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ABSTRACT

In applying GTD (ray techniques) to electromagnetic diffraction problems,
some elementary knowledge of differential geometry is necessary. This report
is written for those who are not familiar with this subject and wish to
acquire a working knowledge in a rapid fashion. For more advanced readers,
the report may provide a convenient collection of formulas in differential
geometry relevant to GTD applications.
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PREFACE ' O

The material presented in this report was originally prepared for the
Appendix of a monograph on GID (which explains the letter "A" in section
and figure numbers). A small number of ditto copies of the Appendix were
circulated in 1976. The monograph is far from completion. A surprisingly
many requests. have beeﬁ received for the Appendix. Hence: the Appendix is
published -herein- as a technical' report.. The- author: appreciates: comments

and responses from readers.
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A.1l. INTRODUCTION.

For understanding and application of ray techniques in electromagnetics,
it is necessary for the reader to have some elementary knowledge of
differential geometry of curves and surfaces. This report is written for
those readers who lack this knowledge. For easier comprehension of the
subject, we will use ample examples and illustrations, while a few
abstract concepts and proofs are omitted. In the first ﬁart (Sections A.2 -
A.6) we discuss curves, and in the second part (SectionsjA.7 - A.12),
surfaces. Key formulas: and results are summarized inVSection A.13. All
the materials, except for part of Sections A.10 and A.11, can be also

*
found in standard textbooks of differential geometry.

* We recommerd two books: B. 0'Neill, Elementary Differential Geometry,
Academic. Press,. New York, 1966; and D:. J. Struik, Differential Geometry,
2nd Edition, Addison-Wesley Publishing Co., Reading, Mass., 1961.




A.2. REPRESENTATION OF CURVES

A curve may be pictured as a trip taken by a point in motion. Let us
first concern ourselves with the description of the position of a point in
three-dimensional space. In terms of the Cartesian coordinates (x,y,z) of

the point, a position vector r is defined by
> A~ ~ ~
r=2xx+yy+zz (2.1)

where (§,§,2) are unit vectors in the direction of the increasing (x,y,z),
respectively. When the point is in motion, the locus traced out by the tip
of the vector r is a curve (Figure A-1) and can-be expressed as a vector

function of a parameter t in some open interval:

B0 = (k(0),y(0),2(0) 5 ot <t<t, . (2.2)

For engineers and physicists, it is convenient to think of t as the time,
and we will use this association throughout this report. Let us now

consider several examples of curves.

(i) Straight lines. Thesimplest curve in three-dimensional space ‘is

a straight-line given by the equation

> > -
r(t) = a + bt = (a) + b t,a, + byt,aqy + b,t) (2.3a)

-
where a and b are constant vectors, and b is not identically zero. Let
the angles between the line and the three rectangular coordinate axes be

(61,62,03). Then the direction cosines of the line are given by

1/2
2 2) , =123

2
cos en = bn/(b1 + bA2 + b3




Figure A-1.

Curve defined by the tip of a vector in motion.




Alternatively, (2.3a) may be written as

r; =a, + (b,/b,)(x ~ a,)
2 2 1 (2.3b)

z = a, + (b3/bl)(x - al)

provided that b1 # 0.

(ii) Circular helix. A point travels in the x - y plane around a

circle of radius a and rises along the z-~direction at a constant speed b,

Its trip is a circular helix:
;(t) = (a cos t,a sin t,bt) . (2.4)

When b > 0, the helix is right-handed (Figure A-2); when b < 0, the helix
is left-handed.

(iii) Conics. Let us construct a plane curve C as follows: In the
xz-plane, let L be a straight line (directrix) parallel to the x-axis, and
F be a point (focus) on the z-axis (Figure A-3). A typical point P on C

satisfies the condition
PL=e - PF (2.5)

where PL is the distance from P to the straight line, and PF is the distance

to F. The proportional constant e in (2.5), called eccentricity, is a

positive real number. Curve C is a

parabola, if e = 1
ellipse, if e < 1
hyperbola, if e > 1 .

The above three curves are known as conics, because they can be obtained as
a section of a circular cone by a plane. We list below representations of

these curves.



X

Figure A-2. A right-handed circular helix.

- Z

T

Figure A-3. Construction of a conic T.
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Parabola. (Figure A-4).

T = (2ft,0,£6%) (2.6a)
2

z =35 (2.6b)

R=26(1-cos ) 0, for R>0 (2.6¢)

eccentricity: e =1 (2.7)

foci: (x =0, z = f) . (2.8)

Ellipse (Figure A-5).

N ,
r=(acost, 0, bsint) ‘ (2.9a)

2 (Z 2 ' ‘
(;) + ;B) -1 (2.9b)
4 , R = a2[b + /bz - a2 cos w]—l , assuming b > a (2.9¢)
v eccentricity: e = V1 - (a/b)2 , k (2.10)
foci: (x =10, z = +tf) , where f = 2 _ 32 . (2.11)

Hyperbola (Figure A-6).

T = (a sinh t, 0, b cosh t) (2.12a)
N2 a2

z X .

Kb> - Ka) =1 | (2.12b)

R = azlib - ¢a2 + b2 cos w]-l (2.12¢)
A+ (a/b)? (2.13)

+f) , where f = /gi + b2 . (2.14)

eccentricity: e

foci: (x =0, 2z

In (2.12c), the plus (minus) sign applies to the right- (left-) half hyperbola.

11
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Figure A-4. Parabola.
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Figure A-5. Ellipse.

—» X

Figure A-6. Hyperbola.
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A.3.. TANGENT, ARC LENGTH, AND REPARAMETRIZATION

Consider two points moving in space following an identical trajectory.
We would say that they generate two identical curves. However, they may
move at different speeds. To account for this difference, we will intro-

-+ >
duce a tangent vector. For a curve r = r(t), its tangent vector at the

>
point r(t) is the velocity vector

@ = (BB, &) da(, (3.1)

evaluated at the instant t. Its speed is the magnitude of the velocity

vector:

dr dx 2 _ dv.2 . .dz.2
ve) = [ = D BT &y? (3.2)

A curve with v(t) 1 for all t is called a unit-speed curve; otherwise,

it is an arbitrary-speed curve. Later, for a given curve with one speed,

we may construct many "new'" curves which have the same trajectory as the
original one but travel at different speeds. For applications in electro-
magnetic diffraction problems, we often use unit-speed curves.

The disténce travelled by a moving point is the arc length along a
curve. In physics, the differential distance dog is equal to the product
of the speed and the time interval: do = v dt. Thus, we define the arc

—->
length of a curve t = r(t) from a reference instant t. to a variable

0
instant t as
t d*
o(e) = [ |g5|de . (3.3)
t
0

14




Clearly, o(t = to) = 0, and o(t) can be positive or negative depending on

>
whether t to or t < to.

Consider the circular helix in (2.4) as an example. Its velocity (or

tangent) vector is

-
%% = (-a-sin t,a cos t,b) (3.4)
and its sneed is
> a > )
‘g‘g‘a%.%afai.l-b = ¢ (3.5)

Assumineg c # 1, then the helix, ag given in (2.4), is an arbitrary-speed curve.
Its arc length, measuring from t = 0, is
t
o(t) = [ cdt = ct . : (3.6)

0

At this point, many readers may have already realized that a simple change of
-> >

variable t = o/c  in (2.4) gives rise to an equation ' r = r(g) which is.
a unit-speed curve. We have not changed the helix curve itself, we have

changed its speed by passing from one parameter to another. Such a process

is called reparametrization. Clearly, as many reparametrizations of a given
curve exist as there are transformations for parameter ¢t.
0f all reparametrizations, we are particularly interested in the one that
S : - > :
results in a unit-speed curve. It can be shown that, for a curve r = r(t),

Iy > -> 3
the reparametrization r = r(c) with

t = t(o) (3.7)



describes a unit-speed curve. In other words, a unit-speed curve is a curve

whose arc length is its parameter.

16

O



A.4. TFRENET FORMULA FOR UNIT-SPEED CURVES

-, -> -> '
For a unit-speed curve r = r(c), the unit tangent vector

dr
t = o . | (4.1)
indicates the direction of turning along the curve . Now, let us introduce
two new parameters: (i) curvature «, which measures the rate of turning;
and (ii) torsion 7T, which measures the rate of twisting.

Consider the derivative of the unit tangent vector:

” 2>
dt d’r ~

Here the unit vector n is in the direction of dt/do and is called normal.

Since t - t = 1, differentiation of this identity gives
t 5= O, or t+n=20. (4.3)

R a K R .
Hence n is orthogonal to t. The magnitude of dt/do is curvature k, which
by definition is nonnegative. As the curvature increases, the turning of the curve

becomes sharper. From (4.2) we can deduce an alternative formula for curvature,

namely,

_§\
n&
232
[a 9
[ ]
Ry
N

k(o) = + .
\do do

(4.4)

N
~N

where the square root should take a nonnegative value.

® . . 2>,.2
Since the curve has a constant speed (unit speed), the "acceleration" d“r/do
must be orthogonal to its velocity vector.

17



At each point on a curve we have had two orthonormal vectors t and a. (:)

Define a third one, binormal B, such that

b=1txa. (4.5)
Then (ﬁ,ﬁ,g)* form a right-handed orthonormal basis for the three~dimensional
space. In general, they vary continuously along the curve, according to the
turning and twisting of the curve. For this reason (ﬁ,E,E) are known as the
moving trihedron. In the study of the geometry of a curve, it is often more
convenient to use (ﬁ,B,E) as the base vectors instead of (i,ﬁ,%), because

the former -contains information about the curve while the latter does not. The

planes spanned by (ﬁ,ﬁ), (E,E), and (t,n) are called normal plane, rectifying

plane, and osculating plane, respectively (Figure A-7).

One of the most important applications of the moving trihedron of a curve

concerns the expression of the derivatives of (n,b,t). Consider first db/do, which (::)

measures the rate of change of the osculating plane. The differentiation of

~

b.t= 0 leads to

b . . Aoa
o t=-b ~«b.-n=0 (4.6)

where we have made use of (4.2). The differentiation of b - b =1 gives

G b=0. 4.7

-

From (4.6) and (4.7) we know that db/do is orthogonal to both b and ¢t and,

therefore, in the direction of n. Let us write it as

* PP
Usually, the three vectors are written in the order of (tyn,b). For our
application, the order (n,b,t) is preferred.

5 | O



OSCULATING
PLANE

Figure A-7. Moving trihedron of a curve.
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-g-g— - -t (4.8)

where the torsion T can be either positive or negative. For a planar curve,

b (o) points to a constant direction and, consequently, T(v) = 0. Thus, =

measures the twisting of a curve from a planar one. Similar to the curva-

ture formula in (4.4), we will derive a more explicit formula for T.

Starting with (4.8), we have

~ db - N
(o) -no-gg=-noc g (t x n)
. da 14% |4 4 14%
=-n'(|;)< =————-—-“—x-—--—-—._...
d k do ‘do do x 2
do
=Lﬁ.d2;xd};
2 do dc2 do
or, when (4.4) is used,
> [ 3\ [.2 2>\t
T(U)-_-.g.?.. dr d7r)|dr dr (4.9)
dao 2 3 2 2 ) ‘

Next let us consider the representation of dn/do in terms of the moving

trihedral. 1Its general form is

~ A

D+ @@ . 5D 4 (4.
el n)n + (dc b)b + (dc t)t . (4.10)

Differentiation of n'* n =1 gives

'&E'“’O' ‘ (4.11)

20




Differentiation of n - b = 0 gives

N |
i b=o-n- "o (-tn) = ¢ . (4.12)

Differentiation of n + ¢t = 0 gives

a

dﬁ -~ - dt -~ -
W t=moc g =-n o (kn) = - (4.13)

Substituting (4.11), (4.12), and (4.13) into (4.10) we have

-~

d - -
33 = 1b - kt . (4.14)

Combining (4.2), (4.8), and (4.14), we have a set of equations describing the

motion of the moving ttihedron‘along a unit~speed curve:

~

d a -

Eg = tb - kt (4.15a)
db ~
L. , (4.15b)
%g- = xa . (4.15¢)

Equation (4.15) is known as Frenet formula or Serret-Frenet formula, which was
independently derived by F. Frenet and J. A. Serret around 1850.

In summary, at each point ¢ on a unit-speed curve T = ;(U), there
are five ;mpoftantvfieldsiy (1) the moving trihedron (ﬁ,ﬁ,g), ‘which hay be
computed from (4.2), (4.5), and (4.1); and, (ii) the curvature «k and-the
torsion T, which may be computed either from (4.2) and (4.8), or more
directly from (4.4) and (4.9). The variations of (n,b,t) along the curve are

described by the Frenet formula in (4.15).
21



Let us give an example to illustrate the computation of the Frenet
apparatus. In terms of the arc length o, a unit-speed circular helix has

the representation

> g g g
r(o) = (a cos o a sin o b ?) (4.16)

2 2
where c = Va“ + b and a > 0. The unit tangent is

=S
to) =9 (3 g a g b
t(o) do = - gsin e ¢ %08 T D) (4.17)
and
dt _ a o a . g
i - (- 7 €08 o, = =5 sin -, 0)
c c
Recalling (4.15c) we have
: .
<o) = '%5" - 2 (4.18)
c
ﬁ(c) = (-cos %, ~-sin %, o) . (4.19)

-~

Note that n always points straight to the axis of the cylinder on which the
helix lies. As sketched in Figure A-8, the osculating plane determined by ¢

and n is formed by wiggled lines. The binormal is

- - A b . ¢ b g a
b(g) = t xn = CE sin 2, - < cos =, c) . (4.20)

22



Figure A-8.

y

Moving trihedron on a right-handed circular helix.
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and its derivative is

db | b b
rrie (-c-z- cos %, ;-2- sin %, 0) . ‘ (4.21)

From (4.15b), it follows immediately that
T(U) = lib_] -h—

which is positive for a right-handed helix (b > 0), and negative for a left-

handed helix (b < 0).

24




A.5. FRENET FORMULA FOR ARBITRARY-SPEED CURVES

The discussion in the previous section applies to unit-speed curves
T = ;(o) with o being the arc length. For an arbitrary-speed curve

T = ?(t), its speed

I N T
&I LT (@2 &

v= dt

(5.1)

is not necessarily unit. In order to use the formulas in Section A.4 and also

those to be presented in Section A.6, we may exercise the arc length reparametriza-

tion by letting

t = t(o)

and obtain a new representation

T = T(t = t(0)) = R(o)

For example, in the circular helix discussed in (2.4) and (4.16), we have

;(t) = (a cos t,a sin t,bt)

> o] ol ol

R(o) = (a cos o @ sin P b —c-) .

) . ., > ->
When there is no confusion, we will write R(g) as r(o)

> g . g g
. = n—=, b —
r(g) = (a:cos o> asin 7, c)

25
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When this convention is used, we should remember that ;(o) is obtained from ;(t)
via the transform in (5.2), but not by a simple substitutiom ¢t = ¢.. After the arc
length reparametrization, those formulas in Sections A.4 and A.6 can be applied to

T =%0).

Unfortunately, an explicit expression for (5.2) cannot always be found.
Consider for example the curve

£(t) = (1 + cost,sin t,2 sin(t/2)), lt] < 22 (5.4)

whose arc length, measured from ¢t = 0, is

t
a(t) = é 1+ cos?(c/2) ar . (5.5)
Thus, an explicit expreésion in the form of (5.2) is not available. For these
cases, we will give an alternative set of formulas for computing the Frenet
apparatus.
Note the basic relations of differentiation for ;(t) and ;(o) (or

-> *
more precisely R(o)) :

> - ->
dr(t) _ do dr(o) _  dr(o) _ .0
dt  ~dt doV 4g =Vt (5.6)

dz?(t)= d

]

|
o
+
<

l

(vt) (5.7)
dtz dt dt dt
dv » do dE
it "tV EHE ©
dv -~ 2~
= E? t + kv n

In mechanics,d2¥/dt2 in (5.7) is the acceleration of a moving point. It has
two orthogonal components: one along the tangential directiom describing the
change of speed and the other along normal direction describing the change of
direction of motion. TFor a unit-speed curve, v.= 1 and the  tangential
acceleration is identically zero as given in (4.2). Also note that £ is the
tangent vector and is not a vector in the direction of increasing t.

26




Then straightforward manipulations lead to the following formulas for an

arbitrary-speed curve T= ¥(t):

a(t) = b x ¢t (5.8)
‘;v % ';n
B(e) = == (5.9)
Irv x rn‘
t(r) = = (5.10)
r'|

> Zn
k(t) = JE;.ﬁ_E_L (5.11)

#1°
Grxn . 3
t(e) = —— -)>,, 7 3-12)
EXERES
where
> 2> 3>
.45 2 _dTE®) 2y EC@) (5.13)
dt ’ dtz ? dt3 )

The symbol [.l indicates the magnitude of a vector.

Let us consider the computation of the Frenet apparatus for an arbitrary-
speed representation of a circular helix. This representation is obtained
from (2.4) by letting t - t2,

;(t) = (a cos tz,a sin t2,bt2)
Its first thfee derivatives are

T'(t) = (-2at sin t2,2 at. cos t2,2bt)

;"(t) = (-2a(sin t2 + 2t2 cos tz),Za(cost2 - 2t2 sin tz),Zb)

27 .



R .
r'''(t) = (4at(-3 cos tz +~2t2 sin tz),éat(-3t sin t2 - 2t2 cos tz),O)
Substitution of them into (5.8) through (5.12) leads to

n(t) = (-cos tz,-sin tz,O)

2 a

5 Sk 2 _b a,
b(t). (c sin t°, c cos t°, c)

£ = -—a- 2 -é- 2 .‘.’.
t(t) ( < sin. t7, c o8 t, c)

c(t) = &5, 1(e) = B
c c

Because ¢ = ctz, the above results are exactly the same as those given in
(4.17) through (4.21). Thus, the Frenet apparatus depends on the shape of <::)
the curve in space, not on its speed. In other words, reparametrization does

not affect the Frenet apparatus.

28' o : O




A.6. ‘APPROXIMATION OF UNIT-SPEED CURVES

A fundamental theorem of a unit-speed curve is stated below: Except for ,
its position in space,a unit-speed curve is uniéuely determined by its
curvature k(o) and torsion ;r(c). In other words, for two curves =t = ?1(0)
and T = ;z(c) with «,(0) = k,(0) and T,(0) = + T,(0) for all o, these
two curves are the same except possibly for their positions in space. The
proof is simple. Concentrate on an arbitrary point o = dy om a unit—éﬁeed
curve T = ;(o). In its neighborhood, the curve can be represented by the

Taylor series:

2 3
> - -9 g © - 0" 4| -0 3
r(g) =r(o,) + 7 + + + . + ... .(6.1)
0 1! do 2! 2| 3! 3‘
°0 do °0 do ab

Note that, in terms of a moving: trihedron, all the derivatives. of ;(o) depend

(j:) solely on «(6) and T1(€):
G-t (6.2)

—5 = Kkn (6.3)

A+xkth -« t (6.4)

-> >
Thus, the Taylor series for the curve r = r(g), namely,

2 3
(0 -0g)” , (@=-09" .

“ " 2.
?(0) = ¥(00) + (o - oo)t + — 5 «n + ————YT———-QE;n + kT b = «k7E) + ... (6.5)

is uniquely determined, except for its position in space, by k(o) and 1(g).

fe ;



In many applications, a few terms in ‘the Taylor series in (6.5) may be

used to represent. curve. ; = ;(o) in-a small neighborhood of ¢ =

=g If

0
only the first two terms of (6.5) are used,we have a linear approximation
(Figure A-9a). If three terms are used, we have a parabolic approximation
(Figure A-9b), which lies in the osculating plane, and is determined b} the
curvature k at o = Oy If four terms"are used, we have

2 ) 3
- N O C A/ N A 9y) R
r(o)=s r(oo) + (¢ - oo)t + 3 Kn + kTt b

(6.6)

which is known as the Frenet approximation (Figure A-9c). The torsion, which
appeared in the last term of (6.6), controls the deviation from the osculating
plane. The geometrical significance of the sign of Tt can now be stated:

If 1 > 0, the curve with increasing o cuts through the-osculating plane in

the direction of the binormal B, and if 1 < 0, in. the opposite direction.

If t =0, no conclusion can be drawn. In that case, we have to study the

higher-order terms in (6.5).

30




A
b

=

(ér-CQ))

-->

(Q ) linear approximation

((: ). Frenet approximation

Figure A-9. Approximations of a curve near o = 99 assuming 1 > O.
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A.7. REPRESENTATION OF SURFACES

A curve may be considered as a locus. of points traced out by the tip of a

vector ;(t) when the parameter t takes values in an open interval tl <t < t2
(Figure A-1). Analogously, a surface is a locus of the tip of a vector ;(u,v)

depending now on two parameters,when (u,v) vary in a two-dimensional domain

(ul <u < Uy, vy < V< vz), as graphically sketched in Figure A-10. Corresponding

to (2.2) for a curve we have a representation of a surface

T(u,v) = (x(u,v),y(u,v),z(u,v)); (7.1)

“1<“<u2 and u1<v<v2.

We call (u,v) the curvilinear coordinates of a point T on the surface. By

holding v constant (v = vo),;(u,vo) defines a curve on the surface, called
a u-parameter curve; by holding u constant (u = uo), ;(uo,v) defines a

O
v-parameter curve (Figure A-11). At {“O’VO) the tangent (velocity) vectors

along u~- and v-parameter curves are denoted by ;n(uo,vo) and ?v(uo,vo),

respectively, where

> = (9X 3y 3z
ru(UO’VO) au’ Ju? Bu) , (7.2)
u = uy, V=Y

> . @x 3y 2z
rv(uO’VO.) (av? av"Bv)u -u - (7.3)

0>V = Vo

> . 3 . .
Thus, the subscript u of T, » for example,indicates the partial derivative

-
of r with respect to u.

Suppose that the inverse functions: u = u(x,y), v = v(x,y) can be found.

Then we may use (x,y) instead of '(u,v) as the parameters of a surface. Thus,

an alternative form for a surface is
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Figure A-10.

» U

\'}
[}
v, |- AU
U, U,
(a)

(b)

Surface defined by the tip of a vector in motion.
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Figure A-1l. Velocity vectors. for u- and v-parameter curves..
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Ta= z(x,y) = (x,y,£(x,y)) (7.4)

or simply

-

z= f(g,y), or g(x,y,z) =0 . (7.5)

The two forms in (7.4) and (7.5) are often used in elementary calculus.

A familiar surface is a sphere which may be represented by
-
r(u,v) = a(sin u cos v,sin u sin v,cos u) .

Clearly, the parameters (u,v) can be identified with (98,¢) of the usual

spherical coordinates. The  tangent vectors are
>
ru(u,v) = a( cos u cos v,cos u sin v, -sin u)
+ 3 . .
rv(u,v) = a(-sin u sin v, sin u cos v, 0)

with their cross product

3:
c

> 2 . . ’ . .
x T = a'sin u(sin u cos v,sin u sin v,cos u) (7.6)

= (a sin u) ;(u,v)

which is normal to the surface everywhere. If we express (u,v) in terms of

(x,y), then an alternative representation of the sphere is

T o= (x,y,‘/gz - (x2 + yz))
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or

xz +vy2 + zz = az

which are in the forms of (7.4) and (7.5). 1Its tangent vectors are

with their cross product

T.xT = % Y 1] (7.7)
x y ] 9 .
v/az - (x2 + yz) ,42 - (x2 + yz)

= 1 ;(X,Y)

/;2 - (x2 + yz)

which is again normal to the surface.

An elementary problem in calculus is to determine the area of a surface.
Referring to Figure A-10,we note that a differential rectangle (Au x Av) in
(a) is mapped into a differential parallelogram with sides Au ;u and AV';V
in (b). The area of this differential parallelogram is

>

IA“‘;t X Av ;vl = lru x ;leuAv .

Then the area over a region D is given by

> >
Area = f£ |z, x t ldudv . (7.8)
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For the example of the sphere discussed above,we have from (7.6)

Area = [f a? sin u du dv (7.9)
D

or, from (7.7),

Area = [f - 32 dx dy . (7.10)
.D /a - (x +y2)
Both formulas of course lead to the same results.
Before cohcluding this section, we list below several frequently

encountered surfaces.

(i) Elliptical cone (Figure A-12).

T = (z tap 8, cos v, z tan 92 sin v, z) (7.11a)

1

X 2 y 2 2
(tan~91> + (tan 62) =z (7.11b)

where 61(92) is. the half-cone angle in the plane y = 0 (x = 0).

(ii) Elliptical Paraboloid (Figure A-13).

T = (au cos v, bu sin v, uz) ‘ ‘ (7.12a)

\2 2
z = (—a-) + (%) ) (7.12b)

(iii) Hyperbolic paraboloid (Figﬁre A-14).

T = (au coshv, bu.sinh v, u2) (7.13a)
2 2
y = (5) . (1) | (7.13b)
a b )
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P

Figure A-12. Elliptical conme.

38




- N

Figure A-13.

—— s e e | o

Y

Elliptical paraboloid.

Figure A-14,

Hyperbolic paraboloid.
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(iv) -Ellipsoid (Figure. A-15).

T = (a cos u cos v, b cos u sin v, ¢ sin u) (7.14a)
x*2 y 2 {z 2
(;) + (b) + \-c-) -1 . (7.14b)

If a=b and a < ¢, the ellipsoid has a rotational symmetry about its major
axis, and it is said to be prolate. If a = b and a > ¢, the ellipsoid has
a rotational symhetry about its minor axis, and it is. said: to be oblate.

(v) Hyperboloid of one sheet (Figure A-16).

T= (a cosh u cos v, b cosh u sin v, ¢ sinh u) (7.15a)
2 2 2
EAR AR £ '
(a} + (b) (c) 1 . (7.15b) )

(vi) Hyperboloid of two sheets (Figure A-17).

T= (a sinh u cos v, b sinh u sin v, c cosh u) (7.16a)
I 2 x 2 3 2 . »
(E) - (;) - \b) =1 . (7.16b)

(vii) Surface of revolution (Figure A-18). Consider a curve z = f(x) lying

in the plane y = 0. If this curve is rotated about the z-axis, it generates

a surface of revolution, which may: be represented by
x=pcos ¢, y=psing, z= f(p) . (7.17)

The curves p = constant are the parallels, and the curves ¢ = constant are. the
meridians of the surface. A few examples are given below. For the special
case 61 = 62, (7.17) describes a cone of revolution (circular cone). If

a =b in (7.12) through (7.16), all those surfaces become rotationally
symmetrical. In fact, they may be generated by revoiving‘conics (Section A.2)

about an axis.
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Figure A-15.

Ellipsoid.

Figure A-17.

Figure A-16.

Hyperboloid of two sheets.
41

Hyperboloid of one sheet.



Figure A-18..

Surface of revolution.
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A. 8, iTANGENT PLANE, NORMAL AND CURVATURE

When the parameters (u,v) vary independently over a two-dimensional
domain, the tip of the vector ?(u,v) generates a surface (Figure A-10).

However, if (u,v) are not independent but vary according to a parameter ¢t:
u = u(t), v=v(t), cl <t < €y - (8.1)

-
Then the tip of the vector r(u(t),v(t)) or simply ;(t) traces a curve on the

surface. The tangent vector of the curve is given by

dr(t) > du ., - dv
r u
dt _= Tu dt rv dt (8.2)

where the vectors ;u and ;; were defined in (7.2) and (7.3). At any point
P on the surface, the independent vectors ;u and ;v define a plane,called

the tangent plane at P to the surface. The relation in (8.2) states that the

tangents to all curves through P of the surface lie in the tangent plane

(Figure A-19). The unit normal at P of the surface is defined by

> ->
R T, XTI,
No=p— ——, where u =+1 (8.3)
|t x|
u v

(Note that we use capital ﬁA for the normal of a surface,. and n for that of

a curve.) The choice of the value of y = + 1 in (8.3) is arbitrary and can be
made to suit the convenience of a particular problem. In application to EM
diffraction problems, we always define the normal of a reflecting surface or

a wavefront pointing toward the source.
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Figure A-19. Tangent plane of a surface.
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We will now study the bending of a surface by introducing a quantity of

*
measurement called normal curvature or simply curvature k . At a point P

on a surface I, let us consider a particular direction described by a unit

tangent vector t. The plane determined by t and the normal N cuts

from I a planar curve C called the normai section of £ in the direction of

t (Figure A-20). If we give a unit-speed reparametrization to planar curve C,

denoted by T = ;(o), then, according to (4.2),
— = Kcac . (8.4)

The subscripts c¢ of Ko and ﬁc signify their association with planar curve

C. By definitionm, K. is nonnegative. Since C 1lies in the plane spanned

~ ~

by N and  t, it is clear that N = + ﬁc. Now, we will define the curvature

k of surface I at point P in the direction t to be
k(t) = (nc . N)Kc . (8.5)

Thus,. || =K The sign of «(t) has the following significance: (i) If
k(t) > 0, then N =+ ﬁc. The normal section C bends toward N at P
(Figure A-2la); (ii) If k(t) < 0, then N = - ﬁc. The normal section C
bends away from N at P (Figure A-21b).

In application to EM diffraction problems, two types of surfaces are
frequently encountered: a wavefront and a reflecting surface of a scatterer.
In either case, we choose N pointing ﬁoward the electromagnetic source.

Because of this choice, the sign of « has the following meaning:

t3 .
We use the same symbol « for the curvature of a surface and that of a curve.
There is little chance  of confusion.
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(a)

Figure A-20. A normal section of surface I in the direction of t.

‘Lsource ASOUTCG
Ve :
N = fi N=-h

C

x > 0 (convergent wavefront) (b) « < 0 (divergent wavefront)

Figure A-21. Sign convention of the curvature of a normal section.
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(1) Let the surface be a wavefront. Since N points toward the source
which excités the wave, N is in the opposite direction of the wave propagation.
If k(t) > 0, the normal section C of the surface in the direction of t is
divergent (Figure A-2la), whereas if k(t) < 0, the normal section 1is
convergent (Figure A-21b).

(ii) Let the surface be a reflecting surface of a scatterer, and N point
toward the source which illuminates the scatterer. If K(E) > 0, the normal
section is concave (Figure A-2la), whereas if x(£) < 0, the normal section
is convex (Figure A-21b).

From (8.4) and (8.5), it is clear that curvature k(t) has a dimension
of (lgngth)—l. We define its reciprocal as the radius of curvature R(t) of

surface I at point P 1in the direction of ¢t:
R(E) = —i . (8.6)
k() ;

(In EM diffraction problems, we often use the radius of curvature for a

surface, and-curvature for a curve, in order to minimize confusion between «

and- k .) It is important to remember that at a given point P on the surface,
c

«(t) and R(t) are functions of tangent vector t. Their variation with

‘respect to t will be discussed in detail in the next section.

We will now develop a formula for computing k(t) for a given direction ¢t.

Differentiation of t » N =0 gives

. 48 g s 4T AN _-df - N
do do . do_ do Frar

Making use of this relation and (8.4) in (8.5), we have

2 - > A

~ A ~ -dr - dN
e@® =S5 f-L.yae A (8.7)

do dr + dr
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The numerator and denominator of the right~hand side of (8.7) represent two
important quantities in the study of a surface. They are explained below:

The first fundamental form

I=df - df = ()2 = (@02 + (@2 + (dz)2 (8.8)

represents the square of the differential arc length along a curve on a surface.

In terms of the parameters (u,v) we have
> > >
dr = rudu + rvdv . (8.9)

Then an alternative form for I is

I=dr . df = E du® + 2F dudv + G dv? (8.10)
2 2
where du” means (du)”, and
- - -> > > >
E = ru . ru 5., F = tu . rV , G = rv . rv . (8.11)

Despite the fact that E, F, and G depend on (u,v), the first fundamental
form is invariant with respect to change of parameters. This is obvious from
the geometrical significance of arc length.

The second fundamental form-

I=-dr-dv, (8.12)

which will be shown later, is twice the deviation of the surface at (u + du,

v. + dv) from the tangent plane at (u,v) (Figure A-22). For computational

purposes we note
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— Yo I —

tangent plane

Figure A-22.

Second fundamental form II is twice the deviation of

the surface from its tangent plane.
!
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~

dN = Nu du + Nv dv . (8.13)

a
(Note that ﬁ'is a unit vector but N“,is‘not). Then an alternative form of I is

II = -d * df = e du® + 2f dudv + g dv> (8.14)
where
-> -> A -> A -> A .
e=-r - Nu' 2f = -(ru . Nv + T, " Nu)’ g=-r ° Nv - (8.15)
Since ;u R =0 and ¥v * N = o, more convenient. formulas. for e, f, and
g are
-> - >
. « (r xr)
-3 A
e=r cN=y St - ¥ (8.16a)
VEG - F
> - -
R *(r xr)
faT v Nay W . (8.16b)
YEG - Fz
-> > -
r - {(r xrt)
= > . N = vv u v
g=r_ N =y (8.16c)

vEG - Fz

where we used the definition of N in-(8.3). The-choice of u(+1 or -1)
should agree with that utilized in defining N. Unlike the first fundamental
form I, which is always positive, the second fundamental form II may be
either positive or negative. It may be shown that the absolute value of II
is also invariant with change of parameters (u,v). Its sign is preserved if
the parameter transformation has a positive-Jacobian, otherwise, its sign is
reversed.

Return to the curvature in the direction t of a surface given in (8.7).
Now, it can be written as

2 2
() = %E - & du2 + 2f dudv + g dv (8.17)

E du” + 2F dudv + G dv2
50




where (E,F,G) are defined in (8.11) and (e,f,g) in (8.16). The ratio
dv/du determines the direction of t. Alternatively we may write the

tangent vector t as

->
1%y +tyr, . (8.18)

Then the formula in (8.17) for the curvature becomes

X eti +2fe e, + gtg |
Etl + ZFtltz + Gt2

To illustrate the computation procedure of curvature, let us consider a

cylinder with radius a as an example (Figure A-23)
-
r(u,v) = (a cos u,a sin u,v) .

In terms of the familiar cylindrical coordinates, it is obvious that u = ¢

and v = z. Straightforward differentiation gives
> .
T, = (~a sin u,a cos u,0)
.

t, = (0,0,1)

-
= (-a cos u,-a sin u,0
ruu ( ’ ’ )
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Curvature of a cylinder.

Figure A-23.
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Substitution of the above results in (8.11) and (8.16) gives;

E= az, F =0, G=1

e = -a, £f=20, g=0 .
Then the normal is found from (8.3), taking u = + 1,

N = (cos u,sin u,0)

which points away from the axis of the cylinder (a convex cyiinder). The two

fundamental forms are

1= azdu2 + dv2

II = -adu

and the curvature is given by (8.17), or

~ -1 1
k(t) P (E.QXQZ .
a du

Introducing the angle o such that (Figure A-23)

we have

K(E) = -‘i cosza,,
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Along the direction q.= 9,

minus sign signifies the fact that the surface bends away

normal N.
increases.,

bending of

i.e., the direction of

b W *“‘@71; where the

ifrom the outward

The magnitude of the curvature decreases continuously as o

At a = /2 (z direction), k = 0 which is the direction of minimum

the surface.
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(::> A.9.  PRINCIPAL CURVATURE

At a point P on a surface, curvature «k(t) of the surface as given in
(8.17) is a function of direction £ (or dv/du). A #nowledge of «k(t) for
all t in the tangent plane determines the bending of the surface in the
neighborhood of P. In this section, we will study thL following important
fact about «k(t): As t revolves in the tangent plane, a pair of orthogonal

directions exists for which K(E) assumes maximum and%minimum values. These

two directions are called principal directions, represented by two unit vectors

él and éz; the two extreme values of « are calledigg;ncipal curvatures

denoted by K1 and Koo The curvature k(t) along an arbitrary direction

can be actually expressed in terms of K1 and Koe Thus, there are only two
degrees of freedom in «(t). From the simple example of the cylinder discussed

at the end of the last section (Figure A-23), it is obvyious that (él,éz) are

([) in the directions of (3, z), and Ky = -a-l, Ko = ¢.

Let us concentrate on the expression of «k(t) given in (8.19). To deter-

mine the extreme values of «(t) when t1 and t2 véry,,we require
|

K 9K
— O, —= (9'1)
atl Btz

*
which gives two homogeneous equations
(e - KE)tl + (f - KF)t2 =0 (9.2)

(f —-KF)tl + (g - KG)F2 =0, (9.3)

*
The formula of Rodrigues for lines of curvature reads

K(; du + T dv) + (ﬁ du + N dv) = 0
u v u v

ﬂ::) which is. the vector version of (9.2) and (9.3). 1t is b necessary and sufficient
condition for dv/du to be the principal g%rection.




For nontrivial solutions, the determinant of the coefficient matrix must be zero

e - kE £ - «F
det = ( . (9.4)

f - xF g - KG

Expanding the determinant, we have a quadratic equation for the extreme values

of «k:

2
K - 2KM5 + ke 0 | (9.5)
where the coefficients are
Ky * %) Bg - 26F 4 ec
Mean curvature: Ky = = 282 2] (9.6a)
2(EG - F )
Gaussian curvature: KG = Kle = ES_:_SE .| (9.6b)

EG - F
It can be shown that the quadratic equation in (9.5) has ﬁwo real roots, which

are the principal curvatures: K1 and «,:

K =k, * /sz— Ko o (9.6c)

Substituting 3 and K, into (9.2) or (9.3), we obtain golutions for
(tl,tz), which determine the principal directions accordind to (8.18). More

explicitly, the two (unit) principal directions (él,éz) are given by

~ 1 -> >

e, Yl.[lru + arv] ‘ (9.7a)
“=—1—i*+l"] 1 (9.7b)
e2 Y, Bru r, | .
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where

e - k_E f -« F

1 1
o = = = = (9.7C)
KlF £ KlG g |
;- f - K2F . g - K2G .70
KzE - e KZF - f *
v, = (E + 20F + a’g)1/2 (9.7e)
Yy = (82E + 2BF + G)l/2 .o . (9.7£)

If Ky # Kgs él and éz are orthogonal, which follows frbom the fact that

~ -

1
e * e A [BE + (a + B) F + aG]

L]
o

If Ky = Ko» the curvature at P 1is constant in all directions, and P

is called umbilic.

Except for umbilics, at every point on a surface there are two mutually

orthogonal principal directions él and éz. Curves bn the surface that at

all points are tangent to a principal direction are called lines of curvature.

Many results can be greatly simplified if the lines of%curvature are used for
|

the u~ and v-parameter curves. ‘

Referring to Figure A-24, when u- and v-parameter curves are themselves

lines of curvature, we have-

- ->
T, R T, .
- = el’ > = e2 . : (9.8)
Iz, Iz, | .
u v

is

F =0, £f=0. (9.9)
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Line of Curvature

E V=V¢
-4 Line of Curvature

Figure A-24. Lines of curvature are used as u- and v-parameter curves.
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For an arbitrary tangent vector. t at P, the représen;ation in (8.18) now

becomes %

t = cos a éi + sin a &2 . | (9.10)

where a 1is the angle of t measured from él in theitangent plane

(Figure A-24). Using (9.9) and (9.10).in (8.19), we ha%e

k(t) = %'cosza +'§ sinza . j (9.11)

By simple differentiation of (9.11) with respect to a, we determine the two

extreme values of «

e .
KL =% > ifa=0 : (9.12a)
kK, =% | if a = 7/2 | (9.12b)
2 G ’

which by-definition -are the principal. curvatures. Subsﬁituting (9.12) into
|

(9711) gives
. 2 . 2 |
k(t) = Ky cos o+ K, sin"a . (9.13)

Thus, the curvature along an-arbitrary direction t defined in (9.10) is

simply related to the two principal.curvatures.

Ellipsoid. We will give an example for~the~calcul#tion of curvatures.

Consider an ellipsoid (Figure A-15)

x2
-—2-+
a

2
+-z-§-: 1 (9.143)

ool o
[e]

which may be represented by the following parametric equation:

r(u,v) = (a sin u cos v,b sin u sin v,c|/ cos u) . (9.14b)
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‘Straightforward differentiation gives
-
r, = (a cos u cos v,b cos u sin v,-c sin u)
>
r, = (-a sin u sin v,b sin u cos v,0)
>
r = (-a sin u cos v,-b sin u sin v,~C cos u)

uu

->
L (-a cos u sin v,b cos u cos v,0)

-> .
- = (-a sin u cos v,-b sin u sin v,0) .

Substituting the above into (8.11) and (8.16) leads to
E = coszu(a2 coszv + b2 sinzv) + c2 sinzu
2 2, .
F=(b" - a")sin u cos u sin v cos v

G = sinzu(a2 sinzv + b2 coszv)

-abc

e R NN R I S 73 2 .1/

[¢” sin u(a2 sin"v + b” cos"v) + a"b” cos u]”

f=0

. 2
g=esin"u .
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(9.15b)

(9.16a)

(9.16b)

(9.16¢)

(9.16d)

(9.16e).

(9.16f)




The surface normal:-is found by (8.3), choosing p = +1,

/sin u cos v sin u sin v cos u\
- \ a ’ b * ¢

N = /sin u cos v\2 + {sinv u sin v\2 +-{cos u\2 1/
\ @ \ P S

Alternatively it may be written in terms of (x,y,z)

[x_ ¥_ EL)
1 tH] .
J= \a2 b2 c2

(oA

From (9.6a) the mean curvature is found to be

2

N

- .abc[a2 sinzu coszv + b2 sinzu sinzv + c2 coszu - (a” +b

2

2
+ el 9.17)

2

2[c2 sinzu(a2 sin"v + b2 coszv) + a2b2 coszu]3/

which becomes, in terms of (x,y,2),

- (x2+y2+zz) - (a2+b2+c2)
2 2 2,3/2
2(abc)2<5-z L4 EZ)

a b c

“M

The Gaussian curvature is determined from (9.6b)with the result

(.abc)2 ‘

2

K =
G [cz sir\?'u(a2 sinzv + b2 cos.z,v)'+~ a2b2 coszuﬁ

1
2 2 2 22 2
(abc) (3'(— + iz + "7;)

4
a Cc

(9.18)

The principal curvatures can be found from the quadratic equation in (9.5), or

K _«l_-VKz-K .

K12%2 = ®y M~ 5
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At points where K; = KG, we have identical curvature in ail directions.

on the tahgent plane. They are umbilies. for an ellipsoidiwith unequal axes,
there are four umbilics. Assuming a > b > ¢, the coordin;tes of the umbilics
are .

[ 3 7 3

x=+a/B=D ya0, zasc/b < (9.20)
a = c a =c

For the special case a =b = ¢, the ellipsoid reduces to a sphere of radius

a. Then Ky =Ky = (-1/a) and all points on a sphere are umbilics.
‘As a numerical example, let us set

a=2,b=V2, c=1 . : (9.21)
The four umbilics are located at

2
xa-_t-_z"%,y=0,;z=i/-_3-

one of which is approximately indicated in Figure A-25. At a point P

where u=v =7n/4 and has coordinates

1 1
x=1l, y=—, 2 = — ‘ (9.22)
2 V2 ‘
we have the following numerical values.
7 - (,—1— - —1-) | (9.23a)
R |
) T = (—1, L o) | (9.23b)
v /3
E=2,F=-%,6=3 ©(9.24a)
e="%  £=0,g=-—2 (9.24b)
/11 /11




Figure A-25. A sketch of the ellipsoid with a = 2, b = ¥2, ¢ = 1. U is an
umbilic. The lines are lines of curvature.
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-20 K = 32
M 11/i1 G 121

= _ (5 1 /3)

K =

L2 AT

The two principal directions calculated from (9.7) are

:, - 2+, -3, - L)

Y9 + 4/3 /2!
. ' - \
:, - 1 ~3-73, 3 1+73)

/16 + 673 "2 7

which are obtained with the help of intermediate values

a=-0+/) , s=ta+/3
=R+ Ly, =t e+ 603

(9.25a)

(9.25b)

(9.26a)

(9.26b)

(9.27a)

(9.27b)

Caustic. As a last subject on principal curvatures, let us establish

a fact that finds frequent use in EM diffraction problems. Consider a point P

specified by parameters (u,v) on a surface W (in diffraction problems, W is

recognized as a wavefront). Referring to an origin 0, we may also specify

P by a position vector ;(u,v)(Figure A-26). The surface normal at P is

given by the equation

R(u,v,0) = £(u,v) - oN(u,v)

(9.28)

Here R is the position vector of a typical point on the surface normal. N is

the unit surface normal vector (pointing toward the source of the wavefront).

¢ is the arc length measured positively in the direction of (-ﬁ), and ¢ = 0

at P. A question of interest.is, under what condition does the normal at an

adjacent point P' specified by parameters (u + du,v + dv)'on§the surface
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Figure A-26.

Al—-

Intersection of normals drawn from adjacen
curvature.. )
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t po#nts on a line of




intersect that 'at P?

The answer is that, to the first-order approximation,

- normals drawn from adjacent points on - a line of curvature intersect.. This

will be shown-below. The distance between the normal at P and that at P'

is the magnitude of the vector

ﬁ(u + du,v + dv,0 + do) ~ ﬁ(u,v,o)

= (ﬁu du + Ev dv + ic do) + higher-order terms

-

If the two normals intersect to the first order, we require
B=R% du+R dv+% do (9.29)
u v o
to be zero. The substitution of (9.28) into (9.29) leads to

>

> -> A A ~ :
D= (ru du + T, dv) -~ Ndo - c(Nu du + Nv dv) . (9.30)

If P and P" are both located on the same line of curvature, we may use the

formula of Rodrigues [see fooénote in association with (9.2) and (9.3)]:
T du+7 N du+N_ dv) =0 9.31
K(ru u + r, dv) + (Nu u + Nv v) = . (9.31)

Then (9.30) becomes

D = -(1 + KG)(;Q du + ;Q dv) - Ndo

> .
Clearly D 1is zero-if

g = --% (a constant)

and hence do = 0. 1In summary, to the first order, the.norm¢l at P and the

normal at an adjacent point P' on the same line of curvature intersect at

B=7fw+in . | (9.32)
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Recall the sign conven;ion of k discussed in Section $—8: If the normal
section of W along PP' bends toward (away from) N, « %is positive (negative).
Therefore, regardless of the choice of ﬁ, the 1ntersection point R in (9.32) .
always lies on the concave side of the normal section o% W.

In optics, point R in (9.32) is called a focus. S#nce, in general, there
ére two distinct principal curvatures « =-K1 and « = Ky there are two
foci on each normal (ray). As (u,v) varies on the gi@en surface (wavefront),
(9.32) describes two surfaces (one for k = K1 and one%for K = KZ), which
are known as caustics (or foecal surfaces). The conditi?n that D defined in
(9.29) is zero implies that iu’ iv’ ﬁé are coplanar. jThus the normal
ﬁ(u,v) is tangent to caustics at their foci. Two caus%ics F1 and F2 of a
surface W are sketéhed in Figure A-27. (él,éz) are pri+cipa1 directions,
and ﬁ, the normal. In this sketch, K1 is negative (Lhe normal section

|

bends away from ﬁ),_whereas Ky is positive.
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D>
Rt

Figure A-27.

Two caustics F. and F, of a surface W. (él,ﬁz) are principal
directions. In this Sketch, 31 is negative and Ko is positive.
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A.10. CURVATURE MATRIX

At a point P on a curve, the knowledge of cﬁrvatJre and torsion at P
determines the local properties to the second degree of the curve in the
neighborhood of P, as described in (6.6). At a3 point P on a surface, a
similar role is played by a linear operator S, called bhape operator, defined

on the tangent plane at P. In our application to EM diffraction problems,

it is convenient to represent § by a 2 x 2 matrix 5: We call 6' the

curvature matrix. The explicit form of 5, of course,de%ends on the base
vectors on: the tangent plane. If the base vectors~coinckde with the
principal directors of the surface, Q is a diagonal maFrix. Otherwise,
Q is not a diagonal matrix but can be related to the di#gonalized one by a
standard theory of linear transformation.

Instead of starting with the shape operator S, w% will introduce 3
directly as below. On a surface r, there is a normal $ at each point. As
N moves away from a point in a arbitrary direction, itsivariation follows
the bending of I in that direction. Take the cylindriell surface in Figure iﬁ
A-23 as an example, along the direction of ?& (z-direjtion), § isa N
constant, indicating the fact that I does not bend,in,tﬂis:direction. Along-
the direction of ;; (¢ - direction),. the differential eriation of N is
also in the direction of ;u and has 'a constant magnitude. This reflects the
roundness. of I in the direction of ;;.‘ Following this idea, we may intro-

duce a quantity measuring the variation of N at each point on I. Since

NeR= 1, differentiations with respect to u and v give
N .N=0 , § .8=0 | (10.1)
which means that (ﬁu, ﬁv) at a point- P lie in the tangent plane of I at
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P. Hence we may express (ﬁu, ﬁv) in terms oftangent vectors. (;;,;;;) as

follows:

~ -> -> ’

M= Tty | (10.2a)
A -> ->

-Nv = Q21 r, + sz r, - ‘ (10.2b)

Q= - (10.3)

’ (20.4)

. B >
. Here T is the transpose operator. [ru rv] is a 3 x 2 matrix and is

|
T

> explicitly given by:

Ju. v
[ Z£1=1| . | (10.5)
u v

u: v

3z 3z

_au 3v_

Similarly, [ﬁu ﬁv] is given by
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r—ﬁ ~ ~

N . x aN . x
" . u v
(N N ]=} | . . (10.6)
v v N .y N .y

u o~

.3 aR. 3|

| du v

We regard (10.4) as the definitiom of 3 .
For a given surface, it is desirable to developi a formula for calculating

6 directly. To this end, let us introduce the firsL‘fundamental'matrix T
' 1

such that#*
- > - >
E F 1:u . ru r“ . rv
- -+ +» . T > ->
1= | = =z, =17 I[x, r,] (10.7)
' - - -+ ;:r
L}? G TS Ty, T, .

—

e f N .E R .T
u u u v
- A A T > >
& - - - - qnu,. NI IE, T .
A ~ > | (10.8)
Lf g Nv . ru Nv . rv. 3
i

e > |
Now multiply both sides of (10.4) by [l"u rv]’ which yields

O=qQ T . (10.9)
Since (u, v) are independent parameteis, I in (i0.7) is nonsingular.

Inversion of 1 in (10.9) gives ' i
|

*Do not confuse I with an identity matrix.
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- M (10.10a)

. eG - fF fE - eF

Q - Q W m———— (10.1%)
& R 127 T2

£fG - gF E-fF
Q,, = =& qQ,, = &% (10.10c)
21 EG - FZ 22 EG - FZ

The results in (10.2) and (10.10) are known as Weingarten equations. They

enable us to calculate 6' directly for a given surface.
Once 6 is found at a point P on a surface, we may calculate from
it the princiﬁal curvatures and directions at P. This will be demonstrated

next. From (10.10) and the definitions in (9.6), it is' readily shown that

1 = 1
3 ¢ trace Q= 7 (Kl + ‘2) = mean curvature Ky (10.11a)

det 3'= K1k, = Gaussian curvature kg - (10.11b)

Therefore, <1 and‘ic2 are the  two eigenvalues. of 3; Following a: standard

procedure,. let us diagonalize 3; The: two eigenvectors|of 3~ are-denoted by

a’l - , '32 - | . (10.15)

Qd = d , n=1,2 | (10.16)
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Explicitly the solutions of (10.13) are given by

dn 51" % 9
4 Q2 K1 = Q
o _%2"% Y
432 Q1 k2 " O

(10.14a)

(10.14b)

which determine En within a normalization constant. LFt us form a 2 x 2

matrix ? such that

Then the matrix

rkl 0

57135 -
0

is the diagonalized curvature matrix, The first and sec

2 x 3 matrix

give the principal directions. After normalization, the

directions in (10.17) are explicitly given by

1 -> ->
= Y (lru + arv)

e
17

~ 15 > -
e, = Y, (Bru + lrv)
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‘ (10.15)

(10.15)

ond rows of the

(10.17)

unit principal

(10.18a)

(10.18b)-




where

d Qyy - K Q ‘
@ = - d12 = ZZQ 2 . 3 EZK | (10.18¢)
22 21 11~ %2
d Q,, -« Q
p=-Ft- 11Q 1. 3 AL (10.18d)
11 12 2%
Y, = (E + 2F + «26)1/2 (10.18e)
v, = (8% + 288 + 02 (10.18¢)

By straightforward manipulation, it can be shown that (10.13) is identical to
(9.7). 1In summary, curvature matrix 3 is defined in (10.2) and (10.3).
It can be calculated from (10.10). Once 6 is known, the principal curvatures
and direction are determined by (10.11) and (10.18), respectively.

The four vectors ?u, ?V, él’ and éz lie in the tangent plane at P of
a surface (Figure A-19). In general, ;ﬁ and ;v are not‘normalized, not
mutually orthogonal, and not in principal directions, as shawn in Figure A-28a.

Now, let us consider the special case in Figure A-28b, where

. et >
(i) Irul |rv| 1, (10.19a)

.. - >
(ii) r, ot = 0 , and | (10.19b)
(iii) the angle measured counterclockwise from ?u toiél is ¢. (10..19c)

Then from the relationms.
E=1 , F=0, G=1 |, ‘ ) (10.20)
the following facts may be established:

(a) Apart from a constant, D in (10.15) is a unitary matrix given by
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O (a) (b)

Figure A-28. Four vectors in the tangent plane at P ¢f a surface.
(el,ez) are principal directions. j
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. (EOS'w -sin y T
D~ | =05 . (10.21)

Lgin ] cos
(b) The curvature matrix :3 is symmetrical and is given by

(é £ < 0 .]
a- 7
&) 0 K

3 cos2 v+ Ky sinz'w (Kl - Kz) sin ¢ cos ‘1

o
o

| 2 |
Lle - K2) sin ¢y cos ¢ ky sin” y + K, co W¥
(10.22)
If ¢ =0, 3 is further simplified to become a diagonal‘macrix
_ (“1 0
Q = > if w =0 . (10-23)

As discussed in (9.9), a necessary and sufficient condition for v=0 is

F=0 and f = 0.

We conclude this section with an example. Let us calculate the

curvature matrix-at a point P with coordinates

x=1,y=2, z=2L (10.24)
2 /2
located on an ellipsoid (Figure A-25)
2,2, ' ’ ’
(325) +<L), +22-1 . (10.25)
V2



This example was studied in Section A-9. Substituting (9.

gives immediately

g
11171 1 A

We note that 3 is not diagonal because (;u,;v) in (9.2
same directions aé (él,éz) in (9.26); nor is it symmetri
and ;v are not orthogonal. From the given 3 in (10.26)
principal curvatures from (10.11) and principal directions

These results are of course identical to those given in (9
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pA) into (10.10)

(10.26)

3). are not in the

cal because ;u

, we can calculate
from (10.18).

.25) and (9.26).




A.11. APPROXIMATION:OF A SURFACE

In EM diffraction problems, there are typically two types of surface
involved: (i) a perfectly conducting surface I where an electromagnetic
field is reflected or diffracted, and (ii) a wavefront W of a ray pencil.
We are often interested in the local geometrical properties of I or W at
a point* 0. For this purpose instead of using the exact representation of
the surface, a quadratic approximation based on the Taylor expansion is
sufficient. This approximation is discussed in the present section.

At point O, let us introduce a set of right-handed orthonormal base
vectors (81,82 G = 83). In the case of a conducting surfaQe Z, we choose

(Figure A-29a)

~

G=+ , forcr . (11.1a)
In the case of a wavefront W, we choose (Figure A-29b)
o=-N , forw . (11.1b)

Thus, the normal & always points toward the source (of the incident field in
the case of I, or of the ray pencil in the case of W), whereas o points
toward the incident field, or the direction of propagation of the ray pencil..
The two orthogonal directions (81,32) lie in the tangent plane of the
surface. They may or may not coincide with the principal directions. In the
remainder of this section, we will concentrate on the case in (11.1a).
Results so obtained apply also to the case in (11.1b) after obvious
modifications [See (15) in Section A.13].

Consider a point P on I 1in the neighborhocod of 0 (Figure A-30).

-
The position vector r of P in reference to 0 is

o

* This point can be identified as a point of reflection or & reference point on
the axial ray.
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rays

AA T
=N
E' 2
- E}—-— C)
o) source
2
source

(a) Conducting Surface £ (b) Wavefront W

Figure A-29. Choice of normal N in an electromagneti
Note that N always points toward the electromagnetic source.

Figure A-30.

A
o

Quadratic approximation of a
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~ ~ .
= ol al + 02 , + 00 (11.2)

where (al, Oys o) are the rectangular coordinates of P, Since P is on
I, there are only two degrees of freedom in (ol, Y o). Let (01’ 02) be

the independent parameters, and play the roles of (u,v). Then the relation

g = G(ol, 02) ' (11.3)

describes I. To obtain an approximate version of (11.3) valid fbr small

|01| and Iczl,‘let us replace (11.2) by its Taylor expansion around 0, namely,

- _ = -> 1l /(> 2 2 3
r(ol,cz) = rclol + r02°2 + 2 (ro 0. 91 + 2r 1 2 l 2 6‘;32)+ 0(01’2> (11.4)

-> >
where rU » for example, is the partial derivative of r with respect to o

1
1

_ - , 3 n_m
evaluated at (01 = 0,02 =0). 1In (11.4), 0(01’2) means terms of order 0102
with- m + n = 3, which indicates that terms higher than quadratics of %1 and
9y have been neglected. From (11.4), o is found to be

=F.5-% 02 + 2f +go2) + 0o (11.5)

g=ro=73 (e 919, * g9, 1,2 :

where e, f, and' g were defined in (8.16) (recalling u 6’01, v + 0, and

N = 0). Note that at- 0 we have

-> B ~ ~ -~ ~ ‘
= =g, + +
rcl 301 (alol + 0202h+ 0o) G. =0 °l o(eo1 %fcz) o) = 0
oy = 0 : 02 = (

and similarly ;; = 82. When these results are used in (8.10), we have

E=1 , F=0 , G=1 . z (11.6)




Wwith the help of (10.10) and (11.6), we may rewrite'(ll.s)iin terms of the

curvature matrix Q , namely,

-1 2 2] 3
°=3 E’u 0y + (Qp + Q) 919, + Qyy °2] * 0("1,2) (11.7)

or, in matrix notation,

(11.8)

Qa
[l
N
=)
[ ]
ol
Q
(=)
+
o )
“q >
W
5 I

This is the desired quadratic approximation of a surface vblid for small

, Io

ll and 102{.
|
When (ol, 02) coincide with the principal directionF‘ (el,‘ez?, Q is
given in (10.23), and (11.8) becomes J

1 2 2 3\ -
o =3 (Klol + KZUZ) + 0(01’2/‘. . (11.9)

This simple representation in (11.9) brings out clearly the geometrical
significance of the sign of Gaussian curvature Kg = KiKqs| as discussed

below: (i) If x. > 0O, <1 and K, have the same sign. The quadratic

G
approximation in (11.9) describes a paraboloid (Figure A-3la). (ii) If

kg < 0, 3 and Ky have different signs. The quadratic ﬂpproximation

describes a hyberboloid (Figure A-31b). (ii1) If «, = d with «, # 0 and

Ky = o, the quadratic épproximétion describes a cylinder (Figure A-3lc). (iv)

1f kg = 0 with Kl =K, = 0, the quadratic approximation reduces to a plane.

At most, the original surface can have small bending at (4, = 0, o, = 0).

1 2

To study this small bending, we have to examine the higher-order terms in the
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(b}

<QOwithk, <0 and x, > 0

K, > 0 with «, < 0 and < 0
w. al K KG 1 2

G 1 2

i
() ‘ | ‘

kg = 0O withxk, >0 and k, = 0

1 2

Figure A-3l. Sign of Gaussian curvature «

0 = g K,. In thi%»sketch;”
g = +N is used. ‘

G 172

82 | O




Taylor expansion. We emphasize that the Gaussian curvatur

det 3, is an invariant geometrical quantity of a surface. Its value (and its

sign) is independent of the choice of a particular coordin

describes the surface.

When (31,82) make an angle ¢ with the principal d

(cf. Figure A-28b), 3 is given in (10.22). It should be added that although

(11.8) was derived based on the assumption of orthonormal
valid for any two independent vectors (§1,§é) in the tan
surface. For example, coordinates (01,02) may refer to

(; ,; ) in Figure A-28a, and (11.8) remains valid. In th
u \'4

e, which equals
ate system which
irections (el,ez)

(cl,oz),, it is
gent plane of the
the base vectors

=

e latter case, Q

is no longer symmetrical, and is given by the general form in (10.10).
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A.12. GEODESICS

For two given points P and Q on a surface I , wha# is the shortest
arc joining them? If I is a plane, the answer is obvious; The shortest
arc is the straight line segment Joining P and Q. For a general surface,
the shortest arc, if it exists, must be a geodesic. A straight line is
characterized by the property that its curvature is zero, whereas geodesics
are curves of zero geodesic curvature.

Let us first define geodesic curvature. Cansider a curve C (not
necessarily a geodesic) on I (Figure A-32). The normal and tangent of C
at a point P are denoted by n , and ¢ » respectively. The curvature

vector «ii of C lies in a plane perpendicular to ¢t , and can be resolved

into two Components

where N is the normal to I at P (pointing to any one of the two possible

directions), and 4 = Nxt. We called Kg in (12.1) the geodesic curvature
of curve C at point P. From Figure A-32, we note that, with a possible
minus. sign, Kg is the curvature of curve C' , which is tWe orthogonal
projection of C on the tangent plane. As an example, consider the small
circle C on a sphere of radius a (Figure A-33). At any point on C , its

geodesic curvature is

K =xn e+ u -t cos 6 (12.2)
g a

which varies between +a ' and —a-l', and vanishes when C is a great circle

(6 = n/2).

In calculating Kg , the following quantities, called Qhristoffel symbols, N

. O

are needed.



- 2>
= )4

Figure A-32. A curve C on a surface and its projection C'|on the tangent
plane. .

|
Figure A-33. A small circle and its normal n on a sphere.
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GE - 2FF + FE
u u v

2EF. - EE_ - FE
u Nl o

1~ ) g 7 (12.3a)
2(EG - F2) 1 2(E6 - F%)
1 GEv - FGu 2 EGu - FEv
127 2 » Ty = ———— (12.3b)
2(EG - F2) 2(EG - F)
1 ZGFV - GGu - FGv 2 EGv - ZFFVI* Pcu
22 = 3 , 22 = ™5 (12.3C)
2(EG - F°) 2(E6 - F)
where the subscripts as usual indicate partial derivatives
= ig- = » x = = - p
Eu iy Zru ruu Ev Zru - (12.4a)
F =T + T +¢ 7 F =T «7_+% % (12.4b)
u u uv v uu v u Vv v uv
G =2fr -1 G =2r «1_ . (12.4c)
u v uv v v vV

Note that Christoffel symbols depend only on the coefficients of the first
fundamental form and their derivatives (not on e, f, g8, €tc.). An explicit
formula for « in terms of Christoffel symbols can be found in standard
differential geometry textbooks (See P. 128 of D. J. Struik).

The definition-of geodesics is that. they are curves%of vanishing

geodesic curvature

(12.5)

From the condition in (12.5), two differential equatiomns of the geodesic can

be derived, namely,

2 2 2
Coerl () vl 2o @) -

11\d 12 do do 22\do) ~ (12.6a)
do
2 / 2 2
dv 2 {du 2 du dv 2 favl®
dg? * FllkEE) * 2 s T rzz(dc) =0 (12.6b)
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where o 1is the arc length of a curve (geodesic). A solution of (12.6) is of
\
the form ;

u= fl(o)
v = fz(c)

which describes a geodesic. It should be remarked tﬁat (13.6a) and (13.6b)

are not independent. They are related through the first fundamental form in

(8.10) or |

do® = E du® + 2F du dv + G dv? . (12.7)

Eliminating o from (12.6), we obtain a single diffkrential equation of the

geodesic, namely,

2 3 2
dv 1 {dv 1 2\ (dv 1 op2 | dv _ 2
2 r22(du) * (”12 - I'22) (du) * (ru' N 21'12) - (12.8)

which has the following interpretation: At a given point (u,v) on a surface,
once dv/du is given, dzw/dt.\2 is determined, thatl is, the way in which the
geodesic curve is continued. We list below several properties of geodesics:

(a) When Kg = 0, we have from (12.1) that

n= N . (12.9)

Thus, the normal of a geodesic is in the same (or o*posite) direction of the
surface normal. 1

(b) At a given point (initial point) on a sur%ace, a geodesic is
uniquély determined once a tangential direction is Lpecifie&. This follows
from (12.8) and an existence theorem of differential equations.

(¢) For two given points. P and Q on a surface, the minimum arc

joining them, if it exists, must be a geodesic. The converse, however, is
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not true. For example, great circles of .a sphere are geodesics. A great
circle passing through P and Q has two arcs. 1In ge#eral, these two arcs
are not equal and only one of them gives the shortest distance.

We conclude the section with several examples for determining geodesics.

(1) Plane. A point on the Xy-plane may be described by
Y
l'(x,Y) - (x,)’,z = COﬂstant) . !
With u=x and v =y, it may be shown that all Christoffel symbols in

(12.3) vanish. Then (12.8) becomes

i—zso
2
dx

Its solution is
y =ax+b

which is a straight line. Alternatively, the same probyem may be solved by

using cylindrical coordinates with

> i
r(p,¢) = (p cos ¢,p sin ¢,z = constant)
|
With u-=p and v = ¢, Christoffel symbols in (13.3) are all zeros except
1 2

-1
r22 LA r‘12 T o

Then (12.6) and (12.7) become

2 2 ‘ ‘

% _ p(it =0 \ (12.10)
2 do

do
2, 244 |

d¢,24d¢do _ | (12.11)
2 p do do

do

do2 = dp2 + p2 d¢2 . a (12.12a)




As remarked earlier, not all the above three equations are

For example, let us write  (13.12a) as

- () -

independent.

(12.12b)

Taking the derivative of both sides of (12.12b) with respect to o gives

\
2 2 ‘
o ()5 o) ] ot [y 20 e)
do o g do p do
. 1 '

which is a proper combination of (12.10) and (12.11). Hen#e, we may concen-

trate on the solution of (12.11) and (12.12). Rewrite (12L11) as

2.,.2
(d"¢/dc”) (dp/da) _
(@/d) T* T o =0
or .
4 2 do)| _
do E.n (p do\)] 0

whose solution is
1 2
do = 2P d¢ , where c = constant.

Substituting (12.14) into (12.12a), we have

cdp

DVOZ - CZ

= d¢

Integrating both sides of (12.15) leads to the solution

p = c sec (¢ - ¢0)

(12.13a)

(12.13b)

(12.14)

. (12.19)

(12.16)

where ¢O is another constant. As expected, (12.16) is alsp a straight line.

(ii) Cylinder and developable surfaces. Consider the

helix curve on

the surface of a cylinder shown in Figure A-8. At every point the normal n
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of the helix is equal to +N of the cylinder. Therefore,iby (12.9), a helix

is a geodesic on-a cylinder. For any two given points P ?and Q@ om a cylinder
(Figure A-34a), there are infinitely many helix curves (ge&desics) joining them.
This point may be best explained by using a "developed" cylﬁnder. A

developable surface is the 6ne which*

(a) may be generated by a continuous motion of a straight line (the
straight lines on the surface are called generatorg), and

(b) has the same tangent plane at all points on any giﬁen generator.
Examples of developable surfaces are cylinders and cones. &f one cuts the
cylinder along a generator (¢ = O in Figure A-34a), it may be opened up to
become a-rectangle on a plane, without stretching or shrinkﬁng (Figure A-34b).
A helix on a cylinder now becomes a straight line on the developed cylinder.
To account for the periodicity in ¢ , the rectangle may be repeated an
infinite number of times in the manner shown in Figure A-35. Then P has
images P,, P_;, Py, P_,, Pq,... . All possible geodesics joining P and
Q on a cylinder may be constructed by drawing line segments between Q and
P, Pl’ P_l,... . For example, geodesic QPl goes from Q to P on the
cylinder after revolving the cylinder once; and geodesic QP_Z goes from Q

and P  after revolving the cylinder twice in the opposite firection. *

(iii) Surface of revolution. As discussed in Section A.7 (Figure A-18),

a surface of revolution may be described by

X=pcos ¢, y=p sin¢ , z = £(p) o (12.17)
Simple calculations lead to (u = p and v = $)

E=1+ ()2 ,F=0,0=0 (12.18a)

e=—-—f"————,f=0,g=—-——p—f'-——‘ (12.18b)

A+ (eny2 A+ g2

* Surfaces with property (a) but not necessarily (b) are caPled ruled surfaces.
A hyperbolic paraboloid (Figure A-14), or a hyperboloid off one sheet
(Figure A-16) is a ruled surface, but not developable.
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\{___/ ¢=0 2w
(a) (b)

|
Figure A-34. A cylinder may be developed into a rect#ngle on a plane.

/L
!
\
\‘\

Figure A-35. Developed cylinder and its "images."
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where f' 1is the derivative of f£(p) with respect to p. Then Christoffel

symbols in (12.3) are found to be

1 £ 2

1 2

r, =0 .13, =-% (12.19b)

1 - 2

Tyy = -—-zz—'-;-f s Tyy =0 . (12.19¢)
1+

Since the two equations in (12.6) are dependent, it is suffic¢ient to take

(12.6b), namely,

a2
d02 P

3

do
=0 . (12.20)

(=9

o]

The above differential equation is the same as (12.13), whose solution is

given in (12.14). Substituting'(IZ.lé) into the first fundamental form in

(12.7) or
do? = [1 + (£9)2] dp? + 02 de? ‘ (12.21)
we - have
2 /2
&1+ (f")
dé = 3 {j 72 dp
p- - c
or 2 /2
- 11+ (£1)°
¢ ¢0 + c J 5 [.pz i CZ dp (12.22)

which is the desired equation of a geodesic defined by two constants ¢y and

c. For the special case c¢ = 0, (12.22) becomes
¢ = ¢, . ; (12.23)

92




Thus, all generating lines (meridians) of a surface of revolution are

geodesics. As an example, let the surface be a circular cone with a half-cone

angle .60. Then

f(p) = p cot 60 . | (12.24)

Substituting (12.24) into (12.22) and carrying out tbe integral, we obtain

the equation of a geodesic on a cone, namely,

p = c.sec [(p - ¢0) sin 60] ) (12.25)
Using the sphérical coordinate r = p csc 60, we may| rewrite (12.25) as

r cos [(¢ - ¢0) sin 60] =1, . (12.26)

where I, is another constant. On a developed cone!in Figure A-36, (12.26)

represents a straight line MP with I, = OM and r = OP. The fact that the

geodesics of a cone are straight lines on a developed cone is in agreement with

our discussion in Example (ii).
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Figure  A-36.

A geodesic MP on a developed cone and its:''images."
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A.13. SUMMARY

Let us first summarize the results in Sections A.2
(1) An arbitrary-speed curve can be represented by

with parameter t:

to A.6 for a curve:

7 a parametric equation

R O R O RIC RIG AR I a3.1)

Its speed is defined by

-).
v= |4
dt

dz.2
,\/c 22, @2+ @2,

(13.2)

The same curve may have other representations with different speeds through a

change of parameter (passing t to a new parameter).

(2) The arc length o(t) of a curve is defined by

t
ote) = [ |4EEY) g
t t
0
in which t0, is a reference point..

(3) A unit-speed curve is a curve T = ;(c) whose

length o. The Frenet apparatus can be computed by the

2 2
n(c) = dr ;/ dr ;
do do

b(o) = t x n
_>
t(o) = EE

95

(13.3)

parameter is arc

following formulas:

(13.4a)

(13.4b)

(13.4c)




k(o) = g—)z: (13.53)
do
d—)- /d2+ d3—> 2->|2
t(c) = E-:-' . ; x g d ; (13.5b)
\do do do I
The variation of (n,b,t) is given by the Frenet formula:
& o . ~
a5 b - kt (13.6)
db .~
Fr = -1n ‘ , (13.7)
dt _ -
v KN . (13.8)

(4) For an arbitrary-speed curve: ; = ;(t) the formulas for the Frenet

apparatus are given by

a=bxt (13.9a)
- ';v x —lt"
b(t) = (13.9b)
l';l x ;nl
-)l
() = = (13.9¢)
[r']
) -;! x rll
k(t) = (13.10a)

£) = (13.10b
T( ) —>' % "IZ . )
where
. > 2> .
. dz;itt) T si__zizt_)_ e . (13.11)
: dt
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(5) For a unit-speed curve T = ;(a), the Frenet appioximation of the-

curve in the neighborhood of ¢ = 0y 1is (Figure A-9)

(6 -0 )2
5 0 xn +

() & ?(co) +(o-0p t+ =

where (n,b,t) are evaluated at ¢ = g..

0

3

(o - 00)

KT

Next, let us summarize the results in Sections. A.7 thrd

surface:
(6)

parameters (u,v):

*o=r(u,v) = (x(u,v),y(u,v),z(u,v)) ,

and Vl

u, < u <u < v <v
1 2

2 .

The unit surface normal at (u,v) is defined by
> >
. L
N(u,v). = yu e e
|z, xr_|
u v

o>

(13.12)

pugh A.12 for a

A surface can be represented by a parametric equation with

(13.13)

(13.14)

where - u =+ 1. In EM diffraction problems, u takes a value such that N

always points toward the source.
@)
Afollowing parameters are often needed:

Coefficients of first and second fundamental forms

In calculating the properties of the surface in (13.13), the

- > -> ->
E = L ru, F = ru v’ G = rv r, (13.15a)
- - > -> > -> > > >
e = y —uu ) (ru % rv) £=0 Tuv (ru x rv) g ‘u Ty (ru * rv)
= s = > =
/EG - F2 VEG - F° /EG - F° (13.15b)
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Christoffel symbols ‘ { (::)

GE -~ 2FF_ + FE 2EF - EE_ - FE
1 u u v 2 u v u
= ) » T3y = 5 (13.16a)
2(EG - F9) " 2(EG - F)
GE_ - FG ’ EG - FE ; :
rl e T | (13.16b) | -
"~ 2(EG - F) 2(EG - F°)
1 2GF_ - GG - FG EG - 2FF + FG :
v u v 2 v v u
1'22 = 2 ’ P22= 2 . (13.16C)
2(EG - F") 2(EG - F7)
When the surface is described by the special form
T = T(x,y) = (x,y,£(x,y)) (13.17)
the above parameters become
E=1+ £ F=ff G =1+ £ (13.18a)
x xy ° y :
e = Afxx , f = Afxy s, 8 = Afyy (13.18b) O
2 2—1/2
A=y (1 + fx + fy) : | (13.19)
1 _ 2 2 _ 2
rll = A fxfxx , rll = A fyfxx (13.20a)
T _ 2 2 2
FlZ = A fxfxy s rlZ = A fyfxy (13.20b)
rio=a%e e, 12 =4t . (13.20¢)

. When the surface is one of revolution, those parameters are given in (12.18)
and (12.19).
(8) The curvature « and the radius of curvature R in tbe direction

dv/du are given by

1_ edu2 + 2fdudv + gdv2 N ‘ (13.21)
Edu2 + 2Fdudv + de2

K =

O
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The sign of «k (or R) computed above is positive i# the normal section of

the surface bends toward N, and is negative if the normal section bends

away from N

(9) At any point on a surface (except at an uﬁbilic) a pair of orthogonal

(Figure A-21).

directions exists for which

K

assumes maximum and

minimum values.

These two

directions are called principal directions (31,32) and the two extreme values

of x are called principal curvatures (Kl,Kz). The principal curvatures are

given by

K1sKy = Ky + Ky~ K \ (13.22)
where the mean curvature is
K, + K ;
- + |
“y -1 > 2 - Eg 2fF 2eG | (13.23)
2(EG - F°) |
and the Gaussian curvature is
eg ~ f2
Kg =K1Ky = —3——-—2 . (13.24)
EG - F
The two principal directions are given by
e =X 1T +af ] (13.25a)
1 Y u v
1
- 1 -> ->
e, = Y, [Bru + lrv] (13.25b)
where
e - KlE f - KlF
o = = - (13.25¢)
KlF - f K1G -g
f - k,F g - k,G '
B = 2 = = 2f (13.254)
K2E - e K F =
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Y, = (E + 2aF + a26)1/2 (13.25¢e)

Y, = (8% + 28F + )22 | (13.25¢) (::)

a

Referring to the principal direction e » we find the curvature in the

direction « (Figure A-24) is given by

K = <y c032 a + K, s.in2 a . (13.26)

(10) A necessary and sufficient condition for u- and v-parameter

curves is also the lines of curvatures: F=0 and f = 0. When these two

conditions are met, then

- -
~ ru ~ I'\I
el = — , e2 == (13.27)
It | x|
u v

(11) The 2 x 2 curvature matrix 3 is defined on the tangent plane

of a surface by the definition in (10.2). 1Its elements méy be computed from (::)*

the formula

- f E - eF

Q, = = g Q, = = = (13.28a)
EG - F EG - F

Q21 - fG_‘_&g. Q22 = .S.E;f_g . (13.28b)
EG - F EG - F

(12) 1Instead of using the formulas in (9), the pringipal curvatures and

directions can be calculated from Q :

1
Ky = 3 (Qll + Q22) (13.29a)
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Q,, - Q |
22~ % 12
a = = = (13.29¢)
Q1 Q) - *.
Q,, -« Q
1" 5 21 |
g = - 2 | (13.29d)
Q, Q- % ‘

Substitution of (13.29) into (13.22) and (13.25) gives the principal curvatures

and directions.

(13) To the first-order approximation, surface normals drawn from

adjacent points on a line of curvature intersect. The intersecting point 1is

located on one of the two caustic surfaces (Figure A-27).

(14) Consider a conducting surface I in an EM
At a point O (point of reflection) on I, let us intr
three right-handed orthonormal base vectors (81, 82,’3)
pointing toward the source of the incident field (Figure

approximation of I in the neighborhood of 0O is

01 ‘O‘

1f (81, 82) coincide with the principal directions, 3'

given by

s

diffraction problem.

oduce

~

such that ¢ = + N,

A-293). Then a quadratic

(13.30)

is a diagonal matrix

(13.31)

where (Kl, Kz) are positive (negative) if their normal sections bend toward

' (away from) g =N. If (81,.82) make ah angle Y with principal’directioné,
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then:

cos Y ~-sin ¢

[]

sin ¢ cos Y

(15) Consider a wavefront

problem. At a point O

introduce three right-handed orthonormal base vectors ¢

g=~-N,

0 cos Y -sin ¢ T

K2 sin ¢ cos

W of a ray pencil in an EM

(a reference point on the axial ray) on W,

(13.32)

diffraction

let us

1’ &2, &) such that

pointing toward the direction of wave propagation (Figure A~29b).

Then a quadratic approximation of W in the neighborhood of W 1is

(13.33)

where 3 is given again by (13.31) or (13.32). The princibal curvatures

(Kll Kz) are positive (negative) if their normal sections of the wavefront

are divergent (convergent).

(16). A geodesic on a surface is a curve of vanishing geodesic curvature.

It may be described by any one of the

dzu 1 (du 2
do

+ T

w2 u
%y 4+ p2 [du 2
i 1lldo)
2 3
dv _ .1 (dv 1
2 = FZZ(du) * (zrlz
du

_ 2 ) Gi! /1 2 } d

12 do do

N2
orl dudv, 1 C‘) =0

22\dg

2 dudv, 2 fav)? _
12 do do 22\dc

du

—_— -

following three differential equations:

(13.343)
(13.34b)
2
11 (13.35)

where ¢ 1is the arc length of the geodesic. With the aid Jf the first

fundamental form
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do® = E du’ + 2F du dv + G dv2 (13.36)

we may eliminate o in (13.34) and recover (13.35).

(17) For two points on a surface, the minimum arc joiﬁing them, if it

exists, must be a geodesic.

(18) For a surface of revolution, the differential eqﬁation in (13.31)

has been solved, and the solution for the geodesic is given|in (12.22).
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tangent of curve, 17
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