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ABSTRACT

The process of fitting noisy data with a complex exponential series is
considered. An analysis of the classical Prony method shows thqt attempts to
obtain accurate answers in the presence of noise meet with considerable diffi-
culries. Recasting the problem.as one of system identification and applying
the least-squares method leads to biased estimates of the parameters in the
characteristic equation for the system. The difficulty centers around the
fact that neither classical Prony nor least squares involves any analysis,
identification, smoothing, or filtering of the noise. Some techniques for
improving results are discussed, and an iterative generalized least-squares

procedure, which leads to a noise filter, is recommended for further study.



CONTENTS

Introduction . . .

Classical Prony Method . .

. . . . . . 13 .

Exponential Fitting by a Least Squares Parameter Estimation
Solution by the Moore-Penrose Pseudoinverse .

Solution by Square Matrix Methods . .

The Possibilities for Improvement .

Conclusions and Reéommendations .

. . . . . . . .

References ¢ e e

. . . . . . . . . . . .

Appendix . . ., ., ,

[0 I SO

17
20
21
22



INTRODUCTION

The fidea of fitting data with a complex exponential series is an old one,
dating at least back to 1795. Many researchers in the present century have
examined the idea, and much has been written on the subject., Workers involved
with time-varying data are particularly interested since the method yields
explicitly the poles of the system in the complex frequency plane.

Given the accuracy of modern high-speed computers, there is little doubt
that the classical method (the Prony method), although well~known as an error
magnifier, produces acceptable results when used in curve-fitting. Grave
problems arise, however, when an attempt is made to use the method in fitting
noisy data. 1In this application, Prony's method has many critics, whose com-
plaints are largely justified by the erratic nature of many of the results.
Nevertheless, the appeal of the method has transcended the criticism, and it
continues to be used. | '

In this report, we consider the fitting of noisy data with exponentials

both from the classical and also from the modern system identification points

of view. We are able to derive some useful error criteria which definitize
some of the difficulties. In addition, we recommend some techniques which we
are hopeful might improve the present state of affairs. In particular, we
recommend some filtering techniques which arise in doing an iterétive, general-

ized least-squares procedure on the process.



CLASSICAL PRONY METHOD

The classical Prony method hasvbeen described.by many authors. We fol-
low essentially the development given by Weiss and McDonough. 1 Let g(t) repre-
sent a scalar process on which we are able to obtain data and let f(t) be a
mathematical model which we shall attempt to make close to the process in some

sense. For the model, we choose

s.t '
£(t) = z A j (1)

and as criterion of closeness we force the model to be equal to the process at

2N equally spaced data points, viz.,
f(mT) = g(mT) m=0,1, ..., 2N -1 (2)

where T is the sampling interval. We define a sequence of complex variables
{z,} b
3 y

z, =eJ i=1,2, ..., N, (3)

and without loss of generality, exhibit the {zJ} as the roots of an th order

polynomial viz.,

N N .
jl;ll (z - Zj) = z amzm (ay = 1) . (4)




O

Substitution of Eqs. (1) and (3) into Eq. (2) yields
N
g = ji A, 2" =0, 1 2
m j J m = ’ 3 e vy N"ls ‘ (5)
j=1

where, for ease of notation, we use 8 in place of g(mT). With the above

framework established, we find that

N
EE gm+k am =0 k=0,1, ..., N -1, (6)
m=0

which is easily verified by substituting Eq. (5) into Eq. (6), interchanging
the order of the summations and applying Eq. (4). Since a_ = 1, Eq. (6) may

N
be rearranged to produce N linear equations in N unknowns.

ji gm+k a_ = -gN+k k=0,1, ..., N -1, (7N

which may be solved for the polynomial coefficients {am} . The polynomial in
Eq. (4) may then be factored to give {zj} .

The exponent parameters {sj};are
then given by

i : 8)

The final étep is the determination of the {Aj}. Since the {zj} are now known,

these are easily found from the first N equations in Eq. (5).

EXPONENTIAL FITTING BY A LEAST SbUARES
PARAMETER ESTIMATION

In this section, we shall adopt a different point of view of the same
basic problem. We again have a process g(t) and a model f(t), but in this

case we define our model by the difference equation

N

: = = ve ey - 1. 9)
ZE ay fm+k 0 k 0, 1, M : (9)
m=0




The justification of this model definition is that we may prove by

stitution that the difference equation, Eq. (9), has the solution

N
£ = E A, 28
n j 3 n=0,1, ..., M+N -1,
j=1 |

where the {zj} are the roots of the characteristic equation

If we next let

_simple sub-

(10)

(11)

12)

then the {sj} and the {Aj} become the parameters to be determined just as

before. There is, however, an important distinction. Here, the difference

equation is of the model rather than of the process.
» 2
Astrom and Eykhoff,” in an exhaustive survey paper on system
cation, have adopted a canonical form for a linear, discrete-~time,

input single-output model, and we shall follow their terminology.

identifi~
single~

As a meas-

ure of closeness of the model f to the process g, we adopt a loss function V

which is a functional of the modéel and the process,_viz.;

V= V(f,g).

(13)

For the case herein, we choose the classical least-squares loss function

defined by
M-1
2
v(f,g) = ) e s
k=0

(14)

where e, is the generalized error, or "residual," which we define to be the

k

difference between the difference equation describing the model, Eq. (9), and

the same difference equation with the process substituted for the model, viz.,




N " N

*k T EE g mBmik T ZE 3 F e (15)
m=0 m=0
N
= 2 % G ” fand - | (16)

m=0

Substitution of Eq. (16) into Eq.- (14) and application of Eq. (9) yields

M-1 N 2
vEe = > | D a g, (an
k=0 \m=0
We next minimize the loss function V(f,g), subject to tHe constraint a_ = 1,

N
(Some constraint is necessary in order to obtain other than the trivial solu-

tion ak = 0, all k.) The minimization is carried out in Eq. (17) by requiring

5%~ =0 m=0,1, ..., N-1 (18)
m .
The resulting expressions are the '"normal equations of least squares"
M-1 N-1
= m=0,1,..., N - 1
EE BN + jg. 38 |B4m - 0 ™ O’ﬁ’ » N -1 a9
k=0 n=0

The solution to Eq. (19) is obtained by solving the Hankel matrix equation

49 - - - : -
8o 8 8y -+ By a9 ~8y
8 8 B3 - By 1 "EN+1
By 83 By v Byp | |32 | T By (20)
' ' | N1
qu 8 BM+l " Bman-2 “EMN-1




This matrix equation, for the case M = N, reduces to exactly the same result
as in the classical Prony method glven in Eq. (7).
The derivation given above allows us to con81der Prony's method in an

entirely different context than the classical one. 1In this sense, we shall

define Prony's method as a particular system identification procedure in which
the model parameters {a } are estimated by minimizing a linear least-squares

loss funct;on. Such a v1ew allows us to clearly define errors that have been
observed in the Prony process. Unhapplly, however, it casts doubt on results

obtained by classical methods in the presence of noise.

SOLUTION BY THE MOORE-PENROSE PSEUDOINVERSE

' In this section, we shall investigate the solution to the problem posed
by Eq. (20). We shall attempt to determine the coefficients {a.}, recognizing
that once they are obtained, the solutions for the poles {sj} and the residues

{Aj} follow as outlined at the end of the section on the classical Prony method.
We write Eq. (20) in matrix form as
GA = G, (21)

Yhere G is an M X N matrix, A is an N-term column vector of coefficients, and

G is an M-term column vector. If we assume a priori that the rank of matrix

G is N, the columns of G are linearly independent. Under this condition,
(21) has the unique solution3

A =G G, (22)
where G+ is the Moore-Penrose pseudoinverse of G given by

6" = 1im % + 8%1)7L 6T, (23)
§+0

which, in the case of column linear independence, reduces to

ot = %oyt 6T, (24)




T .
where G* is the transpose of G. We state the following properties without
proof

T
1. G G is square and symmetric

T..T T

(GG =GG (25)

2. TIf rk(G) represents the rank of G, then
T

rk (G G) = rk(G) . (26)
3. 1f G is square and nonsingular,

+ N ,

¢t =ct. | (27)

Equation (24) and Eq. (22) show that the solution fpr the polynomial
coefficients may be obtained by a matrix transposition, flollowed by a multipli-
cation, followed by an inversion, followed by two more muhtiplications. These
operations can be performed with most standard matrix computation routines.
There remains the problem of determining the number of roWs M in matrix G.

Matrix G, as indicated in Eq. (20), contains M row% and N columns. The
number of columns is assumed to have been determined a priori and is equal to
the rank of the matrix. The number of rows is determined by the number of data
points we are utilizing in the process. If the process dontained no errors
and if we assume errorless computation, we would be justified in picking N = M
and proceeding with the classic Prony method. In the prasence of errors, how-
ever, the situation is not straightforward. Mann and Wald have shown that if
the residuals {e } are independent and equally distributed with zero mean,
then under certain mild restrictions the least-squares eétlmate of {a } con-
verges to the true parameter values as M > ®. The 31gn1ﬁ1cance of thls result
is that adding more data improves the parameter estlmathn. Unfortunately,
the estimation herein does not meet the requirements of Mann and Wald. TIndeed,
an examination of Eq. (16) shows immediately that the~me$bers of {ek} are not
independent, since individual members of the sequence haﬁe noisy data terms in
common, The result is that the residuals are correlated; a fact which results

in biased parameter estimates.



We test the biased parameter hypothesis with the following case. Let

the process be given by

-0t
g(t) = e cos wt,

where

4

Q
1]

3.5 x 10

w= 0.25

(28)

We assume that the accuracy of our computations is high enough so that the

steps in the solution are noise-free. We use a 2 X 2 system and solve by

classical Prony. Let T =1 and N

]

all significant figures,

1.00 0.97 a, -0.88

0.97 0.8 |a, ) -0.73
A matrix inversion results iﬁ

a, -14.34 15.84 ~0.88

a; ) 15.84 -16.35 -0.73

which gives for the polynomial coefficients
a 1.001
a -1.938

We solve for the polynomial roots and obtain
z 0.97 + i.25

0.97 - 1,25

10

2. We obtain in Eq. (7), without showing

(29)

(30)

(31)

(32)



and with these obtain with no difficulty

_ oo «4 .
S, =S, ==3.5x 107" + 1.25 | (33)
Ap = Ay = 0.5. | (34)

Substitution of Egqs. (33) and (34) into Eq. (1) reproduées the known result
in Eq. (28). .
We next add noise to the system by corrupting each individual data point,

viz.,

g = £, (L+6), ‘ - (35)

k

. . . |
where the dk are machine-generated Gaussian variates, independent, of zZero .

mean, and of spread 0. 1In the presence of these errorsﬁ we attempt to reclaim

1.02 f | | I ' |
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Fig. 1. Least-squares parameter estimation of polynomial coefficient ay

O
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the original parameters by least-squares parameter estimation.
T=1and N = 2,

We again let
For this case, however, we let M vary and solve by the

Moore-Penrose pseudoinverse. An examination of the leading coefficient a, in
the polynomial (Fig. 1) shows that indeed the least-squares process converges
as M becomes large, but it converges to a biased parameter value which ié a

function of 0. It is unfortunate that even for small noise levels, this bias

is considerably more than enough to render meaningless the ensuing calculation
of the real part of sj.

SOLUTION BY SQUARE MATRIX METHODS

| Since the parameter estimation as M becomes large converges to a biased
answer, we turn to a consideration of the errors if we simply let M = N. 1In '
this case, by Eq. (27), the pséudoinverse reduces to the simple inverse and we
have the classic Prony ﬁethod. It is common knowledges’6 that Prony's method
is in many cases extremely sensitive to errors in the process data. In this
section, we are able to definitize these errors under assumptions that the

errors are small.

In Eq. (20), we assume that the errors in the data are represented by

gk = fk + Ek’ - (36)

so that Eq. (21) becomes

(F+E) (A+0a) =F+E, : - (37)
where
fo fi L ) fN-l EO El ¢ 00 EN-l
f1 f2 fN 1-:1 E) oeo EN
F = . y E=|. (38)
£1 fN f‘2N-2_ -EN_l Eg e EZN_{

12



and

‘—fN ~Ey
~fy+l “Ext1

A A |

F=" » E=1 ., | (39)
Fon-1 ) “EoN-1

and

ao Oto

A= a; , 0 = al | ' _ (40)
-1 O§-1

In this representation, A is the matrix of coefficients With no error, and o
is the matrix containing the coefficient errors produced%by the assumed errors

in the data. We invert Eq. (37) by first premultiplyin@ both sides by F-l
and then by (I + ‘r"—lE)_l to give

ava=a+Flp Tt @erth | | G

We expand the inverse operator in a Taylor series, viz.,

1 -1 1

a+ript=1-rFle+ @ lpi... (42)
and approximate by diséarding all but the first two ter@s to get

0¥ @-Fle) @+rFlE -a . | (43)
Finally, we discard the term quadratic in the errors anq obtain

o¥FF E-F EA . » (44)

13




We may show that the error we make in our approximation is of the order

||F-l El[z, where IIB!! represents the norm7 of matrix B. The proof involves

(42) followed by use
The significancée of the result in

simply summing the error term in the approximation of Eq.

of the triangle inequality and is omitted.

q. (44) is that for small errors, the error in the coefficients is a linear
combination of the errors in the data.

We may carry this analysis through the process of solving for the poly-
nomial roots by recalling from complex analysis a relationship that relates

‘the closeness of the roots of two polynomials to the closeness of their coeffi-
cients.7 The result is that the error in the kth root z

j

k (z ) ; (43)

X is given by

?E‘B

c

where P(z) is the polynomial and P' its derivative. We recall also that a, = 1.

The significance of this result is that the error in the root becomes a linear
combination of the errors in the data.

Finally, since for any complex variable w, we have, to first order in
the Taylor series expansion,

In (w+ 8w) T 1lnw + %E ? (46)
then
g
T, = X - (47)
Zx

th
where T, is the error in the location of the k  pole.
k

(45), and (47) to obtain

Fatl, 2 Spg-2

We may combine Eqs. (44),

T = , (48)

14



where the F;i are the elements of the F-lmatrix. We note that Eq. (48) gives
explicitly the errors in the positions of the poles related linearly to the
errors in the data. This result allows a useful probabiiistic interpretation
of the pole position errors. It is well—known8 that linear combihations of
Gaussian variates are also Gaussian. Indeed, if it is a$sumed that {ek} is an
independent, identically distributed Gaussian sequence, ;hen the probability
density function wl(ﬁk) transforms to a joint density fuﬁction wz[Re(Tk),
Im(Tk)], which is bivariate Gaussian. Therefore, for sm?ll errors, we could
plot loci of constant density of the pole positions, given the statistics of
the input data errors. These loci are ellipses in the c@mplex s-plane.

Rather than pursuing this line further, let uS'indﬁcate a simple compu-
tational Monto Carlo game which has far-reaching consequénces. Let us assume
the data to be given by Eq. (35), where the {fk} are obtained from known func-
tions of the form of Eq. (1). Let {6k} be a sequence ofimachine—generated
Gaussian variates, independent and identically distributed with zero mean and
spread 0. Let the known function be characterized by N f 2, A1 = A2
= 0.5, Im(sl) = —Im(Sz) = 0.25. We shall let Re(sl) = Rb(sz) and tabulate the
results for the cases Re(sl) = 0.00035, 0.0035, 0.035, 0.35, and 3.5. These
cases are representative of moving the poles on a locus parallel to the real
axis in the s-plane. For each of the cases, we solve thF Prony problem 100

times with 0 = 0.001, using a new set of Gaussian data errors each time. We
then combine the results using the frequency interpretatﬁon of probability.

The results are given in Table 1. There are two outstanding features in Table 1.

' ‘ a
Table 1. Monte Carlo results for two-term exponential case.

Computed pole position

Theoretical pole Real part i Imaginary part
position Mean Spread Mean Spread
-0.00035 + i.25 0.0012 0.027 0.248 0.011
-0.0035 + 1i.25 -0.0020 .027 .248 .011
-0.035 + 1.25 -0.033 . 027 ;.248 .011
-0.35 + 1.25 -0.35 .027 248 .01l

-3.5 + 1.25 -3.5 0.027 0.248 0.011

%For all cases, N = 2, A, = A, = 0.5, In(s)) = In(s,)) = 0.25, 0 = 0.001.
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Firsf, as the theoretical pole position moves along a locus parallel to the
real axis in the s-plane, the spread on both the real and the imaginary parts
of the computed pole position does not change. Second, as a consequence of
the first observation, the real part of the computed pole becomes over-whelmed
by the noise as it approaches the imaginary axis. Indeed, the first entry in
the table shows that the mean value of the real part of the computed pole
position becomes positive, a most unfortunate occurrence.

The above result 1eads us to speculate on the theoreticél basis for the
invariance of the spread of the pole position with the pole movement. From
the shifting theorem for the Laplace transform, a éhift along a locus parallel
to the real axis in the s-plane corresponds to multiplication by exp(-at) in
the time domain. That is, if r(t) has Laplace transform R(s), then

R(s + 0)&=De 2 r(r) ' (49)

In the case of discrete data, the s-plane shift corresponds to f being mathe-
matically transformed to x fk, where x = exp(-a). Concerning this transforma-
tion, we have been able to prove thelfollowing proposition:
If the input data are represented by fk(l + Gk), k=0,1, ...28 -1,
and if 6k << 1 for all k, then the errors in the pole locations are

invariant under the transformation

£ — x* £ (50)
The proof of this proposition is straightforward but tedious and is reserved
for the Appendix.

There are important consequences to the above proposition. For noisy
data, the result clearly defines the sensitivity of the real part of the pole
position. The concept of signal-~to-noise (S/N) ratio is applicable here. We
note that the noise leﬁel is established by the input noise in the data. TIf
we analytically move the system poles toward the imaginary axis with the trans-
formation in Eq. (49), the effect is to decrease the S/N ratio. As the move-
ment continues, the poles become overwhelmed by the noise. At this point the
Prony process fails and erratic results are to be expected. Van Blaricum and
Mittra9 mention that the real part of some of their poles seem to oscillate
around their correct value. They speculate that this is probably due to noise

in the data which they have made no attempt to smooth. They also comment that

16
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some of their poles show up in the right half-plane. We feel that our propo-

-sition supports their observation. When the signal-to-noise ratio becomes low,

there will be a marked sensitivity of the real part of the pole position.
Further, as the S/N ratio worsens, Table 1 proves that the pole can actually

appear in the right haif-plane.

THE POSSIBILITIES FOR IMPROVli':MENT

We have shown some definitive problems in attempts to obtain good com~

plex exponential parameter estimates in the presence of noise. For the N X N

case (classical Prony), the noise in the data produces a marked sensitivity in
the real part of the pole positions, particularly for poles near the imaginary
axis. For the least-squares M X N case, the.correlated1characteristic of the
residuals leads to biased estimateé of the parameters. %In this section we
discuss various possibilities for improving the resultsJ still insisting on a
scheme where the system identification will explicity e#hibit the s~-plane

poles.

Golub10 has observed that since the linear least-squares procedure,

culminating in the normal equations in Eq. (19), requirés ay = 1 as a con-
straint, the procedure favors the Nth coefficient. Ind¢éd, the expression
N-1 i
= + | 51
k z %m Bmk T Bnak | | 1)
m=0 ‘

shows that in effect the residual term minus £(k + N) bécomes the driving
function for the difference equation with yet undetermined coefficients aO,
O ERRRTL Ry Golub proposes that perhaps the minimization in Eq. (17) should

be carried out with the constraint

Z a =1 . A 3 (52)
m
m=0 ;
This would have the effect of spreading the constraint émong all the coeffi-
cients. The proposed method suffers from the fact thatﬁthe minimization with
Eq. (52) as a constraint results in a system of nonline%r equations which must

be solved to produce the coefficients {a }. With the a?ailability of high-

k
speed computers, however, this disadvantage is not insutmountable.

17



Another possibility is based upon an examination of the error criterion
adopted in Eq. (15). This definition of the error is known as "equation
error'” since it consists of the difference between the equation governing the
process and the equation governing the model. We have commented that the

principal problem with this definition is the correlated nature of the resid-

uals {ek} If we knew a priori that the data errors are members of an uncorrel-

ated sequence, we could redefine the error criterion as follows:
k= 8y K" (53)

We note that in this case the {ek} are uncorrelated and therefore a least-

squares procedure should give unbiased parameter estimates. If we minimize
Eq. (53) subject to the constraint that the difference equation, Eq. (9), is
satisfied, we again arrive at a system of nonlinear equations. If, however,
we are able to deal computatiomally with the nonlinearities, we can expect
elimination of the bias on the parameters. This is not a new idea; indeed, it
was proposed by Householder,11 but was abandoned because of the state of com-
putational technology at the time. We should comment that this procedure is
well-known in the general area of system identification and is classified as
a generalized least squares procedure.2 '

A final possibility, and one which fits well into the framework of
present systems technology is called the iterative, generalized least-squares
method and is credited to Clarke,l2 who has tested it against simulated data
and also against practical measurements from a system he wished to identify,
We shall describe the method as we would specifically apply it to the process
defined by Eq. (51). Define a shift operator q by

q fk = fk+1 . (54)

Then we may write Eq. (51) as
= 55
AGQ) g = e, , | (55)

where A(q) is a polynomial operator given by
' N

A(q) = z a_ " . | (56)

m=0

18



The method is based on the following proposition. TIf we can find a polynomial
filter B(q) such that |

.B(q) e, =n., | ! (57)

where n is an uncorrelated noise sequence, then we can premultiply by this
operator in Eq. (55) to give

A(q) B(d) g, = m» : (58)
where we have used implicitly the fact that A commutes with B. We now define

’ék = B(q) g | (59)

and substitute into Eq..(58) to produce

which we recognize as a tranformation of Eq. (55). The significance is that
Eq. (60) has uncorrelated residuals and therefore a least-squares parameter
estimation produces unbiased parameters. Since we haveionly estimates avail-
able, the procedure is of necessity iterative as follow%:
(1) Make a least-squares estimate of A(q) in Eﬁ. (55), which we shall
call ’A\(q) '

(2) Substitute A into Eq. (55) .to produce an eﬁtimate of the resi-

duals ék | | R
(3) Use 8k in Eq. (57) and make a 1east—squareb estimate B(q)
(4)  Calculate §k in Eq. (59) | A
(5) Use §k in Eq. (55) to produce a new least-squares estimate A(q)
The process continues until the loss function in Eq. (14) no longer decreases

with an additional iteration.

Although there are no known proofs that the iterative, generalized least-
squares process always converges, there is ample eﬁideﬁce that it works in
many cases.lB’14 There are also exténsions14 which aliow the addition of up-
dated information in the form of additional data points without repeating the
process of matrix inversion. The success of the method can be attributed to
the fact that an identification procedure is performed;not only on the data

but also on the noise.
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CONCLUSIONS AND RECOMMENDATIONS

We have examined the problem of fitting noisy data with a complex ex- <:) .
ponential series both as a classical Prqny development and as a least-squares
parameter estimation. We are led to the conclusion that further attempts to
obtain answers in either manner in the presence of noise is an exercise in
frustration. The principal problem is that the precise character of the noise
in practical cases is seldom known and neither the classical nor the least-
squares procedures make any attempt to do noise evaluation or filtering. 1In
fact from the information point of view, the process is carried out in total
ignorance except for the explicit data values.

There are, however, definite methods for improving the situation. The
problem of fitting data with exponentials, when viewed as a problem in systems

identification, becomes an autoregression in the presence of noise, viz.,

N .

z ®m Bk T %k (61)

m=0
Here the problem is to estimate the coefficiénts a. If this can be done with
zero bias, then all will be well. The answer, however, is not in doing a simple
least squares, since this leads to biased estimates., Significant improvement, <:) :
however, could be obtained by considering the character of the noise, this is
precisely what the iterated, generalized least-squares procedures (discussed
in Sec. VI) does. The work of Hastings-James and Sage14 is particularly
definitive in this regard. It is our opinion that little can be done to im-
prove expohential fitting without this sort of noise filtering. We strbngly
recommend that further efforts in this field be concentrated in analysis and
numerical processing of actual and simulated data with primary emphasis on

noise identification and filtering techniques.
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APPENDIX
ERROR TRANSFORMATION

We shall prove the following proposition regarding errors in the input
data:

If the input data are represented by fk(l + Gk), k=0, 1,..., 2N-1, and

if Sk << 1 for all k, the errors in the pole locations are invariant
under the transformation

k
fk —_— X fk . (A-1)
To prove the proposition, we first note that in Eq. (36)

€ = fkék . (A-2)

We define the transformation matrix T as follows:

T = X (A-3)

N-1
X

In the expression for F, E, F and £ in Egqs. (38) and (39), we perform the
transformation indicated in Eq. (A~1) and obtain

F = TFT (A-4)
g

E = TET ' (A-5)
g .

F = 2" TF (A-6)
g .

E, = = TE, (A7)

where the subscript g indicates the transformed version of the quantity.

Recalling that
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A =F F A-8
g g g : A( )
o =F 1 (E - EA), (A-9)
g g g g8
we find
-1 -1-1-1
FleT D (A-10)
A, = L1l . | (A-11)
ag = L1l . : (A-12)

We may-write the characteristic polynomial for the process inimatrix form as
follows

N
P(z) =72 A +2z i A-13
8() g 8 g ' ( )

and take its derivative to give

N-1 ‘
P' z) = Z' A +N ‘ A-14
g( ) g 8 g °’ , ( )
where ) : v
Z = [zo zl 22 anl] ‘ (A-15)
g B &8 8 g !
7' = [o 20 228 ... (§-1) zN'z] (A-16)
4 g g g :

We next substitute Eq. (A-8) to give

N -1, (s
Pg(z) = x zg T A+ =/ (A-17)
z N-1
] - ! - ]
Pg(z) = xN 1 Z XT 1 A+ N(;g) , (A-18)
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which allows us to identify

' .
Z'=272 x T'l'

g
and thus determine
Z =ZT
8
2! = x iz
g

(A-19)

(A-20)

(A-21)

(A-22)

Turning next to the errors in the polynomial roots, we have from Eq. (45)

Z o
r = g2 g
A TN
g g g
We substitute and obtain
r - xZo,
Bk zip 4 g T

from which we identify

Cgk = ka

Since we have from Eq. (A-21)

gk k
we may write

g K _ E&

zgk Zx
and fiﬁally

Tgk = Tk ’

which proves the proposition.
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(A-23)

(A-24)

(A-25)

(A-26)

(A-27)

(A-28)





