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Abstract

This note addresses itself to the problem of
locating the zeros and poles of a complex meromorphic
function M(s) in a specified rectangular or square
region of the complex s-plane. It is assumed that
~ M(s) has to be computed numerically as for example,

i) a dispersion relation in plasma physics or

system determinant of the matricized integral equation
while employing the gingularity expansion method (SEM)I(1]
The pro-
cedure developed here eliminates the usual 2-dimensional
search and replaces it with a direct constructive method
for determining the poles of M(s) based on an applica-
tion of Cauchy's residue theorem. The zeros of M(s) are
easily found by applying the procedure to the reciprocal
function 1/M(s). Two examples, i.e., 1) ratios of poly-
nomials and 2) input impedance of a biconical antenna,

to solve electromagnetic scattering problems.

are numerically illustrated.
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5 lI | List of Principal Symbols

1. s = Complex variable = S + s; = R+ Juw

2.* A(s) = Analytic function of s in a domain
D

3% M(s) o " = Meromorphic function of s 1in a

domain D
so, in general '
M(s) = Al(s)/Az(s)

4. Na(f,C) = Argument number of the function f(s)
in a prescribed counterclockwise or
positive Jordan contour C

N, (£,C) - Np(f,c)

(The arguments £ and C may be
omitted when obvious)

5. N, (£,C) = Number of zeros of £(s) in C
'0 6. Np(f,C) = Number of poles of £(s) in C
| 7. Argument number = Excess number of zeros over péles
8. (zl,zz, ceas) ) o
Locations of zeros and poles of a

and

(PyrPyr =on)

meromorphic function

nor
(

2. M s) = Normalizéd version of M(s)

¥ In addition to being analytic on the contour C which
encloses the domain D, A(s) and M(s) are required
not to vanish on C.
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I. Introduction

The problem of locating the poles and zeros of complex
functions in a finite domain of the complex plane, occurs in

many scientific disciplines e.g.. dispersion relations in

plasma physics, the singularity expansion method [1] in electro-

magnetic scattering or antenna problems. In an earlier

note [2] Singaraju, et al. described a techﬂique of locating
the zeros of analytic functions in a given region of the com-
plex plane. This note also included relevant computer pro-
grams and illustrative examples by way of i) polynomials’

ii) product of polynomials and exponentials and iii) determi-
nation of natural frequencies of a thin straight wire.

A sequential extension of the above méntioned work [2]
is, of course, a method of locating poles and zeros of mero-
morphic functions when they coexist in a given contour. It
is interesting to note that the word "meromorphic" is
derived [3] from the Greek uepos = fraction and uop¢nn = form,
and means "like a fraction." In keeping wiﬁh the origin of
the word "meromorphic,"'the complex function M(s) con-
sidered in this note will be a ratio of two entire functions .
of the complex variable s. The problem at hand can ncw be

defined in terms of given and required quantities, as follows:

Given:

i) A numerical way of evaluating a meromorphic
complex function M(s) of a complex variable ‘s,

ii) A rectangular or a square region in the flnlte
complex s-plane.

i) All the zeros and poles of M(si in the given
region. ‘
Remark:

i) Typically, evaluation of M(s) is expensive
in terms of computer time and hence it is desirable to

optimize the number of M(s) computations.




II. A Review of SGB Technique for Finding the Zeros
of Analytic Functions : .
In a recent note [2], Singaraju, Giri and Baum described
a technique of loéating the zeros of an analytic function
A(s) in a finite domain D of the complex s-plane. This
work, referred to as the SGB Technique also includes a family
of coﬁputer programs titled SEARCH. This technique is based
on the "principle of the argument" and a generalization thereof.

The principle of argument for an analytic function is given
by [4]

S 4 2(;7’ ds = N_(3,0) . (2.1)
C
where
A(s) = Analytic function* of s in a domain D enclosed
by a simple contour C,
NO(A,C)‘ = Number of zeros of the analytic function A{(s)

inside the contour C.

Equation (2.1) is a special case of

N .
. o
1 A'(s) - Z
57T fﬁ Amgs) NGO ds Am(sa) | (2.2)
C =1
obtained by setting Am(s) = 1. 1In equation (2.2) Am(s) is

an analytic (at least in and on C) multiplier function
and Sy are the zeros of A(s) in C. If we choose

Am(s) = 8" and consider n to take integer values ranging
from 0 to N we have
_ 1 n A'(s) =
C, = 7——@{ As) ds; for n 0, 1, 2, ... NO
C (2.3

which leads to

*  A(s) 1s required not to vanish on the contour C.




Cp =1+l +1+1. .00 +1=Ng (2.4.0)

Cl = sl + 52 + s, + s4. + s . (2.4.1)
_ 2 2 2 2

C2 sl + S, + 52 + Sy - + sNo (2.4.2)
_ .No No No No No ;

CNO.- sl + s, + S5 + Sy + sNo , (2.4.No)

After determining the moments (Cn) SEARCH proceeds to
locate the zeros in the given contour C (if any) by solv-
ing the above system of equations. By way of an interesting
example, SEARCH has been used in easing the chase for those
"elusive and ubiquitqus" (5] SEM poles of a thin wire.

Above is a rather brief description of the underlying
basis of the SGB technigue and the intereéted reader 1is
referred to Mathematics Note 42 [2] for all of the details
regarding the working, limitations and use of the relevant
computer programs. A logical extension of this work is of
course a method of locating the zeros and poles of a mero-
morphic function in a finite region of the complex plane.

In the following section, a method is developed which
determines only the poles of a meromorphic function in a
region regardless of whether or not there are zeros in that
region. By applying the pole finding method of section III
to the given function as well as its reciprocal, the zeros
and poles of the given function in the given region are
successfully located.




III. Poles and Zeros of Meromorphic Functions . (::)

A, Pole finder ‘

In this section we shall develop a.procedure to
determine the number of poles [N_(M,C)] and their
locations of a meromorphic function M(s) in a given
contour C. This procedure is independent of the presence
or absence of zeros in C and also the actual shape of
the contour C itself. However, for purposes of illus-
‘tration and numerical ease, we shall consider the contour
C to be a square as in figure 3.1 which in some special
cases may be rectangular. We will also stipulate that
the side of the square is equal to or not very different
from unit length iﬁ the normalized s plane of figure

3.1,

The meromdrpnic function is represeﬂtable by a

ratio of two entire functions El(s) ~and E,(s) as

M(s) =
- aw O
A (s) A (s)
= lint 1ext ' o (3.1)
A2 (s) A2 (s) )
int ext

El(s) and Ez(s) are in turn written as a product of an
interior and an exterior analytic function. The subscripts
"interior" and "exterior" are with reference to the contour
C of figure 3.1. The "exterior" functions are required

to be analytic in and on C, and not vanish on Cf Our
procedure of finding poles inside contour C allows for
other types of singularities like essential or branch
point to occur outéide and sufficiently away from the
contour C. The poles of M(s) within C are of course
the zeros of the following equation
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Figure 3.1 Normalized s-plane showing a simple
square contour C.




A

2,

Any analytic function can be represented by a suitable
polynomial so that,

A (s)

lint

leading to

M(s)

where

(s) =

El(S)/Al. (s)

N
p
"

=1

int

(s - pk).

Ez(s)/A2 (s)

int
’1\]1_? i
(s - 2.) (s)
i=1l i lext
_E -
N i
P (s)
g (s - pk) ext
Lk.—-
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(3.2)

(3.3)

(3.4)

(3.5)

(3.6)

(3.7)

(:j),



-

-

where
z; 's are zeros of M(s)
Py 's are poles of M(s)
N, = number of zeros of
and
Np = number of poles of

within C,

within C,

"M(s) within

M(s) within

Our pole finding scheme determines Np and

k=1, 2, ...... N_.

i) Finding the number of poles N

p

C,

subsequently Py

Besides the function values, what distinguishes a

pole from a zero is the concept of residue and Cauchy's

residue theorem.

If the poles

(pk 's)

the corresponding residues are given by

are simple then

R_ = Lim (s - p )M(sa
- ' NO -1
(s = z.) A (s)
i=1 1 lext
= Lim (s = pm)
s+Pm
Np
M (s - p) A, (s)
L k=1 ext -
(p. = 2.) A (p.)
i=1 m 1 lexe ™ ‘
= ' ; form=1, 2 N
N
ﬂ% | ( ) A (p)
P, = P P
k=1 m “k 2ext m (3.8)
k#m -

However, for the present purpose, Rm's

and will eventually be eliminated.

11

are of no interest
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We will now define residue moments by -

-1 n
n a 13 s M(s) ds

C ; for n=290, 1, 2,

In terms of the residues of equation (3.8), the residue

moments are given by

D, = Ry + R, S+ ...+ Ry
P
Dl = lel + p2R2 + ... * Py RN
: P P
N N N
, . + e F o)
D, = p,f Ry+p.P R o Ry
N, 1 12 T2 o Np
2n, - 2 o 2N,
Doy = Py = Ry*Pp © Ry + .... Py~ Ry
P P P

The above system of equations can also be

n —
Dn = E: pq Rq, for n=20, 1,

12

2N
P

N
P
= R
q
g=1
N
2 R
= Pq q
q=1

i
Q Z
ol e ¥
e
Q
e
o
Q

(3.

(3.

(3.

(3.

(3.

9)

10.0)

10.1)

10.N_)
P

10.2N )
P

written compactly as

2,-...,‘ ZNP

(3.

11)



Let us recall that we are trying to determine the order and

the zeros of the polynomial A2 " (s) which give the
int

number and locations of the poles of M(s) within C.

Let

N o Ny
A, () = T ) = : | 3.12
2, (3= T (s Pk,‘z 3, s (3.12)
k=1 k=0
where the coefficient a, of the highest degree term

N
may be set equal to 1 witﬁout any loss of generality. We
shall now elimiqate the residues (Rq 's) from the system
of equations (3.10) by making use of equation (3.12). To
achieve this, corsider the first (Np+l) number of equa-
tions in (3.10) starting with (3.10.0) and ending with
(3.10.Np). Multiplying these equations respectively by

the coefficients a, to ay . would yield
P
a,b, + a,D, + a, D, ... + a D + a,. D
070 171 - T2 T2 N ~-1"N - N_N
P 1 P 1 P P
‘ 2 Np—l ‘ Np
= Rl a0+al,pl+a2pl i ieeeeas +ay P +ag Py
: p~ 1 p
2 Np’l Np
+ R2 a0+alpz+azp2 + e -t ay -1p2 + aNp Py )
) 2 N -1 N
+ RN a0+alpN +asz S + ay _le + ay Py
P P P P

13




= 0 , (3.13)

because pq for g=1, 2, ... Np are the zeros of
A2 (s) = 0. Thus we have
int o
a0D0+alDl+azD2 + oieeen ceeeee + a,. D =0 (3.14)
Continuing this above procedure of successively multiplying
a set of (Np + 1) equations from the system of equation
(3.10) and using equation (3.12) will eliminate all of the
residues (R_; for g =1, 2, ...Np) and lead to the

q
following matrix equation

Dy .D; Dy eeee- .2 Dy ay | 0]
D, D, Dy Dy +1 a) 0
b Py Py Py +2 a, 0
D D D. o uu....'D,
N N +1 PN +2 “c o Pon | . 0 3.15
p P p P aNp I - (3.153)
e . e . - o !
or
N
P
D, a =0; for m=0, 1, 2 ... N (3.15b)

14




In this matrix equation, D's are the residue moments

'defined by equation (3.9) and a's are the coefficients

of the polynomial A, (s), the zeros of which, are
int

the poles of given meromorphic function M(s) within

the contour C. From equation (3.15), we observe the

following

a). If Np = 0, - then
D, =0; for i=0,1,2 ... ' (3.16)
b If N_ =1
) P
Di + aODi-l =0 ; for i=1, 2, 3,... . (3.17)
c) If N_= 2
: P
Di + alDi—l + aODi_2 =0; for i=2, 3, 4..
(3.18)
4d) If N_ =3
p .
D, + ayDy_y * 2Dy 5 + 3Py 3 =07
for i =3, 4, 5 ... (3.19)
e) If N = 4
P
D, +_a3oi_l.+ asD;_» + alDi—B + aODi-4 =0 ;
’ For i=4,5, 6, 7, ...(3.20)
... etc.
Put differently, Np wiil be =R - 1, where R = Rank of

the infinite version of the D matrix of eguation (3.15).
However equations (3.16) thru (3.20 ...) are more useful
in determining Np, because as a by-product they yield the

15




coefficients a for k=60,1, 2, ..., N, as well.
k p’ -

This will be illustrated as follows, C[or example, if

Np = 3, equation (3.19) for i = 3, 4 and 5 will give
D3 + a2D2 + alDl -+ aOD0 =
D4 + a2D3 + alD2 + aODl = 0 (3.21)

D5 + aZD4 + alD3 + aOD2 0

which may be used in solving for ays ai and a,- These
a's may then be used in

+aDy 5 v 3gPi3 ,

for i =6, 7, 8 ... (3.22)

D, +

it aPia =0

to ensure that NP is indeed 3. With the value of N

P
and the coefficients of A2

(s) polynomial known, it is
int :
a simple matter to solve for the locations Py of the poles
of the given meromorphic function M(s) within the contour
C being considered.

It is emphasized, at this stage that there are a
few numerical pitfalls in implementing this scheme and

section IV will address these problems specifically.

B. Zero finder

We still need to find the number Ng and locations
z; i=1l, 2, ... No of the zeros of the given meromorphic
function M(s) in the given contour C. This is a rather
trivial numerical exercise by virtue of the fact that the
pole finder described above is independent of the presence

or absence of zeros. In view of this, if we wqued with

. the reciprocal function M-l(s), the zeros which now
become poles inside contour C, are easily determined

by using the pole finding scheme.

16




IV. Numerical Implementation and Results

In this section, we deal with the numerical imple-
mentation of the pole and zero finding schemes described
in the preceding section.

Given the function and a rectangular region C in
the normalized complex plane, we initially divide the region
C into a number of subcontours of approximately unit sized
square regions (see Figure 4.1). Improved accuracy is
obtained by centering each subcontour around the point
1 + jO0 in the complex plane, via a simple change of variable.
The need for this change of variable is explained in detail,
later'in this section, while describing the subroutine
RESIDUE in which all of the residue moments of equation (3.9)
are-computed. Function values are computed at locations
on the subcontour, determined by a 40-point Gaussian
quadrature integration scheme and these values are stored
in a complex array. In a sequential fashion, the stored
function values are recalled and normalized for each of the

subcontours of approxiﬁéte size unity per side. The exponential
normalizaticr of the function, intended to improve the

quality and accuracy of the location of the singularities
(poles), is well described in the previous work under

section III C of reference [2]. It is noted that the
normalization function is an entire function with no zeros *
or poles in or on the subcontour, so that the singularities

of the original function M(s) are undisturbed. With
reference to the typical subcontour Cm,n shown in Figure
4.1, the entire function E(s) used in the process of
normalization is given by

E(s) =u e’> (¢.1)

where u and v are real constants given by

17




C v
NI,NR N LN,
l |
cb Cm,n ca | . | AC
- [ ]
| |
| |
| | o
| |
| ' €2 | %21
___ | | ‘
| |
C1,NR ‘ l C1,2 1,1
[ |
l I\ -
SRb SRa Sy

Figure 4.1 Division of the given rectangular domain
into smaller rectangular (or sguare)
subcontours ' -

Note. Cm n is a typical subcontour and ca and
14

c, are the parts of cm,n with constant

real parts s and s

Ra respectively..

Rb
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1 average of |M(s | on <,
V= (s - sS_.) tn average of M(s)| on ¢ (4.2)
Ra Rb 9 |AS) b
u = exp(évsRa)X(average of |[M(s)| on ca)
or ' (4.3)

1]

exp(-vst)X(average of |M(s)| on cy)

Using the above entire function, the normalized function M7OT (o)

is obtained by using
M™% (s) = M(s)/E(s) (4.4)

With this normalization scheme, the average magnitude of

M(s) on c, and p is unity and in general, does not
depart significantly from unity on the rest of the subcontour.
Also, effects of large phase variations in M(s) tend to
become reduced when one works with M"°F (s) instead. It is
emphasized that, E(s) being an entire fundtion does nct
disturb the singularities of the given function M(s). : .

A. Description of the Computer Programs

The following subroutines and function subprograms
were written and they are useful in numerically evaluating the
locations of poles and zeros of the given function M(s) which
is meromorphic in a given region of the finite complex s-plane.

CONTOUR*, RESIDE, POLECHK, DETER*, ANGLER*,
POLYl, POLY2, POLY3, CFCTS
(* from Reference 2)

In what follows, we shall briefly describe each of
these subroutines. Their listings are included in Appendix A.

19



a) Subroutine'CONTOUR (CSL, CSF, NR, NI, KDM)

This program divides up the.given scan area enclosed
by the contour into a specified number of rectangular/square
subcontours and calls subroutine RESIDUE once for each of

the contours. The arguments appearing in this subroutine
are as follows. ‘

csL : Coordinates of the upper left corner of C,

CSF : Coordinates of the lower right ccrner of ¢,
NR : Number c<f major divisions of the real axis
within C ’
NI ¢ Number of major divisions of the imaginary
2xis within C,
"KDM : A multiplicative factor for Gaussian inte-

gration, i.e., the number of points‘in the’
integration is given by 40 x KDM per side
of the subcontour. Although the largest
allowable value is 4 because of the present
dlmenSLOnlng of the arrays in RESIDUE KDM 1

should be adequate in most cases.

This subroutlne also summarizes the results by listing the
location of all the poles and zeros found as well as the
function values at the zeros and the reciprocal of the func-
tion value at the poles. These function values may be used
by the user in judging the quality of pole—zero locations

which are numerically determined.
b) Subroutine RESIDUE (CFCTS, CSM, CSMI, KDM)

This is the core subroutine in the entiré‘éackage
and essentially does the following:

1) makes a change of variable so that the sub-
contour is now centered around the point
(1 + jO) in the complex plane

20




2) computes the function value on this new sub-

' contour at locations required by a 40-point
Gaussian integration procedure, (the locations
and the function values are stored in complex
arrays CS and CF respectively),

3) normalizes the function values and computes
‘the argument number and nine residue moments
Dn for n=0, 1, ..., 8, of equation (3.9),

4) calls subroutine POLECHK which determines a.
potential value of the number of poles Np,
the coefficients of the denominator polynomial
and the pole locations as well,

and 5) goes through a similar procedure, working with
the reciprocal function, to determlne the
location of zeros.

Various arguments of this subroutine are described below

CFCTS : User supplied function subprogram,
CsM ¢ Coordinates of the upper left corner of the
subcontour C ’
m,n
CsSMI : - Coordinates of the lower right corner of the
subcontour Cm,n ’
KDM : Same as in subroutine CONTOUR.

In computing the residue moments, given by

D = -2117— s® M(s) ds (4.5)

for n=0,1, 2, ..., 8

a change of variable of the following form was fcund to improve
the accuracy of the above integration,

21



Z=s-5s_ =1 (4.6)

where,

S, = coordinates of the center point of the subcontour C

The reason fcr this change of variable is that when the sub-
contour cm,n is located away from the origin, the numerical
value of the factor s" in the integrand can become quite
large compared with the average magnitude of unity for the
normalized M(s) around the subcontour Cm,n" With the
change of variable given by equation (4.6), the new subcontour
in the z-plane 1s centered around the point 1 + 30 so that
the entire 1ntegrand will now have an average magnltude of
unity resulting in improved accuracy for the numerical evalua-

tion of the residue moments.

C) Subroutine POLECHK (DO, D, DAO, DA, NP)

This subroutine accepts the nine residue moments as
input and determines a potential value for the number of poles
Np and the coefficients of the denominator polynomial as well.
The various arguments of this subroutine are:

DO : Zeroth residue moment 60 which is simply
the sum of the residues,

D : A complex array which contains the residue
ncments Dn for n=1, 2, ..., 8,

DAO : Constant term in the denominator polynomiai
(ao of equation (3.12)),

DA : A complex'array which contains the remaining
coefficients of the denominator polynomial,

NP : Most likely value of the number of poles

Np in the subcontour.

22
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d) sSubroutine DETER (CM, CB, CW, CV, MS, CD)

This subroutine finds the determinant of a given
square matrix. A description of the various arguments of

this subroutine is given below.

cM : : Complex array continaing the matrix

elements,
CB, CW and CV : Complex working arrays, local to the
) subroutine,
MS : Size of the input square matrix,
Cb : Computed value of the determinant.

e) FUNCTION ANGLER (X, Y)

This function subprogram computes the phase ¢
a complex number in radians such that 0 < ¢ £ 2m. The
arguments are:

X : Real part c¢f the complex number,
Y : Imaginary part of the complex number,
ANGLER : Phase ¢ of the complex number X + j Y

such that- 0 < ¢ g 2m.

It was important to determine the phase in this
range of 0 < ¢ £ 2w for obtaining the argument number,
rather than the commonly available range of -7 < ¢ < m.

f) Subroutines POLY1l (CO, Cl, CLIN)
POLY2 (CO, Cl, C2, CQUAD)
POLY3 (CO, Cl1l, C2, C3, CUBE)

1hese three subroutines respectively solve for
1, 2 and 3 roots of the following linear, quadratic and
cubic polynomials

of .




O

C0 + Cls =20 : (4.7a)
2 .
C0 + Cls + Czs =0 . (4.7b)
.2 3
C0 + Cls + CZS + CBS =0 (4.7¢c)

when the appropriate coefficients are fed in. The arguments
appearing in the three subroutines are:

co, Cci, c2, C3 : Coefficienﬁs of the polynoﬁial,

CLIN : Root of the linear equation (4.7a),

CQuUAD : Two roots of the quadratic equatibn (4.7b),
CUBE : Three roots of the cubic equation (4.7¢).

g) COMPLEX FUNCTION CFCTS (CS, CSHIFT)

This complex function subprogram numerically evaluates
the meromorphic function M(s) for a prescribed s. The two

arguments and the result of the function subprogram are {::)
Cs : Complex value of the variable 's,
CSHIFT : Complex constant to facilitate a change of

variable (can be set equal to zero), -

CFCTS : Function value.

This completes a brief description of the various
subroutines and function subprograms in this package.. It is
recalled that, in the subroutine RESIDUE, we computéd the nine
residue moments Dn for n=20, 1, ..., 8, which introduces
a limitation of no more than 3 poles in a subcontour which is
cf approximate size unity square. Also when the number of
zeros and poles KNO + Np) in any subcontour is more than 4,
because of large changes in the function value in a small

region, the residue moment calculations may not be sufficiently
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accurate to determine the exact value of Np’ We have
encountered no difficulty when (NO + Np) < 4 per subcontour
and some modifications to improve the accuracy may be
required for the rare occurrence in physical problems, when
the poles and zeros are more closely bunched together. When
(N0 + Np) > 4 per subcontour, another poésibility is to
divide the subcontour of unit size into smaller subcontours.
This has not been automated in the present family of computer
programs.

In the following two subsections, we consider two
examples that validate the application of this pole finding
scheme to determine the poles and zeros of given complex
functions that are meromorphic in a specified region of the
finite complex plane. '

B. Ratio of Polynomials (Example 1)
Consider a mercmorphic function Ml(s) given by,

16

fn' (s-zp) .
M. (s) = E=L ‘ (4.8)
L 10

T (57pg

g=1

which is readily seen to have 16 zeros and 10 poles in the
complex s-plane. The locations of zeros indicated by 2z,
and poles indicated by p are shown in Figure 4.2. The
zeros are given by;




Cs

L = (0.,5.)

(0,0)

CSF = (5.,0.)

Figure 4.2. The pole-zero configuration of the

Note:

given ratio of polynomials (example 1).

1) C is the given square scan area, uniquely
specified by the points CSF and CSL

2) z + location of a zero
3) p - location of a pole
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2, = 4.50430.50, z,=4.25+34.75, z3=3.75+j1.25, z, =3.75+J1.75
2, = 4.50+32.50, 2z, =4.25+32.75, z,=2.75+33.75, 2g=1.25+J2.25
= } o) = i = ) = 3
zq 1.75+32.75, 219 4.50+j4.50{ zq4 0.75+31.50, zy, 0.50+31.25
213 =0-25431.75, 2, = 0.50+34.25, 2 5= 0.75+34.50, 2, =0.25+34.75
‘ (4.9)
The poles are given by:
py = 3.50+31.50, p, = 1.75+j2.25, py = 1.50+32.75, p, = 2.25+33.25
Py = 2.75+33.50, pg = 2.25+33.75, p; = 1.25+30.75, pg = 2.75+j1.75
Py = 1.50+30.50, p 4 = 2.25+j1.25 | '
(4.10)

In Figure 4.2, the scan area which is a square of
side 5 units with its lower left corner as the origin of the
complex s-plane is indicated by the counterclockwise contour C.
This contour is divided into 25 subcontours and the pole-zero
locations are indicated in the various subcontours.. The formal
input variables CSL and CSF that. uniquely specify the scan.
area are also shown in the Figure 4.2. The results of using
this functicn in order to recover the poles and zeros are
presented in Table 1, in the same format as the subroutine
CONTOUR would summarize. Comparing the results of Table 1
with those of equations (4.9) and (4.10), it is seen that the
poles and zerés of this ratio of polynomial given by Ml(s)
are recovered with a high degree of accuracy. With the view
of introducing large phase variations in M, (s) , it was
multiplied by an entire function of the form eAs . Define

a new function Nl(s) as

N, (s) = ™ M, (s) (4.11)

where Ml(s) is given by equation (4.8). The real
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* K

14
15
16

POLE
POLE
POLE
POLE
POLE
POLE
POLE
POLE
POLE
POLE

AT
AT
AT
AT
AT
AT
AT
AT
AT
AT

x % k %

ZERO
ZERO
ZERO
ZERO
ZERO
ZERO
ZERO
ZERO
ZERO
ZERO
ZERO
ZERO
ZERO
ZERO
ZERO
ZERO

AT
AT
AT
AT
AT
AT
AT
AT
AT
AT
AT
AT
AT
AT
AT
AT

x * k * k *

@

Table 1. The poles and zeros of Ml(s)

Real part
.35000000E+01
.27500000E+01
.22500000E+01
.22500000E+01
.22500000E+01
.27499999E+01
.15000000E+01
.12500000E+01
.17500000E+01
.15000000E+01

.45000000E+01
.45000000E+01
.42500000E+01
.45000000E+01
.42500000E+01
.37500000E+01
.37500000E+01
.27500000E+01

.17500000E+01

.12500000E+01
.25000000E+00
.50000000E+00

_75000000E+00

.25000000E+00
.50000000E+00
.75000000E+00

*******'k****

x k k *k * % %

SUMMARY OF RESULTS
X x Kk K Kk Kk K Kk k k Kk Kk kX x k k Kk *x Kk %

Imag. part
.15000000E+01
.17500000E+01
.12500000E+01
.37499999E+01
.32500000E+01
.35000000E+01
.50000000E+00
.75000000E+00
.22500000E+01
.27500000E+01

x k * kK %k * %k %

.50000000E+00
.25000000E+01
.27500000E+01
.45000000E+01
.47500000E+01
.17500000E+01
.12500000E+01
.37500000E+01
.27500000E+01
.22500000E+01
.17500000E+01
.12500000E+01
.15000000E+01
.47500000E+01
.42500000E+01
.45000000E+01

x *x * %

x k *x *x * X

1/F (POLE)
1/F (POLE)
1/F (POLE)
1/F (POLE)

1/F (POLE)

1/F (POLE)
1/F (POLE)
1/F (POLE)
1/F (POLE)

1/F (POLE)
X k k k k

F (ZERO)
F (ZERO)
F (ZERO)
F (ZERO)
F (ZERO)
F (ZERO)
F (ZERO)
F (ZERO)
F (ZERO)
F (ZERO)
F (ZERO)
F (ZERO)
F (ZERO)
F (ZERO)
F (ZERO)
F (ZERO)

x k * k *x *x %

O

no* i

]

I

]

* 1l

*****************

Real part
-.51481437E-16
-.16026682E-15
-.27757148E-16

.34166970E-10
.25440087E-10
.63817493E-10
.85008163E-17
.15115588E-16
-.18510407E-14
-.94138859E-14

x *x k * * * X

-.33974973E-10
.71209024E-11
.14853889E-11
.60244057E-11
.31923752E-11

~.34168506E-11

~.27022936E-09
~.10640196E-09

-.32643289E-08

-.48766628E-09

-.25715938E-06

-.55518217E-06

~.48376999E-06
.30761459E-07
.31526461E-08
.22238213E-07

fdund'by the present method

Imag. part
-.79124576E-16
-.52103539E-16
-.70485840E-17

.48627420E-10
.64503667E-11
-.92700647E-10
-.32501785E-17

. -.46924316E-17

.46241384E-15
.24127978E-14

x x *k *x *& *x k *x k %

.37801892E-10
-.91285320E-11
~.10834960E-10

.38265879E-11

.52167555E-11

.23797403E-09

.28549864E-09
~.31899668E-09
-.54749864E-09

.13125755E-09

.28969053E-06

.30493810E-06

.23146903E-06

.49960265E-07

.25607578E-07

.14267090E-07

********,**********




@

constant A in the exponent was varied and the results (pole-
zero locations) did not vary significantly in regions where
the singuiarities were not dense. This can be attributed to
the efficient exponential normalization procedure, described
earlier. An improved scheme of determining Np will be neceéh

sary for highly oscillatory functions.

C. 1Input Impedance of a Biconical‘Antennablzxample 2)
The input impedance of a biconical antenna may be

written as [6,7],

-jk ¢

-3k

jk&
e
c ejkz

+ T(k) e
- T(k) e

(4.12)

Zin(kz) A

where

%2 = slant height of the cone

Zc = characteristic impedance of a symmetrical bicone
Zo , 8 zo 2
= —= &n (cot 5): - Ln (-e-) for small angles
Zo z characteristic impedance of free space
6 = half angle of the bicone in radians
k = free space propagation constant

T(k2) = effective terminal reflection coefficient

Rewriting the input impedance in the normalized

Laplace transform variable plane

s (4.13)

4 = =

LK
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5 - [%in e2ﬂ6-+ T(s) :
Ain(é) E\7 = ET (4.14)
e .
where

k&

-jms (4.15a)

B(s) = {Lo (&)

~ (4.15b)
1 + v(4)

y(8) normalized terminal admittance = Z_ ¥(4)

/
zl'n‘ (i) [2 Ein(2ms) + g2 {lnm +

Ein(278) - Ein(4m)} + 72T {-}Ln(Z)

1

+ Ein(-ZM)}] (4.15¢)

and Ein(z) , following the notation of Ref. [8], is the
exponential integral given by

2 t

Ein(z) =f l——'—f——dt ‘ (4.16)
0

Equation (4.14) was used as the input mermorphic function
and its zeros and poles were accurately determined and
they were found to be in excellent agreement (5 placés or
better) with earlier results [7] which employed a rather
tedious 2-dimensional search method. The results for the
case of 9 = .00l° is shown plotted in figure 4.3.

In concluding this section, we note that the two
examples considered here have shown that an application
of Cauchy's residue theorem is very useful in determining
the pole and zero locations of a complex function of a

 complex variable which is meromorphic in a given region.
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V. Summary

In this note, we have déveloped a pole finding
procedure based on an application of Cauchy's residue
theorem. The validity of the procedure in determining
- the poles and zeros of a meromorphic function has been
demonstrated with two numerically illustrated examples
of i) a ratio of polynomials,'and ii) the input impedance
of a biconical antenna. It is to be emphasized that a
major problem in this procedure lies in unambigiously
determining the number'of poles Np in a given contour.
This is further discussed in Appendix B. 1In view of this,
it is expected thét this procedure may be successfully
applied in physical problems where the user has some
a priori knowledge of the behaviour of the meromorphic
function. In other instances, modifications in terms of
improving the accuracy with which the residue moments are
determined, may be required to circumvent certain problems
e.g., highly oscillatory functions or functions with dense
population of pdles and zeros. '

This work is a sequel to an earlier work [2] which
concerned itself with the numerical evaluation of the zeros

of an analytic function.
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APPENDIX A

Computer Program Listings
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The following TEST Program illustrates the way in
which this package entitled CONTOUR may be called

as a subroutine.

PROGRAM TEST (INPUT,OUTPUT)
IMPLICIT COMPLEX (C)
CIMMCN NOZ,CZ (301 ,CFZ(30) ,NGP,CPU301,CFP{30) 4 WARN
CSL=(04s54)
CSF=(5.,0.)
NR=5
NI=5
KDM=1
CALL CONTOUR (CSL»CSFoNR /N1 +KOM)
END

35




8l0

710
720

130

140

742

145

747

7150

SUBROUTINE CONTOUR{CSLsCSFoNRyNIsKCM)

[MPLICIT COMPLEX (C) ‘

COMMON NUZ'CZ(3ODpCFl!BO)'NDP,CP(BO).CFP(BO)'IHARN

£ XTERNAL CFCTS
NOZ=C

NOP=0

I WARN=Q

RCSF=REAL(CSF)

SCIF=AIMAG(CSF)

RCSL =REAL(CSL)

SCIL=AIMAG(CSL)

RINC =(RCSL-RCSF)/FLCOAT(NR)

SCIINC={SCIL-SCIF) /FLOATINI)

ND4= (40*KDM) * 4

PRINT 810, RCSFsSCIF yRCSLoSCILe NO4y NRoNI

FORMAT {1HL+2X +S6HCOORDINATES OF T4E LOWER RIGHT CORNER OF SCAN AR
1EA ARE (leoFlZ.B.lH'.FIZ.ﬂy1XylH),/s3X'SbHCO0RDlNATES OF THE UPPE
2R LEFT CORNER OF SCAN AREA ARE (o1XoF12e8s LHe o F12.8 91Xy LH) ¢/ /93Xy
343HTOTAL NUMBER OF PUINTS USED PER CONTOUR ARE 92X ¢l %9 //+3Xe43HNUMB
4ER OF DIVISIONS ALONG THE REAL AXIS AREy 2Xy 12,5Xy 24iNUMBER OF DIV
5SIGNS ALUNG THE IMAG. AXIS ARE 92X 914 ¢/7 +3X s LOOHRS kX R SRR RREKEX KX 2K
GREXRE **t*#tt*t#*#*#t*##***t**‘*tt###a*tt*******#t**#***#tttt*t#*tt*#
7*#**##*#***##** ,/ // // / )

00 72C J=1,NR '

JJd=d-1

SRMI=RCSF+RINC*FLOAT (J)

SRM=RC SF +R INC *FLOAT{JN)

DG 710 I=1,NI1

I1i=1-1

SIM=SCIF+#SCIINC*FLOATI(I)

SIMI=SCIF+SCLINC*FLOAT{II)

CSM=CMPLX{ SRMI ySI M}

CSMI=CMPLX{SRM,SIML) ' -

CALL RESIDUE(CFCTS+CSMsCSMI,KDM)

CONTINUE

CONT INUE

PRINT 730+ IWARN ‘

F ORMAT (1H1,50X, #SUMMARY OF RESULTS# 4/ 93X »2NCe OF WARNING MESSAGES
2 = #£,13)

PRINT 747 .

IF (NOP.EQ.O) GO TO 745

DO 740 M=1,N0OP

PRINT 760, MyCP{M) CFP (M)

CONTINUE

IF {NCP.LE.30) GO T3 745

PRINT 742 .NO°P

FORMAT (1H0y/ 73X y#l FOUND#, 2% 1392X,#POLES. INCREASE DIMENSION OF
¢ CP AND CFP ARRAYS ACCORDINGLY=) i

CONTINUE

I[F (NUZ.EQ.O0) GJO TG 780

PRINT 747 :
FORMAT (1Hc,/'3x,:#tt#*t**t**##t*ttttt***t#**ttt*t*tttttt#tt##ttt#

sttt*#t##*tt#t#t*t*#**tt**ttt**#**#**tt#*t*tt“#*‘tttt#ttt*ttttt'I)
0Q 750 M=1,NOZ

PRINT TTO¢M,CZ(M),CFZIM)

CONT INUE

[F (NOZ.LE.30) GO TC 755
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752
155
760
770

180
790

PRINT 752,NCZ

FORMAT (1HO//¢3Xe2] FOUND#,2Xs13+2X42ZERCS.

$ CZ AND CFZ ARRAYS ACCORDINGLY#)

CONTINUE
PRINT 747

FORMAT (1HO»3X913,2X+#POLE ATz, 2E20. 3.8x,¢1/FlPOLE)

$)

INCREASE DIMENSION OF

FORMAT (1HOy3XeI3y2Xs2ZERD ATto(EZO 8;8X¢¢F(ZEROI =

RETURN
PRINT 7SO0

2,2617.8
#42E17.8)

FORMAT {(1HO910X,#SORRY ..RESIDUE.. COULD NOT FIND ANY ZEROS OR
$POLES IN THE GIVEN SCAN AREA#,//)

RETURN
END
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SUBRUOUTINE RESIDUE(CFCTS,CSM,CSMI,KDM)

IMPLICIT COMPLEX (C)

CUMMUN NOZ ,CZ{30)+CFZ(30),NGP,CF(30),CFP(30)¢IWARN

DIMENSION CS(641)+ARG(641),CFl641),0STO{641)

NIMENSION X(40) .W{40),CD(8),CA(3),CQUADI(2),CUBE(3)

DATA NP/43/, X/=+998237709710556+-.990726238699457 +-.9772599499837
174,-.957916819213792'--932812808278677’-.902098806968874,-.8659595
203212260,-.824612230833312v'.778305651#26519.--727318255189927:-.6
3719566866141809‘.612553889667980'-.5694671250951289’.48307580L6861
4799’.41377920%3716059-.34199409082575816.268152185007254.-.1926?75
58070137lo*.116084070675255y‘-387724l750605085—1’.387724175060508&-
61.-116084070675255».192697580701371oo268152185007254v1341994090825
77589.413779204371605'-683075801686179,-549467125095128y.6125538896
867980..6719566846141809.727318255189927'.778305651426519'-82461223
90833312v.365959503212260o¢902098806968874,.932812808278677c.957916
’5819213792s.977259949983774y.990726238699457'.998237709710559/

DATA h/.452127709853325-29.1049828453115285-19m1642105833190795-1
1,.222458491941670E-1..2793700698002345-19.334601952825478E'1v.3878
2216797467208—1,.4387090818567335-1'.486958076350722E-1o.5322784698
339368E—1p.5743976909939165-19.613062426929289E‘1y-6480401345660105
4‘1’.6791204581523395-1v.7061164739128685'10.7288658239580415-1,.74
57231690579683&-1y-7611036190062628-11.7703981816424805~1'.77505947
69784248E‘19-7750594797842485'1..7703981816426805‘1'.76110361900626
7ZE°1v.747231690579683E-lv.7288658239580615-1'.7061164739128685-1o-
867@120458152339E-lv}648040136566010E-1,.6130624249292895-1'.574397
96909939165-19.5322784698393685f1v.486958076350722E‘1’.438709081856
S733E-1.-387821679746720&-1’.3346019528254786-1y.279370069800234&—1
S,.2224584919416705—1..1662105838&9379E~1v.1049828453[15285’1,.4521
$27709853319€~2/ : :

CZERG=(04 40.)

CAUX 1=CSM

CAUX2=CSMI

NO=KDM=NP

NC1=nC¢l

ND2=2%*N0

ND 3=3=ND

N34=ND*4

NML=ND4+1

NMM1=ND4~1

NOP=NC2+1

,Cl’ll.yo.)

RCSF=REALICSMI)

RCSL=REAL (CSM)

SCIF=AIMAGICSNI)

SCIL=AIMAG(CSM)

PI=3.14159265

PI3=1.5%P1

PI=2.%P1

HPI= .,5%P1

NR =1

NI=1

[CKL=1

fCKyY=2

CINT INUE

00 655 ICK=ICKL,I1CKU

RINT=(RCSL=RCSF)/FLCAT(NR]
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(2N aNal

10

20
25

30
40

50

60

70

80

SCINT=(SCIL=SCIF) /FLOATINI)
00 650 JT=1,NR

JIT=JT-1
SRM!=RCSF*RKNT*FLCAT(JTI
SRM=RCSF+R1NT*FLOAT(JJT)
SAUX1=SRM[

SAUX2=SRM

DO 640 [T=1,NI

[I7=17-1
SIMK=SCXF+SC[NT*FLOAT(IIT)
SIM=SCIF+SCINT*FLOAT(IT)

IF (ICK.GT.1} GG TO 20
CONTINUE

PRINT 660'$RM'S[HleRMI'SIH
PRINT 150

G3 TO 25

PRINT 200

CONT INUE

CHANGE OF VARIABLE

SMR=( SRM+SRMI ) /2.
SMIs{SIM+SIMTY/2.

“CSC=CMPLXISMR,SML)

CSC*CSC"( 10'0-'
CSM=CMPLX (SRM,SIMI)=-CSC
CSMI =CMPLX{SRMI,SIM)-CSC
SRM=REAL (CSMI)

SRMI =REAL(CSM)

SIML=AI MAG (CSMI)

S IM=AIMAGICSM)
DELXS(SRH-SRHll/(2.*FL0AT(KDM))
DELY=(SIM-SIMI /(2. *FLOAT(KDM) )
DO 140 K=1,4

KK=K-1

KKK=KK®KD MNP

IF (K=2) 40,50,30

IF (K=3) 50460,70
YU=SIM.

YL=SIMI

XC=SRM

50 Ta 110

XU=SRMI

XL=SRM

YC=SIM

GO TO 80

YU=SIMI

YL=SIM

XC=SRMI

GG TG 110

XU=SRM

XL=SRMI

YC=SIMI

DL=( XU=XL 1 /ZFLOAT{ XOM)
DA 100 L=1,KDOM

Li=L~-1

LLL=LL *NP+KKK
XLOW=XL+¢FLOAT (LL)*DL
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90
100

110

120

130

140
150

200

220

225
250

300

310

320

325

C XUP=XLOW+0OL

DLX={ XUP-XLOW) /2.

PLX={ XUP+XLOW) /2.

D0 90 M=1,NP

MM=M+LLL
CS(MM)=CMPLX(DLX*X(M)+PLX,YC)
CCNTINUE

CONTINUE

GO0 7O 140
DL={YU=-YL)/FLCAT(KDMY

NG 130 L=1,KDM

Li=L-1

LLL=LL*NP+KKK
YLOW=YL+FLOAT(LL) *0OL
YUP=YLOW+OL .
DLY={YUP-YLCW}/2.
PLY={YUP+YLONW) /2.

DQ 120 M=1sNP

MM=M+LLL

CSIMMI=CMPLXI XC,OLY®X (M) +PLY)
CONTINUE

CONT INUE

CONTINUE

FORMAT (LHO,2Xy 20ORKING WITH THE
Zoooo’v,’ '

FORMAT (1HO+2Xs2#WORKING WITH THE RECIPRCCAL OF F(S)

205..-...--*)/‘
CONT INUE
00 250 K=1,ND4%

IF (ICK.EQ.l) CF(K)I=CFCTSICS(K),CSC)

IF{ICK.EQ.2) GC TO 225
CSTO(KI=CF (K}

GO TQg 250
CF(X)=L./CSTOIK)

CONT INUE

CS{NML)=CS (1)

ASUM=0. .

D3 300 K=1.,N0
ASUM=ASUM+CABS (CF (K})
CONTINUE
A1=ASUM/FLOAT (ND)
ASUM=0.

DO 310 K=NOP,ND3
ASUM=ASUM+CABS(CF(K))
CONT INUE
A2=ASUM/FLOAT(NC)
A3=ALUG(AL/A2)/(SRM-SRMI)
A4=AL*EXP (—-A3%SRM)
CSUM=(Cev Q)

00 320 K=1,ND4
CSUM=CSUM+CF(K)
CF(K)=CFIK) /(ACEXP{A3I*CSIK) )
CONT INUE

_CAVE =CSUM/FLOAT(NC4)
AVEE=CABS(CAVE)
CONTINUE

00 330 L=1,ND4
RF=REAL(CF(L))

40

FUNCTION F(S) TO EXTRACT POLESe...

TO EXTRACT ZER



c

330

340
350
360

370
380

390

400
410
420

430
44C

442

L=ATMAGI(CF(L))

ARG {L)=ANGLER(RF,Z)

CONTINUE

{0=0

OVF=ARG(1l)

Ov=ARG(1)

OVL=ARG{ND4)

D0 390 K=1l,NMM]

IF (OVeGTaPI3.AND.OV.LT.TPI) GO TG 340
IF (OVGT «0e.AND.OV.LT.HP[) GO TO 350

GG TQ 380

IF (ARGIK#+1)eGTo0eANDLARGIK* 1) JLT.HPI) GO TQ 360
GO TO 380 .

IF (ARG{K+1)GTaPI3.ANDARGIK+L)LT.TPI) GU TO 370
‘60 TC 380 . )
[U=1C+1

60 TO 3380

10=10~1

OV=ARG{K+1)

ARG(K+1 )=IC*TPI+ARG (K#+1)

CONTINUE

[F (OVL .GT .PI3 ANDOVL.LT.TPI) GO TGO 400
[F (OV0LeGT<0e+AND.OVL.LT.HPL1)} GO TO 410
GO TGO 440 .

[F (OVFoGTe0ecANDJLOVF LT .HPI) GC TO 420
G3 TO 440

I[F (QVF.GTLPI3.,AND.OVF.LT.TPI) GG TO '430
G3 TQ 440

[C=10+1

G0 TO 440

[C=10-1

CONT INUE

ARGINML)I=FLOAT({IOI*TPL+ARG (1)

IF (ICK.EQ.Ll) [AN1=1Q

IF (ICK.LT.2) GO TC 444

[AN2=10 v

[CHECK=[ANL+[AN2

[F (ICHECK.EQ.Q) GO TC 444

[WHARN=[WHARN+L

PRINT 442, IwWARNs [AN1, [AN2

FORMAT [1HC,»//+3Xy2wARNING NUMBER = #,13,//43X,

22 ARGUMENT NUMBER OF F(S) = 2,4,134/93Xy

444

445
450

32ARGUMENT NUMBER OF L/F(S) = #,13,/)
CONTINUE

FINDING THE RESIDUE MOMENTS 30 THRU DS8.
DO 520 L=1,9

CONI=(CasCs)

CON2=104+04)

CIN3=(04yCa)

CON4=(0.+04)

LML=t -1

DG 500 K=l,4

KK=( K= 1) *KOM*N

[F (K=2) 450,465,445

IF (K=3) 4554480,495

DO 460 M=1,KDM

MM=(M-1)%*NP

00 455 N=1,NP
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455
460

470
475

480

485
490

*495

496
497
498
500

510
520

521

NN=KK+MMe N
CONL=CONL+((CSINNI®®LNL) ) XW{N)®CF (NN}
CGNT INUE

CGNTINUE

GO TO 498

DO 475 M=1,KDM

MM=( M=1) NP

00 470 N=1,NP

NN=KK+MM+N

CON2=CON2+ (CSUNN) ** LML) %W (N)*CF (NN)
CONTINUE

CONT INUE

G0 TO 498 - .

D0 490 M=1,KDM

MM= (M=1)*NP

DO 485 N=1,NP

NN=KK +MM+N

CON3=CON3 +( {CSINN)**L ML) ) *N (NI *CF(NN)
CINTINUE

CONT INUE

5C TO 498

DO 457 M=1,KDM

MMz (M=1 ) *NP

DO 4S6 N=1,NP

NN=KK +MM +iN
CCNG=CON4+( (CS (NN ) ##LM1) ) *W(N ) *CF{NN)
CCNTINUE

CONT INUE

CONT INUE

CONT INUE

CON1=CON1#0ELY#{ 0.yl )

CCN2=-CON2 *DELX
CON3=CON3*DELY*{0.,-1.)
CON%=CON4*DELX .

IF (L.GT.1) GC TQO 510
CDO=({CONL+CCN2+CON3 +CON&)/ (TPI#(Oayl.))
GO TO 520
CO(LM1)=(CONL+CON2+CON3+CON4 )/ (TPI*#{Cegl.))
CONTINUE

ALL THE 9 RESIDUE MOMENTS ARE NCW COMPUTED.
CALL POLECHK(CDG,CD,CAQsCAyNQ)
NPLaNC#+ 1

[F (ICK.EQ.l) NQl=NQ

IF (ICK.EQ.2) NG2=NQ

IF (NQ-4) 521,570,570

IF (ICK.LT.2) GO TO 525
NCK=NQ2-NG1-TANL

[F (NCK.EQ.O) GO TO 525

IWARN= [WARN+1

PRINT 522, IWARN,NG2,NQl, [ANL

622 FORMAT (1HCy/793X,#NARNING NUMBER = #,13+//+3X,#NUMBER OF ZERGS NQ
22 = £,13,5X,#NUMBER OF POLES NQ1 = #403+/+3X»
3#(NQ2-NQL) DOES NOT EQUAL THE ARGUMENT ‘NUMBER IANL = 2y1347)
525 CONTINUE
GO TC 528
526 IF (NG—-4) 528,570,570
528 CONTINUE
G0 TQ (530,540+550+560)1+NP1

42




530

540

S45

550

551

552
555

557

- 560

561 -

562

O

PRINT 590y (ICKsNQsCAO2 {CAIK)K=143))
IF (ICK.EQ.2) PRINT 620

53 TQ s8¢C

PRINT 590'(lCKoNQ,CAO’(CA(K,vK'Xv3))
CALL PQALY L1(CAQ.CLl.CLINY}

[F (ICK.EQe2) CLIN=CLIN+CSC

IF (ICK.EQ.2) GO TO 545

PRINT 600,CLIN

NOP=NOP+1

CPI(NCOP)=CLIN
CFP{NOPY=1.,/CFCTS(CLIN,CZERO)

GO TO 580

PRINT 610,CLIN

N3Z=NQZ+1

CZ{NQZ)=CLIN
CFZ(NQZ)=CFCTS(CL[NQCZERO’

PRINT 620

GD TQ 580

PRINT 590, {ICKyNQsCAD,(CA(K)yK=1y3))
CALL POLY 2(CAQ,CAI(L) +Cl,CQUAD)
IF {ICK.EQ.1) GO TO 581
CQUAC(1)=CQUADI(L1 ) +CSC
CQuUAD(2)=CQUAD(2) +CSC

GO TG 555

CONTINUE

PRINT 6009‘CQUAD(K)9K le)

DO 552 L=1+2 .

NCP=NOP+1

CPINOP)=CQUADIL)
CFPINOP)=1./CFCTS(CQUADIL) ,CZERQD)
CCNTINUE

GO TQ s8¢

‘PRINT 610, (CQUAD(K)+K=1,2)

DO 557 "L=1.2

NQZ=NOZ+1

CZ(NQZ)=CQuAD(L)
CFZ(NOZ)=CFCTSI(CQUAD(L),CZERO)
CONT INUE

PRINT 620

G0 TC 580

PRINT 53C+{ICKINQsCAQ{CA(K) ,,K=1,3))
CALL POLY 3(CAQ, CA(l’vCA(Z)vCvaUBE)
IF (ICK<EQ.1) GC TQ 561
CUBE(1)1=CUBE{1)+CSC
CUBE(2)=CUBE(2)+CSC

CUBE (3)=CUBE(31+CSC

GO YO 565

CONTINUE

PRINT 600, (CUBE(K)sK=1,3).

DG 562 L=1,3

NOP=NGP+1

CP{NCP)=CUBEILL)
CFPINOP)=1./CFCTS(CUBE(L),CZERD)
CONTINUE

Ga 10 58C

PRINT 610, (CUBE(K) sK=1,3)

D0 567 L=1,3

NCZ=NQ1l+1
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CZINGZ)=CUBE(L) | - | O

CFZ(NOZ)=CFCTSI{CUBE(L )yCZERQ)
567 CONTINUE
PRINT 620
GO TC 580
570 IF (ICK.EQ.2) GO YQ 575
PRINT 572
572 FORMAT (1HC,2X»#CAUTION vevevety/93Xe#THIS CONTOUR HAS MORE THAN 3
$ POLES.#+/+3Xs#THE USER IS URGELC TO REWORK THIS CONTOUR#)
GO TO 630 ’
575 CONTINUE
576 PRINT 577
57T FORMAT (1HC,3X,2CAUTICN ceonoce?yl/ 93Xy 2THIS CONTOUR HAS MORE THAN 3
$ ZEROS<%#y/ ¢3Xo2THE USER IS URGEU TO REWORK THIS CONTOUR=2) |
GG TC 630
580 CONTINUE _
590 FORMAT (1HOs3Xs2ICK = #,11,3X,2NP = 291 193Xy 8E14e5+/)
600 FORMAT (1HO+3X+2POLE AT2,2X92E20.8,/)
€10 FORMAT (1HOs3X,#ZERDO AT#,2X,2E2C.8,/)
620 FORMAT (LROe1Xs///777) o
€30 CONTINUE ,
SRM I=SAUX1
SRM=SAUX2 |
640 CONTINUE
650 CONTINJE
655 CONTINUE : |
660 FORMAT ( 1HO¢2X 144HCOCRDINATES OF THE LOWER RIGHT CORNER ARE (41X,
1F12-891“0,F12-8v1X91H.1/93X044HC00RD[NATES OF THE UPPER LEFT CORNE ’ (::)"
2R ARE (91XsF12.8¢1HysF12.8¢1Xs1H)})
CSM=CAUXL . |
CSMI=CAUX2 |
RETURN ‘
END |
|
\
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(:) : SUBRCUTINE POLECHK(DO«DyDAQsGA.MP)
s IMPL ICIT COMPLEX (D)
DIMENSICN D(8),CA(3),A0(8),03(3,3)
DIMENSION D3A(3,3),0W(3),0V(3)

THIS SUBRQUTINE FINDS A POTENTIAL VALUE FOR NP = NUMBER
OF PGLES IN THE GIVEN CONTQUR C.

IT ALSO ODETERMINES THE COEFFICIENTS DA(4) OF THE
DENCMINATOR POLYNOMIAL.

e XX inEaKs!

NP=0
JA0=({0.+0.1}
DQ 10 IC=1,2
JA(ICI=(0.¢0.)
10 CONTINUE
EPS=1.E-02
ADO=CABS(-CO)
Do 2C 1=1,8
AD(I)=CABS(OD(I))
20 CONT INUIE
‘ PRINT 25, ADO;(AC(I’:I=1083 -
25 FURMAT (1HG,2Xy2MAGNI TUDES OF THE RESIDUE MOMENTS DO THRU 08#,4//.3
$X99EL4.547)
. 1F (ACOQ.LE.EPS) GO TO 40
C CHECKING TGO SEE IF NP = 1
- DAQ=-0(11700

. : DO 30 [=1,7
pQTY=-0(1IPL1}/0C1)
TR=ABS{REAL (DAO-DQTY})
TI=ABS(ATIMAG(DAQ-DQTY))
IF (TR.GT.EPS.AND.TI1.GT.EPS) GO TO 40
30 CONTINUE
. NP=}
RETURN
40 CONTINUE
IF (ADD.LE.EPS.AND.AD{1).LEL.EPS) GO TO 63
C CHECKING T SEE IF NP = 2 cesves
DET=(00*D(2))=(D(1)1%*2)
JAO=((0(L)*D(3))-(D(21%*2))/DET
DAL=((D{1)*0(2))-(DO*D(3)))/CET
DAt1)=DA1l
D0 S50 J=2+6
JPl=J+1
Jp2=J+2
DATY-=C(JP2)1+(D(JPLI*0ALI+(D(J}1*DAD)
TR=ABS{REAL{DCTY))
TI=ABS(AIMAGI(DQTY )
IF (TR.GT .EPS +AND.T1.GT.EPS) GO TO 60
50 CONTINUE

NP=2
RETURN
’ 60 CONTINUE '
‘ IF (ADQL.LEJEPS. AND AD{1).LE.EPS. AND.AO(Z).LE EPS) GO TO 180
(::) o CHECKING TC SEE IF NP = 3 .eesee

D0 90 IROW=1,3
0Q 80 JCOL=1,3
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79
80
93

100

105
110

120
130

140

150
160

170

180

190

{ND= IROW-2+JCOL

IF (IROW.EGel+AND.JCOL.EQ.1} GO TO 70
N3( [ROW,JCOL)=D(I ND) ‘
G3 TO 80

03(1,11=00

CONTINUE

CONT INUE

CALL DETER(D3,C03A,DW,CVy3,DENGM)
DO 1C0 IROW=1,3 ‘
IND=IRUN+2

D3(IROWs1)==D(IND)

CONTINUE .

CALL DETER(D3y0D3A+DWs0OVs3,0NO) .
DC 130 [ROW=1,3

DU 12C JCOL=1,2

IF (JCOL.EQ.2) GO TO 110
INDL=IRCK=2+JCCL

IF (IND1.EQ.O) GO TG 195
03(IR0W,JCOLI=D(INDL)

!

" GC TO 120

D2 1,11=0C

GO TO 120

IND2=IRCHW+2

D3( IROW,JCOLI==D{IND2)
CONT INUE

CONTINUE

CALL DETER{D3,03A,0W+0V,3,4ON1?
00 160 IRCW=1l,3

D3 150 JCOL=2,3

IF (JCOL.EQ.3) GO TO 140
IND1=IROW=-2+JCOL

D3( IROW,JCOL)=D(INDL)

G0 TQ 150

IND2=IROW+2
73(IRCW,JCCL) ==C(IND2)
CONT INUE

CCNTINUE :

CALL DETER(DB'D3AODHvDVv3vDNZ,
DAO=0ONO/DENOM
DA(1)=DN1/DENCN

DA( 2)=0N2/DENCM

DG 170 J=3+5

JPl=J+l

JP2=J+2

JP3=J+3

DQTY=D(JP3)O(DA(ZD‘D(JPZlD*(DA(I)*O(JPI))*(DAO*O(J)!

TR=ABS(REAL(DQTY))

TI=ABS(ATMAG(DQTY))

IF (TR.GT.EPS.AND.T[.GT.EPS) GO TO 180
CONT INUE

“NP=3

RETURN

CONTINUE

{F (ADO.GT .EPS) GO TO 200

DG 190 [D=1,3

If (AD(ID).GT.EPS) GO TG 200
CONTINUE

GO TC 340
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200
340

350

360

370

CONTINUE

CONT INUE

00 350 10=4,.8 '

[F (AD{ID).GTLEPS) GO TO 370
CCONT INUE

ALL MCMENTS ARE LESS THAN EPSILCN.
SO NP=9Q FOR THIS CONTCUR.
NP=Q

DAQC=(0.+0.)

DO 360 I=1,23

DA(IN=(0.y0.)

CGONTINUE

RETURN

CONTINUE

NP=4

RETURN

END
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19
15

20

e e XN o

21

30

40
50
60

6l

SUBROUTINE DETER(CMyCBsCWoCVyMS4CO) _ (::)
THIS SUBROUTINE CGMPUTES THE VALUE OF THE DETERMINANT

CD OF A SQUARE MATRIX CM OF SIZE MS

INPUTS. 1)COMPLEX MATRIX ELEMENTS CM
2)S1ZE OF THE SQUARE MATRIX MS
GUTPUT. L) COMPLEX VALUE OF DETERMINANT (9

INPLICIT COMPLEX (C)
DIMENS [ON CM{MS,MS) ,CB(MS,MS),CW{MS),CVIMS)

BEGIN TRIANGULARIZATION

MCVE MATRIX CM TO CB SO THAT INPUT MATRIX WILL NOT
BE DESTROYED

00 15 [=1.,MS

CO 10 J=1,#S

CBUL J) =CM(I,N}

CONT INUE

DC 60 J=1.WMS

Qq=0.

CALCULATE NORM SQUARED OF COLUMN J

0G 20 K=JMS

J=Q+CABS(CBIK +J) ) *%2

I[F (C.GT.C.) GO TO 21 '
[F THE NORM IS ZERO, THE MATRIX IS SINGULAR

ISw=3

PRINT 9 - - .
FORMAT (1HO,2THE MATRIX IS SINGULAR#.//) (::)
RETURN

CALCULATE THE CIAGONAL ELEMENT CF THE MATRIX T. (CwWlJ))

CALCULATE THE DIAGONAL ELEMENT CF MATRIX U. (CBLJI,I))

CALCULATF THE ELEMENT OF VECTOR V

BEGIN {TERATIGN :

BSQ=CABS(CB(JyJ) ) %x2

IF (BSQeEQ.Ce) CA(JI=SQRT(Q)

[F (BSQeGT.0.) CW{(JI=SQRT(Q/BSQ)I*CBlJsJ)

C3(J,J)=CBlJsJ) + CWlJ)

CV(J1==C8{JsJ)*CONJGICWIID)

1F (JLEQ.MS) GG TO 60

i8=J¢1l

0C 50 I=18,4MS

CS=1(04+0.)

DO 30 K=Jy.MS ~

CS=CS+CB(K, [)*CONJGICBIKJ D)

CS=CS/CVJ)

DO 40 K=J MS : .

CBIKy [1=CB (K, [ 1#CS*CB(KsJ)

CONTINUE

CONT INUE :

CO=(1490.) ‘
CQ 61 I=1,MS

CO=CD*Cw( I

RETURN

END . (::)
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10
20

30
40

590
60

70
80
90
100
110
120

FUNCTION ANGERER (X,Y)
P1=3.14159265

IF (X} 90.,10,50

IF (Y) 30,2C,4C
ANGL ER=0 .

RETURN
ANGLER=1.5%P1]
RETURN
ANGLER=P[%,5
RETURN

[F (Y) 80+60,7

ANG LER=Q. °

RETURN
ANGLER=ATANI{Y/X)
RETURN
ANGLER==-ATAN(-Y/X)+2.*P]
RETURN

XN==X

If (Y) 120,10C,110
ANGLER=PI

. RETURN

ANGLER=PI -ATAN(Y/XN)

‘RETURN

ANGLER=PI+ATAN(-Y/XN)
RETURN ’
END

" SUBROUTINE POLY 1(COsCl,CLIN)

IMPLICIT CCMPLEX (C)

THIS SUBROUTINE SOLVES A LINEAR EQUATION OF THE

FORM C1*S+#CO = D
CLIN=-CO/C1

RETURN
END
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SUBRCUTINE POLY 2(C0,C1,C2,CQUAC)
IMPLICIT COMPLEX (C)
DIMENSION CQUAD( 2}

- THIS SUBRGUTINE SOLVES A QUACRATIC EQUATION OF THE

FCRM C2*(S*®2)+C1*5+CC = G

CC=(Cl**2)-(4.%(2%CO)
CQ=CSQRTI(CQ)
COR=(2.*C2)
CQUAC(1)=(-C1+CC)/CDR
CQUAD(2)=(-C1-CQ) /CDR
RETURN

END

SUBRCUTINE POLY 3(CO,C1,C2,C3,CUBE)
[¥PLICIT COMPLEX (C)
JIMENSION CUBE (31 ,CAUX1(3) ,CAUXZ(3}

THIS SUBRCUTINE SOLVES A CUBIC EQUAT ION OF THE
FORM C3*(S**x3)+C2%(S**2)+C 1*5+CC = O
REFERENCE e oeecessEQN. 3.8.2. OF AMS 55, PAGE 17.

CA2=C2/C3

Cal=C1/C3

CAC=CQ/C3
CQA=(CAL/3.)=-((CA2%%2)/9.)
CR=((CAL*CA2-3.,#CA0)/6.)-{ (CA2%%3)/27.)
CRQ=CSQRT((CR*#2) + (CC**3))
TPI=2.%3.14159265

CRP=CR+CRQ

CRM=CR=-CRQ

CS 1=CEXP{CLOG(CRP)/3.)
CS2=CEXP(CLGG(CRM)/3.)

CQTy=-CQ

C‘z(OOQ l.’

EPS=1.E-5

DO 20 IC=1,3

TIC=FLOAT(IC)
CAUXL{IC)=CEXP(CI*TP[*TIC/3.)*CS1
DO 10 JC=1+3

TJC=FLOAT(JC)
CAUX2(JC)=CEXP(CI*TPI*TJC/ 3.1 *(CS2
CP=CAUXL(ICI®CAUX2({JC)-CQTY
DELR=ABS (REAL (CP) )

DELI=4B8S (AIMAG(CP))

[F (DELR.LE.EPS.AND.DELI.LE.EPS) GO TC 30
CONTINUE

CONT INUE

CS1=CAUX1(IC)

CS2=CAUx2(JC)

CSP=(CS1+CS2)/2.

CSM=(CS51-CS2) /2.

CR3=CI*SQRT(3.)

CA23=CA2/3.

CUBE(1)=CS1+CS2-CA23
CUBE(2)=-CSP-CA23 +(CR3*CSM)
CUBE{3) =-CSP-CA23-(CR3*CSM)
RETURN

END
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COMPLEX FUNCT ICN CFCTS(CS, CSHIFT)
IMOLICIT COMPLEX (C)
DIMENSION CDR(1C)»CFD(10) yCNRILE) yCFNILGS
CS=CS+CSHIFT

NP=10
COR(1)=(3.551.9)
COR(21=(1.75,2.25)
COR(3)={1.5+2.175)
COR(4)={2+2543.25)
CDR{51=2(2.7993.5)
COR(€)=(2.2543.75)
COR{71={1.25+0.751)
CCR(8)=({2.75+1.75)
COR(S1=(1.5+0.5)
CODR{10)=(2.25+1.25)
NC 10 I=1l.NP
CFD(IV=CS-CORI(])
CONTINUE
COENGOM={1.+0.)

D0 20 [=1,NP
COENCM=COUENCM=CFU{ 1)
CONTINUE

NQ=1¢ .
CNR(1)=(4.5+.5)
CNR13)=213.75y1.25)
CNR{4)=(3.75,1.75)
CNRI(5)2{445+2.5]
CNR{ £)=14,2592.75)
CNRI(T)=(2.75+2.75)
CNR{8)=(1.25+2425)
CNR{S)I={1.75+2.75)
CNR(10)=({%.5,4.5)
CNR(11)={.75y1.5)
CNR{ 121={ <5+ 1. 25)
CNR(13)=2(.2541.75)
CNR{14)={.5,4.25)
CNR{ 151=( 675y 4.5)
CNR{16)=(.25¢4.75)
DO 30 1=1,NQ

CFNU I)=CS-CNR ()
CONT INUE
CNUM=(1.,0.)

80 40 I=1sNC
CANUM=CNUMRCFN(I)
 CONTINUE

CFCT S=CNUM/COENOM
A’Oo "
CFCTS=CFCTS*CEXP( A*CS)
RETURN

END
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APPENDIX B

A List of Relevant Definitions and Some
Interesting but not Very
Useful Results

Analytic function:

If A(s) has a derivative at a point s, and also
at each point in some neighborhood of Sq then A(s) 1is
said to be analytic at s,. The terms holomoaphic, monogenic

and tegulfan are also sometimes used [9].

Entire function:
An entire function is one which is analytic everywhere

in the plane and may have its.singularities only at infinity
[o1].

Meromorphic function:
A meromorphic function is one whose only singularities,

except at infinity, are poles [4].

Argument number:
The argument number Na is the number of excess zeros

over poles (No - Np) of a meromorphic function, inside a
simple closed contour. Note that Na is the order of the
pole at infinity when N_ > 0 and it is the order of the

zero at infinity when Na < 0.

Exceptional point:

For a given function, certain values may be exceptional,
in the sense that the functioﬁ can not take these values [4].
For instance, the points (0 ¢ jl) are exceptional points

of the meromorphic function tan(s).

52




A major problem in the procedure developed in this
note, of finding the poles and zeros of a given complex
meromorphic function lies in obtaining the number of poles
Np, deterministically in a given contour. If N is
known unambigiously, there is no difficulty in accurately
determining the pole locations. Since the excess number of
zeros over poles, i.e., (NO - Np) can be easily determined
from the principle of the argument, attempt was made to obtain
another expression involving NO and N SO0 that one can
solve a set of simultaneous equations for No and N
In this unsuccessful attempt, the following results were
obtained. The foliowing results are not useful in deter-
mining NO and N_, when used along with the known
argument number. When M(s) has all its poles simple,

’ . 2 . .
1 M' (s) - - 2
5 Y. S\wer( 95 = N, - W) | , (B.1)
1 M" (s) _ _ 2 _
773 s ¥ (o) ds = (No ' Np) . (NO Np) (B.2)
C
1 M" (s) N - N = e
773 NSy ds (No Np) (No 2Np) (B.3)
C
with Né = number of zeros of M'(s) in C,
Né = number of poles of M'(s) in C
= twice the number of poles of M(s) in C = 2Np.
. _.]..'__ 9.4_::_(.&_ = ' o
573 m ey 95 = (M) 3Np) (B.4)
c
with Ni = number of zeros of (M'(s) - 1) in C.
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In this context, it may be noted that Np can be
obtained deterministically, if

i) we develop a method of determining the number of
essential singularities of M(s) in C.
or ii) we know an exceptional value € of M(s) in C
as illustrated below.

i) Essential singularities

Observe that the function exp(M(s)) has no =zeros
in C, but all the poles of M(s) become essential singu-
larities of exp(M(s)) within C. So, if one can determine
the number of essential singularities of a given function in
a given contour, this concept is useful in determining the

number of poles of a function inside the contour.

ii) Exceptional value

Let ¢ be a known exceptional value of M(s) inside
the contour C. The existence of e is improbable, if not
impossible, since the affinity of a’function for every value
is the same. If ¢ dces exist, one may define a new function

a(s)
= L
a(s) = M(s) = & (B.5)
then the argument number of a(s) is given by
1 a'l(s) =
713 2 () ds = Np (b.6)
c

and thus Np, the number of poles of M(s) in C 1is easily
determined. Note that a(s) is an analytic function in C
since M(s) # ¢ and the poles of M(s) in C become the

zeros of af(s).
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