form
M
X, = i£1 C, exp(s;kT), k = 1,...,N (1)

where the Ci are the residues and S; the poles of Xy and T is the
sampling interval. For a given choice of the Ci’ Sy and M there
may be error between Vi and Xy which we will denote by

X, | (2)

er (3)

The values of Ci and S5 that minimize the mean squared‘error for

a fixed M are called minimum mean squared error estimates. Within
this framework the problem of calculating poles and residues from
a transient waveform can be stated in two parts: (1) find the
minimum mean squared estimates of Ci and S5 for a fixed M and then
(2) determine a '"suitable'" value for M. The first part of the
problem is nontrivial. This can be verified by taking partial
derivatives of E(M’Ci’si) with respect to Ci and Sy setting these
partials to zero, and observing that the resulting equations are
non-linear. The method for finding the Ci and S5 discussed in
this report is an iterative technique that attempts to minimize
E(M;Ci,si) by repeatedly solving linear equations. The second
part of the problem is discussed in section 3.

The sequence X defined in equation (1) satifies the linear
difference equation




X + a4X, 4 + ..+ Ekm = 0, k > M+1 (49 <:)

The s; can be found from Z = exp(s. T) where the Z are roots of
the characteristic polynom1a1 of the difference equatlon So the
poles can be computed directly from the a Once the poles are
found the residues can be computed by standard least squares

techniques. Using equation (2) in equation (4) we get the
relation:

+ . 4+ g + .. 4+ g

Ve T 23V%.1 MWk-M = € * 318, 4 MCk-M °

(5)
k > M+1

Now let Vi be the right hand side of equation (5). With this
notation we have the matrix equation:
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When using Prony's method one computes the least squares solution

of equation (6):

a g = (@1 gTy (8)

This solution is a biased estimate of a unless the covariance
matrix of v is a constant times the identity matrix.4 In the case
considered here the components of vV are linear combinations of the
errors € k=1,...,N. As a result the estimates of a; are
biased and the poles calculated from these estimates can be far
from the estimates that minimize E(M, C S, ) One way to overcome
this problem has been suggested in reference 4 and later in
reference 5 in connection with EM work. Reference 4 calls the
method "Repeated Least Squares." With it one picks the number of
poles M large enough to fit both the signal and noise components
of Y- Doing this tends to "whiten" v and remove the bias in the
estimate of a. The author experimented with this Repeated Least
Squares version of Prony's method. It gave good results when
applied to data sequences with high signal to noise ratios or when
enough data points were available that a large number of poles
could be used. Unfortunately when analyzing the pipe data, the
method had problems pulling the higher frequency poles out of the
noise. For this reason, other techniques were investigated. An
alternative way of viewing the problem with Prony's method is to
notice that the estimate aLS m1n1m1zeslvTv which is not the error
E(M, Cl,s ) that we wanted to minimize. To see how the two errors

are related we can write the equation for v

Kk s

Vg T e + aje 4 * - 4 AMCK_M k > M+1 (9)

Let




and

aM al 10 0
D= |0a, a5 10...0 (10)
O.......... ay 1

The matrix D is N-M-1 by N. Using these definitions and equation
(9) we can write

v De (11)

The error we would like to minimize is ng = E(M,Ci,si). The
matrix D is singular so we cannot solve for e directly, but by
using the pseudo-inverse of D it is easy to show that the minimum

norm solution of equation (11) satisfies (see reference 7 for
example)

efe = yTopT)™ y (12)

We can solve equation (6) for v and arrive at

efe = (y - )T @) (y - Ha) (13)

This equation expfessés the original error defined in equation (3)
in terms of the difference equation parameters aj, i=1,...,M.
The problem of minimizing E(M,Ci,si) = ng is then the problem of
minimizing equation (13) with respect to the aj - Notice that the
poles and residues do not appear directly in equation (13). The
equation is non-linear but a simple iterative technique can be
used to find the minimum. The relationship between e and v and
the iterative technique discussed below are contained in reference
6.

We can get equation (13) with a statistics argument too.
Suppose e is a vector of uncorrelated random variables each with
mean zero and variance one. Then from equation (11) the covariance
of v, R will be '




= nnT
RV = DD (14)
Using this expression for RV we can see that the minimum variance,
unbiased estimate for a is given by equation (13). Incidently,
equation (14) shows that the Prony's method estimates will be
biased unless a; = O, i=1,...,M.

To motivate the technique for minimizing equation (13), we
observe that if the matrix DD did not depend on a then the mini-

mum of g?g would be given by the solution for a from the normal
equations.

H (ppT)'Ha = wT(ppT)" 1 § | . (15)

~S8ince D does in fact depend on a we can use equation (15) but with
iterations. That is, we solve 15 for a with DDT = identity matrix.
Then compute DDT from the estimated a and recompute a from equation

(15). This process is continued until the estimate of a converges,

Equation (15) shows the inverse of DDT. It is unnecessary
and inefficient to compute this inverse. Since DDT is a symmetric,
positive definite matrix, if can be factored with Cholesky's
method7 as

T T

DD” = F°F (18)

Where F is upper triangular and non-singular. Define i and H as
solutions of the equations

F'y=y (17)

F'H = H
Using equations (17) in équation (15) we can get

T =T~

Ha = H'y (18)

H

as -the set of normal equations to be solved for a.




To summarize, the iterative procedure consists of the follow-

ing steps:
1. Solve equation (15) for a with DDT = I.

T

2. Compute DD” from the present a.

3. Factor DDT and compute i and H.
4. Solve for a new a from equation (18).

5. Check if the new a has changed appreciably from the

previous one. If yes, return to step 2. Otherwise

the iteration is complete.
Since this technique involves iteratively premultiplying and solv-
ing linear equations, we will call it the iterative premultiply
method. Unfortunately the method does not converge to the true
minimum of equation (13). This can be verified by computing the
gradient of ng with respect to a. The normal equations (15) come
from taking the gradient of ng while holding DDT constant. The
two sets of equations are not identical and as a result the param-
eter estimates are not the same. Reference 6 has an example that
illustrates this fact. Our experience has been that when the data
sequence Vi k =1,...,N consists of a sum of complex exponentials
plus noise the method works very well. If however Vi is not of
this form, for example if Yy had a triangular shape, then it is
worthwhile to go to a different iterative technique to get to the
true minimum of gTe.

There is another way of doing the calculation in the itera-
tive technique that should be mentioned. The iterative préfilter
methods’9 is very similar to the iterative premultiply technique
discussed here. We wrote a program to implement this method. It
executes much faster than the premultiply method but does not
appear to be as numerically stable. We were not able to increase
the system order M to as\large values as with the premultiply
method and still have the iterations converge. However, when both
techniques converge they give identical results. We expect to
continue work on the iterative prefilter method since it is faster

and uses less computer memory.
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The iterative premultiply method has been tested on computer
generated data and pipe data. It gives more accurate results
than Prony's method when used on computer generated data. When
used on the pipe data it has been able to find high frequency
poles in cases where Prony's method failed. For these reasons
the iterative premultiply method was used in the data analysis
reported in the next section.
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Section 3
RESULTS

Transient data waveforms from the Pipe Test were recorded
and then digitized on Tektronix 7912 transient digitizers. For
many waveformsvthe early time response was recorded on one scope
and late time response on another. The resulting digitized wave-
forms were time tied and stored in the DASET system data files.
Our analysis of a record began by taking it from the DASET files
and interpolating it to yield the evenly spaced samples

Vi k =1,...,N, referred to in the last section.

In this report we compare the poles found from data with
the pipe in four different locations: 00,01,00 and 00,10,00 both
directly under the pulser and 00,01,30, and 00,10,30 at 30 meters
along the Z-axis (see figure 1). The data at the Z = 00 locations
are records of the derivative of axial current. The data at the
Z = 30 locations are records of waveforms that have been integrated
as part of the instrumentation and as a result are records of the
axial current itself. At each location the pipe's longitudinal
axis was parallel to the X-Y plane. The center of this axis was
located at X = 00. The sensor was located on top of the pipe at
0.25 m in the +X direction.

The first records analyzed consist of fourteen shots at 00,
01, 00. The graph of a typical shot is shown in figure 2. The
corresponding Fourier transform magnitude is in figure 3. The
first couple of peaks in the time domain graph aredue to the pul-
ser and not the pipe response. To avoid finding poles from these
early time peaks, the iterative premultiply method was applied to
the record starting at 150 ns. Several combinations of sampling
interval T, number of points N, and system order M were tried.
Only one pair of poles that was numerically stable could be found.
It is interesting to look at figure 3 in this regard. The pole
bair found corresponds to the peak near 10 MHz. The peaks around

100 MHz are due to the pulser and were reduced by starting the
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analysis at 150 ns. The range between 20-50 MHz has no definite
peaks. This range is where other pipe response modes should lie,
but they evidently damp out quickly with the pipe so near the
ground. The poles found for the fourteen shots with T = 8 ns,

N = 25 points, M S5 are plotted in figure 4. The average of
these poles is + -.270 + j 2.20. With each of these shots, two
pairs of complex poles and one real positive pole were found.

The real pole is the program's attempt to fit the DC offset seen
in figure 2. The higher frequency pole pair changed with M, N

or T and was judged not to be reliable. The rather small dynamic

range in the data after 150 ns limited our ability to find other
poles.

]

The next records analyzed consist of four shots with the
pipe at 00, 10, 00. The graph of a typical shot is shown in
figure 5 and its corresponding transform in figure 6. From these
shots we attempted to find poles from both the pipe response and
the incident field. Consequently the analysis was started at time
zero. A plot of the poles found is given in figure 7. Real poles
were omitted from the plot. Complex poles with frequencies higher
than 60 MHz were eliminated by the program. The poles were found
with N = 40 points, T = 8 ns, and M = 13 poles. Before analysis,
each record was filtered with a two-pole Butterworth filter having
a cutoff frequency of 60 MHz. The sample spacing for the filter
operation was 1 ns. The filter did not greatly affect the three
low frequency pole pairs. We were not able to get good results
for the higher frequency poles without the filter. As expected,
the best grouping occurs for the poles corresponding to the highest
peaks in figure 6. The remaining poles group well in frequency but
poorly along the oL/c axis.

With the pipe at 00, 10, 00 the situation is much different
than at 1 meter. First, the lowest frequency pole pair has
shifted normalized frequency from approximately 2.20 to 2.00. And
second; there are a number of other pairs. To sort out which of
these poles are from the pipe response and which from the incident

field we need to analyze the incident field.
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Figure 8 is a graph of the incident HZ field at 00,09,00.
The 9 m height is as close to 10 m as the field map data comes.
The total incident field consists of a direct wave plus a reflec-
tion from the ground plane. The superposition of these two waves
accounts for most of the peaks and nulls in the HZ spectrum at
frequencies below 60 MHz that are evident in figure 9. Reference
10 has an analysis of this reflection effect.

Table 1 lists the poles found from the HZ record. These
poles are compared with the poles found from the total pipe
response at 00,10,00. The HZ record was low-pass filtered and
then analyzed using N = 40 points, M = 17 poles, and T = 8 ns
sample spacing. The analysis began at time zero. Because of the
reflection, the Laplace transform of the measured response is in
the form R(s) = [1 + Kexp(-st)] F(s) where F(s) is the response
to the direct wave, T is the delay between arrival of the direct
and reflected wave, and K is the reflection coefficient. If we
take K = 1 as the simplest case then the magnitude of the response
Fourier transform can be written as

IRGGwW)| = 2]cos g T| [F(5w)] (19)

The poles of R(s) consist of the poles of F(s) plus poles
used to approximate the [1 + Kexp(-st)] term. Equation (19) indi-
cates that these poles should have frequencies that are multiples
of 1/2T. With the field sensor at 00,09,00 a null should occur at
1/2t = 8.33 MHz. This is a normalized frequency of 1.74 which is
in good agreement with the measured value listed in table 1. 'By
an interesting coincidence, the width of the incident field pulse
is about 60 ns. Because of this, the peaks and nulls in the field
spectrum produced by the fundamental pulse will tend to coincide
with those produced by the reflection effect.

From the data it appears that the pole pair -.346 + j 2.02
corresponds to the first pipe natural resonance. The pole pair

-.528 + j 5.11 may be due to the second pipe resonance. The

21




[44

.50

1.11E-13

~ AMPLITUDE

.50

1.5

l 1 | | J
100 200 300 400 500
TINE (NS)
Figure 8. Incident Field Hz’ 00,09,00

O




€C

MAGNITUDE

.001

100

10

——
.
(—]
LRI | lllll'

| L] 'llllll

.01

1 [l llllll| [l 1 llj!ll'

10 100 1000
FREQUENCY (MHz)

Figure 9. HZ Transform Magnitude 00,09,00




Table 1
INCIDENT FIELD AND RESPONSE POLES

Incident Field Poles Pipe Response Poles
H, at 00,0900 J, at 00,10,00
ADN 0200809 PH 00416
-.137 + j 1.73 | -.346 * j 2.02
~.663 + j 3.42 ‘ -.9%45 + j 3.54
-.867 + j 5.79 -.528 + j 5.11
-.698 + j 6.76 -.546 * j 6.70
-.373 + j 8.01 | -.577 + j 8.05
-.710 + j 9.74 -1.11 + j 10.5

24




resdlts are inconclusive on this point since the incident field

has a nearby pole pair at —-.867 + j 5.79 which is only about 13%
different in frequency. The remaining poles listed in table 1
match the incident field poles fairly well in frequency. Moreover,
except for the pair -.867 =+ J 5.78, the incident field pole fre-
quencies match the peaks and nulls in the Fourier transform
magnitude seen in‘figure 9. From the results described so far it
is possible to make two conclusions: first, there is a significant
change in the fundamental frequency when the pipe is raised from

1 mto 10 m, and second, most (and maybe all) of the higher than

fundamental frequency poles found in the 10 m data are due to the
incident field.

The next records analyzed were of jA at 00,01,30. Two shots
were run starting at 75 ns, each with N = 37 points, M = 7 poles,
and T = 7.8 ns sample interval. The only numerically stable pole
pair (that is insensitive to change in N, M, T or starting time)
was -.267 £ j 2.19 for record PHOOO77 and -.275 + j 2.16 for
record PHOO156. The average -.271 + j 2.17 agrees well with the
average -.270 + j 2.20 of the fourteen shots at 00,01,00. This
indicates that, as expected, moving the pipe along the Z-axis
while holding (X,Y) = (00,01) does not greatly affect the location
of the natural response. Ground reflections are not important
with the pipe so close to the ground.

The last data discussed here consists of 3 shots at 00,10,30.
The time domain graph of one of these shots is shown in figure 10
and the Fourier transform magnitude in figure 11. A comparison of
the incident field and pipe response poles is given in table 2.
A plot of the poles found from all three shots is given in figure
12. The analysis was done starting at time zero with N = 40 points,
M =13 poles, and T = 8 ns sampling interval. Each record was
filtered with a two-pole low-pass Butterworth filter having a
3 db point at 60 MHz.
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Table 2
INCIDENT FIELD AND RESPONSE POLES

Incident Field Poles Pipe Response Poles
H_at 00,09,30 jA at 00,10,30
ADN 0202070. PHOO146

-.641 + j 1.72 -

_ -.422 + j 2.03
-.744 * j 3.40 -.559 + j 3.03
-.104 + j 5.87 ' -.608 * j 5.56
-.403 + j 7.11 -.971 + § 7.47
-.912 * j 9.07 -.937 + j 9.39
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The incident field and pipe response poles shown in Table
2 do not agree as well as those in Table 1. The pair -.422 = j 2.03
is the first pipe natural frequency. Recall that the measurement
at 00,10,00 gave this singularity as -.346 £ j 2.02. The frequen-
cies agree well. The variation in real part may be due to some
asymmetry in the ground plane. We would like to say that the
remaining poles in the pipe response are due to the incident
field. For location 00,10,30 the delay time between the direct
and reflected waves is T = 46.5 ns. The graph of HZ in figure 13
indicates that this is a correct value. According to equation (19)
the first null in the spectrum of HZ should be at 1/2t = 10.7 MH=z.
Figure 14 shows nulls at approximately the odd harmonies of
10.7 MHZ. So the simple reflection theory used to derive equation
(19) is adequate to explain the general shape of the incident
field spectrum.

The frequencies of the first two incident field pole
pairs listed in table 2 for 00,09,30 match the field poles in
table 1 for 00,09,00. This indicates that these poles are due to
the shape of the pulser output and not to reflections. The
response pole pair -.559 + j 3.03 doesn't match any of the inci-
dent field poles very well. But its frequency corresponds to a
peak in the pipe response (figure 11). The frequencies of the
remaining incident field and pipe response poles agree to within
about 5%. Overall, the results at this location have more
unexplained variation than at the other three locations.

The residues corresponding to the poles described above
for the two 10 m high locations are listed in table 3 for
reference.
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PHO0416 Location 00,10,00,

Poles

-.346 + j

-.545

+

-.528 +

—0546
577
-1.11

+ + +

PHO0146 lLocation

-.422
-.551
-.608
-.971
-.937

+ + + + +
L PR I T I T R AT

G G L G

00,10,30, J

Table 3

POLES AND RESIDUES

3.54
5.11
6.70

10.5

2.03
3.03
5.56

7.47

9.39

J

A
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Residues
-17.8 - j 11.2
5.50 + j 4.61
-1.53 + j .0001
-.452 + j 1.25
-3.72 - j 3.56
-2.47 - j 6.73
248. - j 48.2
-123. + j 101.
-8.66 - j 2.94
18.2 + j 19.1
-3.45 + j 13.8




SECTION 4
CONCLUSIONS

In trying to assess the reliability of poles extracted from
experimental data the following three tests are useful:

1. The poles found from different shots at the same loca-
tion should group well;

2. The poles calculated should vary by only a few bercent
when N, M, or T are changed within the 1limits imposed
by the available data;

3. The pole frequencies should correspond to structure in
the Fourier.transform magnitude.

The poles correspondiné to the fundamental pipe resonance pass
these tests. All the other poles are less reliable. The reason
of course is that most of the signal energy is in the fundamental
component. The higher order poles satisfy the tests above if the
imaginary part only is considered. Unfortunately the real parts
fail the first two tests. Our experience with computer generated
data has been that the real part of poles is more sensitive to
noise than the imaginary part. With these warnings about the

real parts of the higher order poles, we can make the following
conclusions.

Mostiof the peaks and nulls in the incident HZ fields can
be explained by the reflection effect. The first two singularities
are the same at 00,09,00 and 00,09,30 even though the path differ-
ence is not the same. From this we can conclude that these poles
are due to the shape of the field pulse and not the interaction of
two pulses due to reflection.

It appears that the structure of the pipe response can be
accounted for by the superposition of the fundamental mode response
due to the direct and to the reflected fields. That is, it does
not appear that any of the higher order pipe modes were excited a
measurable amount. The agreement between the incident field poles

34



dry and pipe response poles is only fair. There are at least four
v reasons for this:

1. The poles that don't agree well correspond to parts of
the spectrum where the signal to noise ratio is low;

2. The field map and pipe response data were taken at dif-
ferent heights;

3. The poles in question are the result of the method's
attempt to approximate the [1 + Kexp(-sT)] term which is
not a rational function of s; and

4. The pipe response depends on the incident fields over all
the pipe surface while the incident field measurement
depends on the smaller sensor surface.

It is interesting to compare the measured poles with some
calculated values. Strictly speaking the results of references 2
and 3 do not apply to the lossy ground plane case at the HPD facil-
ity so we cannot expect close agreement. For a cylinder in free
space with length to radius ratio of 20, Shumpert2 gives

@ -.44 + j 2.5 as the first singularities. With the cylinder 1 m
above a perfectly conducting ground plane he computed .
--056 £ j 2.75. Marin® has -.05 + j 2.90 for parallel cylinders
2 m apart and -.417 + J 2.90 for parallel cylinders 20 m apart.
Taken together, these results predict that as the distance from
cylinder to ground pléne increases the pole real part increases.
Other results in reference 3 indicate that the imaginary part
should decrease. The measured results presented in this report
bear out these predictions. However, the measured frequencies
at both 1 m and 10 m are much lower than predicted and the damping
is higher. We can suspect that these differences are due to
losses in the ground plane.
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