Mathematics Notes

Note 50

November 1977

Dyadic Green’s Function for a Two-Layered Earth

Hussain A. haddad and David C. Chang
University2 of Colorado
Dept of Electrical Engr, Electromagnetic Lab
Boulder, CO

Abstract

Both the near-zone and far-zone electromagnetic field of an arbitrarily oriented
dipole above a two-layer earth surface is obtained to a high degree of accuracy using a
combination of numerical and analytical computational schemes. It is shown that marked
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SECTION I
INTRODUCTION

Investigation of VHF and UHF pefformance of thin wire structures in the
presence of a realistic: ground environment.isimPOrtant in electromagnetic pulse
'simulation as well as other antenna applications (ref.l). Since the earth
is not very conductive in these frequency ranges, effect of the ground
‘reflection can no longer be accounted for by the structure's mirror image.
In some cases, wire structures large compared with the free-space wave-
length are actually placed on the top of a prepared ground surface such
as a nopreinforced concrete slab of finite thickness. The problem of
finding the scattered field is then further complicated by the fact that
;the slab can now provide a physical mechanism for energy to spread out in
the lateral direction in the form of a lossy surface wave.

As a first step leading to the better understanding of this problem,
we shall discuss in this report the development of a numerically efficient
scheme for computing electromagnetic fields produced by an arbitrarily
oriented electric dipole source located in air over a multilayered,
‘dissipative half-space. Typically, the medium consists of only two layers
with a top layer being a concrete slab of finite thickness and the bottom
layer, a homogeneous earth of infinite extent. To be able to obtain all
‘the electric and magnetic field components accurately and efficiently in
both the near-field and the far-field regions is important, due to the
%fact that an integral equation formulation of a thin-wire structure can
:usually be constructed once the field components produced by individual
dipole sources are known.

In what follows, we shall discuss first the spectral representation of

‘the scattered field due to a horizontally stratified half-space using an




approach similar to that of Wait's (ref. 2-3). We then proceed to discuss a
numerical scheme for the computation of the so-called Sommerfeld integrals.
Since all six field components are needed, a method is developed for
simultaneous integration of these components. Also investigated is the
choice of possible paths of integration, with specific reference made to the
work of Lytle and Lager (ref. 4-5) which finds the field components of

a homogenous half-space. In addition to the numerical integration, we

shall also discuss the appropriate asymptotic and near-zone expansions of
each field component. They are then incorporated into the computer program
in order to improve the computational efficiency. A related work in this
case is that of Tsang and Kong (ref.6) where various asymptotic evaluations
of the longitudinal magnetic field were found for a horizontal dipole

placed on a lossy dielectric slab, having a thickness in the order of a

few wavelengths. However, their computation was restricted to observation
on the slab surface. Also included in the report is a comparison of the

numerical results with various known special cases.




SECTION II

' FORMULATION OF THE PROBLEM

Following Baum's notation (ref.7 ), the electromagnetic field generated

by a source in air above a stratified half-space can be written as

E(T,s) = - suo<§(f,§‘;5); J(@E",s)>
3 (1)
- e -
H(T,s) = <V x g(F,T";s); J(F',s)>
% > . . . . .

the G and g are the dyadic Green's function in the air region of a
current source above a multi-layered lossy media; ¥ is the source electric
current density; s = Q-iw 1is the Laplace transform variable; o is the
Permeability of free space. The operation <,> 1is a symmetric product

defined as;
1

ds
K@, #); b@E»> = | REFE)-BEH | or
SorV av!

%here the integration is over some surface S or a volume V.

The arrow -+ and the bar = over the quantities indicates a dyadic

and a vector form respectively. The comma separates quantities

hith a common variable of integrations. The dot - or the cross x directly
Lbove the separating comma, i.e. ; or X indicates respectively the multi-

iplication sense as a dot product or a cross product.

The dyadic function G is defined as

| §iF,8'ys) = [T+ K2 WIE@EE';9) | 2)

| > . . .
and g is then the basic dyadic we need to evaluate. Here, 1 designates

the identity dyad
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and ;x’ ayland Ez are unit vectors in the X, y and z direction

respectiyely. k° = is/c 1is the free space propagation constant.
Provided that the surface of the stratified half-space is located

in the x-y plane, _E’ isa 3Ix3 matrik of which only five elements are

non-zero for fields of an arbitrarily oriented current source above a

stratified half-space;

Byx 0 0
g(r,T,s) = 0 g, ©
82x &2y B2z

In this report only the derivation leading to the expressions for
fields produced by a dipole placed in the x-z plane is demonstrated. This

implies finding the components g and g

xx of a horizontal dipole source

zX
placed in the x-direction and g, of a vertical dipole source in the
z-direction. It is obvious that, by a simple coordinate rotation of
¢ + ¢ + 90° in the x-y plane, the x-directed dipole fields 8yx and g,x
will yield the fields of the y-directed dipole fields gyy and gy

y

Figure 1 shows a tilted electric Hertzian dipole above a finitely
conducting stratified half-space. This dipole is placed at a height ho
from the layered media making an angle of §' with respect to the vertical
z-axis; and ¢' with respect to the x-axis; the prime refers to the
source coordinate system. The dipole can be decomposed into three compo-
nents; one parallel to the earth surface along the x-axis with a dipole
moment Idx', another along the y-axis with a dipole moment I dy' and the
third one perpendicular to the earth along the z-direction with a dipole

moment of Idz'.

Now we can write the current density of the dipole as follows:

10
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J@Y =P 8xar M8 " -h) 3)

where &§(u) is the Dirac delta function and P is the vector dipole

moment given as
1
dx”

P =1ics) oy
dz!'

with the amplitude of the current denoted as f(s). Substituting for
the value of J in (3) into (1), then using (2) we can write the electro-

magnetic field components in the air region as follows:

™ _ -2 3 . -

E(r,s) = -su [T + kW] g(r,h58) - B

- 3 N (42)
H(r,s) = VXg(.r,ho;S) P

The vector Hertzian potential of the electric-type T is then related to

the dyadic E by the following expression
7= (se )7t Blr,h58) B (4b)

In what follows the derivation leading to the integral form of the
electric vector potential of a horizontal and a vertical dipole will be
given. This method of derivation uses a somewhat different approach than
the one derived by Wait (ref. 3) even though the two solutions are formally

the same.

For a horizontal Hertzian dipole, the scattered field in the mth-layer

can be written in terms of ES and és » which has the following
XX,m Xz,m
form:
~ 2 .
Eoen = Q/np) f[éx’m(i.n)e@[-voﬂo + 1(EX+nY)]dE dn
- (5a)
~ 8 _ . 2, re .
Egm = (K Q/mp) [ [ 8%2,m(Em SRy, (EX ¢ M JdEdn

m=1,2,...M
12
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2 2

- 1)% = -i(1 -52 -nz)if 3 n_ =g+ Um/(5€o),

: 22
where Y, = (" +n o m

n.. € and o, are the refractive index, relative permittivity
iand conductivity of the layered media; Eo is the permittivity of free
ispace, QO = ko/(8ﬂ2) is the normalized dipole strength; X = kox,

zY = koy and Ho = koho are the normalized distances.

~S ~S N .
i atisfies a homogeneous
Since both components 8xx,m and 8xz,m s g
wave equation of the kind:
2 2 2.~s «
=0 ; = T z
v+ konm)gxw 0 ; w=X 0

expression for @x and @z n 2re then readily known

) >

Oy m(®) = T, nlexply, (2 +H )T+ Ry o exp[-y, (Z+H)T) (5b)

W= X,2 ; m=1,2,... M

‘ _ 2 2 2.% _
and v, = (" +n" -mp)% 5 Re(y ) 20; z=kz and - H =k (h;+h,+...h )
are both normalized distances. '
? Thus, the values of @ (z) and its derivative with z, &' at
‘ w,m w,m
the top surface of the mth layer, i.e. Z =“'Hm-1’ are related to the
values at the bottom, i.e. Z = —Hm, by the matrix given as
Qw m. “n Y;lsm CI).w £1
> - ’ 1 (sc)
] 1
Qw,m o’n  m L_Qw,mj
Z=-H Z = -
m-1 m

Here, the prime denotes derivative ; ch = cosh (YmHm) and Sp = 51nh(YmHm).

Wé now proceed to find @w in the (m-l)th-layer from a knowledge of

,m-1

@Q o in the mth-layer. The boundary conditions at the interface z = —hm
]

-1
are

b et o i e e g b bl W]




2. 2 .

mgiw,m = km—lgxw,m-l W= X,z
k2 9 ~ _ k2 9~
m 3z%xx,m = "m-1 3z8xx,m-1
and
_3. g + _3_-- = .a 5 + _.é."'
ax8xx,m Bzgxz,m Bxgxx,m—l 3ngZ,m—1'

By applying the above boundary conditions to (5a), (5b) and (5¢c) we can

. . . . !
establish a matrix expression for (Dx,m-l’ ¢x,m—1’ (Dz,m-l and Qz,m—l at one
layer in terms of @m, q)x,m’ ‘Dz,m and (Dz,m at the adjacent layer as follows:
) 7 ¢ v-1is 0 o e 7
X,m-1 m m “m X,m
' Y.s ¢ 0 0 0!
(Dx,m-l mm m X,m
o) ) 0 0 c Y'ls o)
z,m-1 m m ™ m Z,m
9! a-te (y. A )7 Ls vy As A_c 9!
z,m-lJ m m mm m mmm mm Z,m_‘
L L 0 I
Z=-Ho Z=-H
(6)
where
2 2
Ay = nm-l/nm

Thus the field at any layer interface can be obtained in terms of the
th . . .
field in the bottom layer, i.e. the M layer, by successive interation.

Let us now define a transverse coupling matrix as follows:

1

1
CI)x,m ;

H
!
{

()

1
z,m_j m™m

o

lm

14




ﬁt is interesting to note that Nm’ Km can be considered as the transverse
@mpedance of the TE and T™M mode, respectively, ‘in each layer.. A  and Tn
are the coupling coefficients of these two modes across the interface
between the (m-l)th and the ﬁth layer. After the substitution of (7) into
(6) and then équating like coefficients for Qx,m and Qz,m’ it is possible

to obtain a relationship between the transverse coupled impedances at the

km-l)th in terms of the impedances at the mth layer as,
N1 = YpINy * ¥, tanh (v H1/[y, + N tanh(y HD] (@)
K1 = By[K, + B tanh(y H)]/[8 + K tanh(y H)] (9)

where in the above result Bm = Ym/n; . The cross coupling terms Aﬁ

and T, are given by
1

- -1,, 2, -
A = Am/wm + (1 - Am )/nm, Tl = 'tm/Wm (10

m-1 1

¢here Am can be found in (6) and Wm can be written as follows:

Wy = [yp+ N, tanh(y HO)T[8 ¢ K, tanhCy H)]cosh (v H )/ (1 8,)

m=1,2,... M (11)
3 . t
Since no reflection can occur at the bottom layer, 1.e. the M h layer,
this implies RH = RH = 0 in (5a) then we.conclude that
! x,M z,M

2 = - 3 -
ﬁM =Yy Ky = Yy/my ad Ty = Ay =0 Therefore by using (8)-(11) the

following information can be obtained;

) 2
Nyo1 = Y5 Keer = Y/

énd (12)

2 2 _
Ao = Yy - Umy s Ty =0

15
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Up to now, the impedances in each of the M 1layered earth are
explicitly knoﬁn via an iterative procedure based upon (8) - (12). To
find the total field in the air region, we note that the electric vector
potential of a horizontal dipole in the air region can be written in terms

of a primary field plus a scattered one.

€y o =8 + g W= X,2 | (13)

p and s refer to primary and scattered field, respectively, and the

subscript o refers to air region. §§ o and §2 , are given by
’ ’
~P - -1 ) ) ) \
Exw,0 Qo,j:TYo exp[ YOIZ H°| + i(&X + nY)]d&dn (14)
- 00
g =0 _ s
Xz,0

The primary field given in (14) and (15) were obtained using the wave

3 K3 ~s

equation in free space with a source excitation. The scattered Bxw. 0
>

field can be written as in (5a) and (5b) with ¢, given by
H]

H
= - = 16
® ,0 R ,0 exp ( YOZ) W= X,Z (1e6)

Now by applying the boundary conditions at the interface z=0 to (5a),
(14), (15) and (16),the following results for the reflection coefficients

in free space can be obtained:

S YOy - N/ Crg +N) a7
H -1
Rz,o = '2)‘0[ (A, + N+ KO)] (18)

16
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Vhere No’ KO and Ao can be found from (8)-(12) by successive iterations
aepending on the number of the earth layers. It can be shown that solutions

for RH and RH are consistent with an earlier work given by Wait (ref.3),

X,0 Z,0
even though the concept associated with the coupling coefficient Ao is not
explicitly used in his work.

The derivation of the Hertz vector potential for a vertical dipole

is much simpler because only the z-component of the Hertz potential is

ﬁeeded. Thus, following the same procedure previously described, we have

5 =3P %S (19)
gzz,o gzz-,o * gzz,o

where V refers to field due to a vertical dipole, and the primary field

L:

is given as
zz,0

6]

o~ U _fme;lexp[-YoM-Hol + 1(EX + nY)]d&dn (20)

and the scattered field ﬁz o 1s given by

ézi,o = Qo,};_[ wz’o(g,ﬂ)GXP[-YOHO + i(EX + nY)]d&dn (21)

v
v =R exp (- 2)

zZ,0 Z,0

and
R'V =471 K/ + K 22
z,0 -~ Yo (Yo- o) (Yo o) (22)

where Ko can be obtained from (9) by successive iterations.

Now if we write dx' = sinB'cos ¢'d%, dy' =sin 6'sin ¢'d2 and

dz

= cos 0'd2 and using the following identities:

17
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6y = expCiR I/Ry = Gm) [ [ v expl-v,| 2ot [ +1 GBXenY) 1dEen

® ‘ (23)
G12 = exp(iRlz)/R12 = (iw){if'Y;Iexp[-YO(Z+HO)+i(£X+nY)]d£dn

_ 2 2% 2
where R11 = [(Z-Ho) +p7]° R12 = [(Z+Ho) + pz]J‘r and p = X2 + Y2

we can write from (4b) the three components of the Hertzian vector potential,

T, = C(G11 - G, + V) sin 8' cos ¢' (24)
ﬁy = C(Gy; - Gy, *+ V,) sin 6' sin ¢' (25)
~ T . ] ]
T, = C[(G11 - G12 + Vl) cos 6 + V351n ® cos ¢
, . (26)
+V, sin 6 sin ¢ ]
where C = iZOIdl/(4ﬂ); Z°=Vuo7eo represents the free space intrinsic
impedance, and Vl’ VZ’ V3 and V4 are given by
(o]
= - ¢ =
Vm L) Fm(a) exp[ YO(Z-+HO)] Jo‘ap)ada m=1,2 (27)
V3 - cos ¢ - , ,
= Fqy(a) exp[-y (Z+H))] J, (ap)a”da (28)
V4 sin ¢/
where J and J1 are the Bessel functions of zero and first order
o
respectively and
F (@) = 20y, + k)7
1 o o]
1 (29)
Fo(@) = 2(y, *+ N)

18
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énd

Fol) = -2 [G, *+ Ny + K17

ﬁ:n getting Vl’ Vz,;Vé and V"‘t given in (27) and (28) we have used the

following transformations:

X=1rTcos¢ ; y =1 sin ¢

£ =0 cCOS¢ ; n =o sin ¢,

. . . 2 2 2 2 2.+ .
wvhich implies £° +n” =a and vy = (@” -n)% ;'Re ymzo ,

where m=0,1 ... M.

We have listed the field components (Ew’ Hw); w=X, ¥y, or z, ofa

dipole arbitrarily oriented in the x -z plane (¢' = 0) in Table 1 and 2.

Table I gives the field due to the direct contribution of the dipole, desig-
nated as (Ewl, le) with w=Xx, y or z. In order to obtain the field

due to the perfect image, designated>as ‘(sz, sz), one just replaces R11

by R12 and (Z-Ho) by (Z + Ho) in Table I. In Table 2, we have
written the remainder field as a sum of two parts; one contains a Bessel
function of zero order Jo and the other has the Bessel function of order
one Jp

1 oo
Bz Hyp) = j’o €D, XD expl-v, Z+H )]J, (ap)ay] da (30)
m=0

m=0, or 1

t t . .
Thus the total field for each component (Ew, Hw) is then given as
3
t

¢ -1 - 31
€L HD = EH) Y CUMMEHD sy (31)
m=1

where . . 2
E = izokg(1d2/4ﬂ) and H = k. (1dL/4m).
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TABLE 1

LIST OF PRIMARY FIELD COMPONENTS

Horizontal Dipole

Vertical Dipole

. 2 2 ' . . 2 2 2 2 . 2 . '
—(1+31/R11-3/R11)[(Z—Ho)p cos ¢/R11]Gllcos 0 -[(1+31/R11—3/R11)(p cos ¢/R11) -1 -1/R11 + l/Rll]G11 sin ©

. 2 . 2 ' . 2 2 . 2 . '
_(3+31/R11—3/R11)[(Z—Ho)p sin ¢/R11]Gllcos 0 -(1+31/R11-3/R11) (p”sin ¢ cos ¢/R11) G11 sin 6

. 2 2,.2 . 2 ' . 3 ' 2 . '
-[(1+31/R11—3/R11)(Z-H0) /Rll-l -1/R11-f1/R11]G11c056 -(14—31/R11— 3/Rll)[(Z—Ho)p cos ¢/R11]G11 sin 6

(i-1/R;;)(p sin ¢/R;;)G;; cos 8'

-1 - l/Rll)(p cos d)/Rll)G11 cos 6'

(i - 1/R;)[(Z-H))/R ;16 sin o'

-(i - 1/R;)(p sin ¢/R )G, sin '

Gyy = exp(iR},)/Ry,

as given in equation (24)




TABLE 2
~ LIST OF GROUND CORRECTION FIELD COMPONENTS

= Q 1
: ' £ £l
X YO[FZ - (F2'-Y0F3)02cosz¢]sin ' aYO{[(F2 -YOFS)/D]cos(2¢)sin 6' +YOF1cos ¢ cos 6'}
y -CYOGZ/Z)[FZ - Y Fzlsin(29)sin 9' OLYO{[(F2 - Y F5)/P]sin(2¢)sin 8' + Y F; sin ¢ cos 6'}
z YOCYi + 1)F, cos 6' OtYo[YO(F2 - Y Fg) - F3] cos ¢ sin 8'

TC

w N o A

7 X -(azycz)/Z)F3 sin(2¢)sin 8" ay [ (F5/p)sin(2¢)sin o' - F, sin ¢ cos 6']
= 2 2 . .
—| y Yo[—YOF2 + 0 F3 cos“¢] sin 6' ayo[—(FS/p)cos(2¢)51n o' + F1 cos ¢ cos 0'
z 0 aY0F2 sin ¢ sin 6'

1 @ LM m -1 _ . -
(B, 3:H,5) = b f (&'w,){w) exp[-y (Z+H )] J_(ap)oy = do ; B, =1,2,3 are given in (29)
[o]

w=X,Y,2




SECTION III

NUMERICAL SCHEME _

In this section we discuss the numerical method used for the
computation of those integrals listed in table 2. Our primary concern is
to compute all six field components for a two-layer earth representing a
slab of lossy dielectric which has the electric constants of a nonreinforced
concrete and is located above a homogeneous earth having electric property of

a wet dirt. A typical integral form can be written as follows:

o]

Q= ] T@ay ! da (32)
0 °

where T(a) 1is given by
T(@) = G@)exp[-y (Z + H)]J (xp); m=0,1

and G(@) is a typical function listed in table 2 , which has poles and
other algebraic singularities in the complex a-plane. Typically the integrand
in (32) has branch cut singularities due to Yo = (u2-1)4‘r and another due to
Yy = (oz2 - ng)%; Yo and Yy, are the normalized propagation constants along

the z-direction for the two infinite layers 0<z<» and -»<z< ~hl,
respectively, where h1 is the width of the slab in a two layered earth

media. The integration given in (32) can be split up into two parts.
> -1
Q= [f + [ 1 Tayg da (33)
o 1

and by using the transformation t= (1 - az)l" in the first term of (33)

and T = (_Otz-l)% in the second term, Q can be reduced to the following

form: ) ©
. 2.% 2.%
Q=1i| T[l-t]%dt + T([1+171%)dt (G4)
J; J

o]
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The form of Q given in (34) is wused in our computation algorithms
discussed in appendix C. We note that, in a similar work by Lytle and Lager
\

|
gref. 4), a deformed path was used beneath the real axis as shown in figure 2.
|

While such a deformation aveids the numerical difficulties

arising from possible poles and other discontinuities close to the real axis,

it necessitates the use of a Bessel function with complex argument. Since

the value of the Bessel function grows exponentially for a large but complex
%rgument, it appears such a deformation would not be a particularly efficient
one when the horizontal distance is substantially greater than the free space

Wavelength unless it is very close to the real axis.

R
1A

complex

o-plane

Figure 2: A path beneath the real axis avoiding the branch
point at o = 1 and pole singularities close to
| , the real axis.

Lytle and Lager (r&f.4) pointed out that one way to avoid such a problem
is to use a deformed path formulation based upon a maximum decay and, or
minimum oscillation criteria. Actually, the use of the steepest-descent
ath as a function of observation angle is another appropriate alternative
Kong(ref.6), Banos (ref.8)]. In any case, the extension of such an approach
to a multilayered earth would involve the inclusion of contribution from

possible singularities as a result of the deformation of the path.
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We next consider the pole locations of T(a) in the complex o-plane
particularly those, if any, close to the path of integration on the real
axis in the range 1_§ar<:m (with the choice of branch cuts shown in
Figure 3, pole(s) located in the range 0 <a, < 1 1is less significant
since it would have to be on the other side of the cut in the same Riemann
sheet and, hence, can influence the integrand value only indirectly through
the contribution around the branch point). The strategy that we have adopted
is first to determine possible existence of poles, then for each pole which
is close to the real axis, we would define a circle of influence within which
smaller partition of the integral is adopted to insure the accuracy of the
numerical integration.

By investigating the functional form of T(a) as tabulated in table 2,

it is easy to see that T(a) has poles whenever the denominator of F., or

1

F, vanishes. The poles of F., can be determined from (29) as the root of

2

the following equation:

1

Yy +K =0 35)

and they are the TM-type modes. The poles of F on the other hand, can

2,
be found from

Y +N_ =0 (36)

corresponding to a set of TE-type modes. By using the relationships .

given in (8) through (12) for a two-layer earth, a more explicit representa-

tion of (35) and (36) is

2,2 .2 2 2, _ ,
[Yoyzﬁl/nz - 2] tan Z + (Z/nl][YOH1 + YzHl/nz] 0 (37)

24
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COMPLEX

a-PLANE

POLE LOCATION

Figure 3 - Path of integration in the complex c-plane
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for the TM type modes and
[y vy H2 - 22] tan Z + Z[y H, + y,H. ] =0 (38
0’21 ol '271 '

for the TE type modes, where Z = iY1H1 and Hl = kohl is the normalized

slab width; Y°H1 and YZHl are given by:

=
==}
]

(2% + (2 - DE = a2 - ol - ey
and

e a2 .2 2,.2%
Y2H1 = [-Z + (nl-n2)H1]

"

-i[z% - @ - ndyly?

Thus, the problem reduces to finding the zeros of (37) and (38) in a complex Z-plane.
Once found, the corresponding value in the complex o-plane is then obtained
from the relationship: a = [ni - [Z/Hl)z]i .

It is of interest to note that (35) would reduce to the Sommerfeld

pole of a half space. problem whenever H, - 0 or ® and (36)

1
would have no zeros as expected since it reduces to (Yo + Yz) when
H1 - 0 and to (Yo + Yl) for H1 »> oo,

In the case of 0, > @ or where the second earth layer is a perfect

conductor, equations (37) and (38) reduce to

-tw? - vf - 2% e @md¥an z = 0 (39)

for the TM-type modes and

Z+ [(ni - l)Hi - 22]% tan Z = 0 (40)

for the TE-type modes. Thus for a lossless slab where n, is a real quantity,
(39) and (40) represent a set of even TM-type and odd TE-type surface wave

modes, respectively. These real roots are then used as a starting value in
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~ the search of the complex‘roots when the conductivities of earth and

}slab are finite. The computational technique for finding these roots is
|

 described in appendix C.

| We have plotted in figure 4a location of the pole corresponding to
ithe TMl-mode over a frequency range from 100 to 370 MHz, for a cement slab
i(srl =3 and o, =0.002 mho/m) of width h1 =10 cm over a wet earth

?(erz = 10, g = 0.01 mho/m). As frequency increases, the pole moves upward
i

- and the branch cut moves downward. At about 400 MHz the pole disappears

' in the next Riemann surface. If we now reduce the slab width gradually,
but fix the operating frequency at 400 MHz as shown in figure 4b, the pole
}reappears in the proper sheet when the slab width is reduced to 9 cm, and
- continuously moves downward as width decreases. At h1 =0, it reduces

to a Sommerfeld pole for a half space region. (The disappearance, followed

‘by a reappaerance, of a slab mode was also observed earlier in related work by

\
|
'Shevchenko (ref.9)]. It is noteworthy that equation (38) presents no TE-type

zof solution until the slab width is greater than 10 cm. In table 3, we have

‘tabulated the locations of both TE and TM modes for h, ranging from 10 cm

1
to 50 cm. It is obvious that those poles which are far away from the real

. axis should present no real problem for our numerical computation of the

| Q-integrals.

| Except for the region with the possible appearance of a simple pole,

}the path of integration in (34) is subdivided basically according to the
iextent of oscillation associated with the Bessel function and the rate of
?decay of the exponential function in the integrand. The finite integral
‘is then truncated at a value of T where either the integral beyond that
point is negligible, or an analytical approximation to the remainder is

|
| possible. Incorporation of this scheme is detailed in appendix C.

27
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TABLE 3

ROOTS AS A FUNCTION OF SLAB WIDTH AND FREQUENCY

Frequency _ _ _ -
MHz h1 = 10 cm h1 = 20 cm h1 =30 cm h1 50 cm
™ ™ ™ ™
100 0.954452 + 1-0378452 0.950803 + i:0770147 0.933858 + 1137896 1.14523 +i-505429
™ ™ ™
0.951733 +1-0728692 0.918351 + 1-298208 1.52873 +i-25662
200
TE TE
0.981837 + i-253395 1.37374 + i-150405
™ ™
0.942977 +i-13541 1.0953+i-212372
TE TE TE
300 0.986075 + i-235745 1.31183 +1i-155028 1.5402+1-0747219

™
1.60042 +1i-152418




6¢

h=10cm o,=0.002mho/m

e 0.0l mho/m

-3 100~ 300 MHZ
1n steps of 100 MHZ
4 350 MHZ
5. 3TOMHZ

05 1.0 15

(a)

15

Lo

05

FREQUENCY =400 MHZ Il. h=9cm
2-6 h=8-Ocm
in steps of 2cm

05 ) T T s

(b)

Figure 4: (a) Location of poles and branch cuts as a functien of frequency for a fixed slab width,

(b) Location of poles as a function of slab width for a fixed frequency.




SECTION IV

COMPUTATION BASED UPON ASYMPTOTIC AND QUASI-STATIC EXPANSIONS

The numerical integration outlined in the previous section for the
functions givén in table 2 and in the case of a two-layer earth is inefficient
for very large and a very small observéfion distances. To improve the efficiency
we need to incorporate into our numerical program an asymptotic solution for the
case of avery long distance, say over 10 free space wavelengths;and a quasi-static

solution for the case of a very short distance, say less than 0.0l wavelength.

1. Asymptotic method.
In this section we seek the asymptotic solution of a function

T(R) in the form of

[o-}
I'R) = JrG(a)exp[—Yo(Z +Ho)] Jm(ap)cw;1 da , m=0or 1 (41)
)

: . 2 2.3 «
where G(o) 1is a typical function listed in Table 2, R = [(Z-+H°) +p ]_.
We assume that G(o) has only one simple pole at a = ab sufficiently close
to the path of integration. By extending the integration in (41) over the

negative real axis of the complex a-plane one can transform I'(R) into the

following form:

o]

T(R) = f £(a) eRB®) 44 (42)

‘where .
£(a) = (aY;I/Z)G(a)HIgl)(ao)e"mp , m=0,1 (43)
. g(@) = -y cos 6 + iasin 6 (44)

3
where we have replaced Z +Ho =R cos 6; p=R sin 6; and R=[(Z +H°)2 + pz]

is the distance from the image source of a perfect conductor half-space to

the observation point and 6 is the angle that R has with the vertical z-axis.

—
In what follows, R12 will be replaced by R.
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; Hh(l” (@p) given in (43) is the Hankel function of the first kind of m

 order. It has been assumed that G(®) is an even function of o whenever

the order of Bessel function Jm(gp) is even and odd function of

. whenever the Bessel function order is odd.

In order to develop an appropriate asymptotic expansion, we now follow
the work of Brekhovskikh (ref.10) by deforming the contour of integration
from the real axis to the steepest descent path in the complex a-plane passing
through a saddle point as where g'(as)=0. Assuming such a deformation

yields no additional residue contribution and defining a real variable s

2

| along the steepest descent path so that s° = g(as) - g(a), we have the

~ following expression

Rg(a_ ) 2
TR) =e  ° rcb(s) e RS 4s

=00

where @(s) = £ (a) %‘35‘-. From (44), it is not difficult to show that

a, = sin 8 so that g(as) = i. Now since we have assumed the existance of

a pair of poles at a = % up in the complex a-plane, the expression &(s)
also possesses a pair of poles in the complex s-plane located correspondingly

at s = £+ B where

in/a 3

B

[g(as) - g(ap)]% = e [1 - (l-apz) cos 8 - ap sin 6]%

‘Thus, we can rearrange the expression for I'(R) in the form of

2
. -Rs
rR) = e rw(s) -e-j—B-—ds (45)
S -

The term Y(s) (sz-Bz)Q(s) is then a smooth function near the saddle
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point s=0 and therefore can be expanded in Taylor series as

Substitution of this expression into (45) and subsequent evaluation of the

individual integrals yield the following asymptotic expression

@ 2n
T'R) =27 e e néo n - QZn(u) (46)
4 n!R
where i 2
Q, () =1e¢e
2n > dx
X
u

and u= *+BvYR and, again, R;=R12. Typically, only two terms are used in our
computation. The coefficients CO and CZ’ in this case, are known explicitly
in terms of f(a), g(a) and their derivatives [Brekhovskikh (ref.10) and

Felson and Marcuvitzﬁref.ll)],

c, = v(0) = - 8%(0)
= " = 2¢(0)08™ ' £" (0)
%CZ = y"(0)/2 = - %(6-?)—2——;—2— £'(0) - g"
(g")
2
1 gTv 5 (gm? 1
+ - = - = £(0)
D 1O M ]

along the steepest descent path we have from (44) and the definition that

f(a) (da/ds) = @(s) the following expression

-im/4

cC = - 2(Z%e cos6)£(0)
0 8 (47)

32

[T | S



3C, =3 Z%e—i“/‘lcose{Ssint'(O) - cos? @ £n (0) + (3/4 + j/B)E(O}  (48)

Here we note that, because the function f typically behaves like (a0+9)'1,
| where Q is some slowly varying function around yb:O, its derivatives are

1 singular at o=l even though the value of C2 is finite. Thus, in order

j to avoid the difficulty in numerical computation, we can define a new

' variable o = sin w so that

2

ic, = - (1+j)B2 {2 sineg—va - cosefl-—-g-
dw™ ! w=6
w=6
« (3/4 + §/B%)E(w=8) cos 6} (49)

- and f 1is given in (43).

2. Quasi-Static approximation

j : We have mentioned earlier that the typical numerical computation of

 the field integral becomes very time consuming when an observation

distance is much smaller than a wavelcngth. Due to the slow convergence

- of the exponential aud Bessel function the numerical computation of the

integral in (30) needs to be carried out for excessively large values of o.
Obviously, for a two layered earth, No and KO as found in (8) and

(9) can be approximated by

2
Ko ; Yo/nl
-
No Yo
for those values of o where

a > max (6/H,, 10|n1|)

1Thus, the leading terms of Fz(u)(2.=1,2,3) as given in (29) will behave as
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_52.2,,.2
where B1 = 2n1/(_n1 + 1), B

_ _ .2 2
s =1 and B, = (n1 - 1)/(n1 +1).
The subscript q refers to quasi-static.
We can now add and subtract these terms to the original integrals

given in (27) and (28) and write the Sommerfeld integrals as follows

v, = vé” N v,Ez) + AV, (50)
where -
va) _ g I -YobJ (a0) -1y
| ) oe o LOPIOY, da
Q0 _‘Y b
vi® - jao[Fz(“) -Fpa(@le ° 3 (ap)oda
a
s
and AV, = [Fy (@) - Fm(a)]e ° J, (ap)ada (51)

0

where a, = max (6/Hl, 10|n1|), b=2+ Ho and % =1 or 2.

The leading integral Vgl) is known explicitly from (24) in terms of G12
as .
S DI (52)
2 2 R

The integral AVQ, integrating from 0 to %, still needs to be evaluated
numerically in the usual manner. However, the remaining integral VEZ)

can be obtained analytically since now the integrand converges rapidly as
Fl(a) approaches qufaj for large o. This integral is evaluated in

Appendix A with the result given as

(2) “%gP i}
Vl = Cz{b ¢n(R+b) -R + [y + zn(ao/Z)/]b +e /o } L =1,2 (53)
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2 2
where C1 = 2n1/(n1 +1), C, = (nifl)/4; and Y =0.57721566 is Euler's
constant.
Similarly, we can split up the expression for V3 given in (28) in

. the following form

‘ - v(1) (2) (3)
3 V3 V3 + V3 + V3 + AV3 (54)
ﬁwhere
: Qo 00 - b
(1) d Yo -1
V3 = B3 cos 6~55 J db f e Jo(ap)ayb do
b o]
ad =Y. b
ng) = B3 cos eg%- [—l—-— —l-ie ° Jo(ap)ada
| 77

| o 1 (o]
| o)
‘ -y b
i (3) - d [® -2 Y0
| V3 = B3 cos 655-‘ [Fs(a) - BSYl ]e Jo(a)ada
‘ o
3 0
'and finally
i 9 ° -2 ‘Yob

AV3 = B3 cos ess-j [Fs(a) - BSYl le Jo(ap)ada (55)

o}

-

3We note that in (54) an additional term Bsylz has been added and sub-
tracted instead of just adding and subtracting Bjygz. The reason for this
%kind of arrangement is to avoid the singularity at o = 1 when we integrate
jnumerically from 0 to R along the real axis in the complex o-plane.

On the other hand, in the analytical evaluation of Véz); the path of
iintegration is to be understood as being indénted into the lower half plane.
‘iaround the branch point.at o= 1.

‘ A similar technique as applied to V(z) can be applied to the different

(1)
3

terms of V_. Analytical expression for V is derived in appendix B as

3

 v{P= B pcos 8 {[R(R#D)]7! - 0.5)In(R+b) -3 (y-3-Ti/2-%0 2} (56)

3
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Thus, the leading term of V3 behaves as 1/R, which is similar to the
leading terms of V1 and V2. On the other hand, analytical expressions

2 3 .
for Vg') and Vg') are known as (Appendix B).

@, (7D NS | ) ;
Vs —— Byocos o b + (v ~§ -Ti/2-%n2 + tnn, |
(nl-l)
+ ln(R+b)] (57)
and
V§5)= ~C5p cos ¢[n(b+R) +b(R-B) " + (Y '% -In2+ &n a )] (58)

where C3 = (5n§-+l)(nf—l)2(n§-bl)‘2/8 and Y 1is Euler's constant. The
last term AV3 will be evaluated numerically. We note that, once all the
V's are found and then substitute in (25) and (26), expressions for the field

components are then carried out analytically according to (29a).
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SECTION V

DISCUSSION OF RESULTS
A computer program was developed - for the computation of the
jfrequency‘domain electromagnetic response of an electric dipole located
rabove a two-layer earth representing a non reinforced concrete slab on the
surface of a dissipative earth. The program computes all three components
iof thé electric and magnetic fields simultaneously for an arbitrarily oriented
dipole with a known dipole moment. Unless otherwise specified, the dipole
source is assumed to be always located along the vertical axis at a given
height ho. Geometry indicating relative positions of the source and
observation points is shown in figure 5. Also, relevant parameters for

the computations in this section are chosen as follows.

| Frequency of operation = 300 MHz

Relative dielectric constant and conductivity -in

1) Air, (e..,0) = (1.0, 0.00)

€10°%
2) Cement slab, (Erl,ol) = (3.0, 0.002)

3) Earth, (srz,cz) = (10.0, 0.01)

Slab width h1 0.1m

In order to check the numerical accuracy of the program, we have first

computed the vertical electric field component due to a vertical dipole

iabove a homogenous dissipative earth, for which the analytical solution as

%well as the mumerical solution is available  [Chang and Wait(ref;lz), Chang and

| Fisher (ref.lSﬂ. Accuracy to witain 5 digits is achieved for any given distance.
Next, asymptotic expansion of the exact Sommerfeld integrals for high-

?angle observations is used to compare with results obtained numerically for

the case when the observation point is located on the slab surface at a fixed

observation angle 6= 5°. We vary the separation between the source and the
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Observation Point’

Ri= [(Z-ho)2+r2]|/2 P(x,y,z)
Riz= [(24ho)2+r2]""

dt'= [(dx") 2+ (dz")2]'"2

Air l -~

(€9, pgr 05 =0)

T . A = X

Non-reinforced ho

Concrete Slab l

EQr‘lh ) (62,}-‘-0, 0.2)

Fig. 5: A tilted dipole above a two layer half-space.
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observation point and the result is shown in tables 4 through 9 togetherwith the
sky-wave (plane wave) solution for three different orientations of

isources, a vertical dipole (Case I); a horizontal dipole ibserved in

%the plane of the dipole (Case II); and a horizontal dipole observed in the
plane perpendicular to the dipole (Case III), Our results from the exact evalu-
%ation.of the Sommerfeld integrals are all within afraction of a percent for
idistances about 5 meters or larger (in this case, a free-space wavelength

iis 1 meter). Only when the distance drops to within 1 meter do the .

' two results show any significant difference.

Comparison is also made for a fixed observation distance R =40 meters,
dR.lez), and a varying observation angle ranging from 5° to 80° (tables 10
3through 12). The agreement is again excellent until the observation angle is
near grazing (i.e. the case when 6 = 80°). This is obviously due to the
limitation of the sky-wave solution near the slab surface.

The electromagnetic field components as obtained by a two-term

asymptotic expansion with the inclusion of the contribution from the ground

wave correction (see Section IV.,l) are tabulated in table 13 for angles
'@ = 30°, 45° and 80° and R = 40 meters. Clearly, these results with

ground wave corrections are now in good agreement with the exact numerical

'results given in tables 10 through 12. We note, hawever, that computation

time for the asymptotic result is much less than the time spent in evaluating

| the exact Sommerfeld integrals.
Comparison of the quasi-static and exact results is shown in Table 14

- for R =0.005 meter ‘and 8 = 4.5°. As a rule of thumb, the time consumed

in computing the quasi-static result is less than one third the time spent

in getting the exact answer.
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TABLE 4

CCMPARISCN OF THE EXACT DIPOLE SOLUTIONS WITH THE PLANE WAVE SOLUTIONS

FOR R = 40M and 6 = 5°

FREQUENCY = 3.00E+08 C/S
REFRACTIVE INDICES OF AIR, CEMENT AND EARTH RESPECTIVELY

NO=  1.0000+J 0.0000 EPSRO= 1.0E+00 SIGMAO= 0.

Nl=  1.7324+J .0346 EPSR1= 3.0E+00 SIGMAl= 2.000E-03
N2=  3.1637+J .0947 EPSR2= 1.0E+01 SIGMA2= 1.000E-02
Z= 0. M OBSERVATION HEIGHT

HO= 3.985E+01 M  DIPOLE HEIGHT

Hl= 1.000E-01 M  SLAB WIDTH

R= 4.000E+01 M  SOURCE TO OBSERVATION DISTANCE
THETA= 5.0 DEG ANGLE OF INCIDENCE

PLANE WAVE SOLUTION EXACT DIPOLE SOLUTION
Case I PARALLEL POLARIZATION VERTICAL DIPOLE
EX= 3.056898E-02+J 3.703096E-01 3.097773E-02+J 3.703326E-01
EZ= 2.400224E-02+J 5.427249E-02 2.394655E-02+J 5.430786E-02
HY= 4.743142E-04+J-1.160146E-03 4.754081E-04+J-1.160098E-03
Case II PARALLEL POLARIZATION HORIZONTAL DIPOLE
EX= 3.832980E-01+J 4.229588E+00 3.802394E-01+J 4.227314E+00
EZ= -1.814701E-01+J 4.339812E-01 -1.818789E-01+J 4.339581E-01
HY= 5.421436E-03+J-1.326053E-02 5.413494E-03+J-1.326665E-02
Case 1II PERPENDICULAR POLARIZATION HORIZONTAL DIPOLE
EX= 3.907456E-01+J 4.251730E+00 3.876019E-01+J 4.249454E+00
HY= 5.434058E-03+J-1.328765E-02 5.426073E-03+J-1.329364E-02

HZ= -9.039869E-05+J-9.836337E-04 -8.650202E-05+J-9.814461E-04

RELATIVE DIF,

1.10164E-03
1.11149E-03
8.73337E-04

8.98025E-04
8.70079E-04

6.99900E-04

9.09567E-04
6.95111E-04"
4.53562E-03
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TABLE 5

COMPARISON OF THE EXACT DIPOLE SOLUTIONS WITH THE PLANE WAVE SOLUTIONS
FORR = 20M and 8 = 5°

FREQUENCY = 3.00E+08 C/S
REFRACTIVE INDICES OF AIR, CEMENT AND EARTH RESPECTIVELY

NO= 1.Q000+J  0.0000 EPSRO= 1.0E+00 SIGMAO= 0.
Nl=  1.7324+J .0346 . EPSR1= 3.0E+00 SIGMAl= 2.000E-03
N2=  3.1637+J . .0947 EPSR2= 1.0E+01 SIGMA2= 1.000E-02
Z= 0. ‘ M  OBSERVATION HEIGHT
HO= 1.992E+01 M DIPOLE HEIGHT
Hl= 1.000E-01 M SLAB WIDTH
R= 2.000E+01 M  SOURCE TO OBSERVATION DISTANCE
THETA= 5.0 DEG ANGLE OF INCIDENCE
PLANE WAVE SOLUTION EXACT DIPOLE SOLUTION RELATIVE DIF,
Case I PARALLEL POLARIZATION VERTICAL DIPOLE .
EX= 1.163509E-01+J 7.340270E-01 1.180111E-01+J 7.339473E-01 © 2.23592E-03
' EZ= 1.383776E-01+J 1.299066E-01 1.381797E-01+J 1.302282E-01 © 1.98841E-03
HY= 7.535151E-04+J-2.390850E-03 7.579462E-04+J-2.391171E-03 1.77109E-03
Case II PARALLEL POLARIZATION HORIZ?NTAL DIPOLE
- ]
EX= - 1.463992E+00+J 8.366519E+00 1.45;;00E+00+J 8.358589E+00 1.78407E-03
EZ= -2.970482E-01+J 8.927332E-01 -2.987085E-01+J 8.928127E-01 1.76554E-03
HY= 8.612717E-03+J-2,732754E-02 8.579327E-03+J-2.734948E-02 ' 1.39371E-03
Case III PERPENDICULAR POLARIZATION HORIZONTAL DIPOLE .
EX= 1.481989E+00+J 8.409508E+00 1.468764E+00+J 8.401593E+00 1.80705E-03
HY= 8.633389E-03+J-2.738369F-02 8.599879E-03+J-2.740508E-02 © 1.38418E-03

HZ= -3.428739E-04+J-1.995624E-03 -3.266890E-04+J-1.938306E-03 " 9.03639E-03

Sl
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FREQUENCY = 3.

TABLE 6
COMPARISON OF THE EXACT DIPOLE SOLUTIONS WITH THE PLANE WAVE SOLUTIONS

FORR =10 M and 6 = 5°

O0E+08 C/S

REFRACTIVE INDICES OF AIR, CEMENT AND EARTH RESPECTIVELY

NO=  1.0000+J 0.0000

Nl=  1.7324+J
N2=  3.1637+J

Z= 0.
HO= 9.962E+00

Hl= 1.000E-01
R= 1. OOOE+ 01

Case I

HZ=

M OBSERVATION HEIGHT
M  DIPOLE HEIGHT-
M  SLAB WIDTH

M - SOURCE TO OBSERVATION DISTANCE
THETA= 5.0 DEG

ANGLE OF INCIDENCE
PLANE WAVE SOLUTION

PARALLEL POLARIZATION

2.613969E-01+J 1.463647E+00
6.155241E-01+J 3.410448E-01
1.336817E-03+J—4.832545E~03

PARALLEL POLARIZATION
3.520552E+00+J 1.661682E+01
-5.592796E-01+J 1.797238E+00
1.527989E-02+J-5.523624E-02
PERPENDICULAR POLARIZATION
3.557541E+00+J 1.670189E+01
1.531724E-02+J-5.534993E-02
-8.232444E-04+J-3.864878E-03

EPSRO= 1.0E+00
.0346 " _EPSR1= 3.0E+00
.0947 EPSR2= 1.0E+01

SIGMAO= 0.
SIGMAl= 2.000E-03
SIGMA2= 1.000E-02

EXACT DIPOLE SOLUTION

VERTICAL DIPOLE

2.682098E-01+J 1.462810E+00
6.150482E-01+J 3.436857E-01
1.354862E-03+J-4.835663E-03

HORIZONTAL DIPOLE

3.468397E+00+J 1.658793E+01
-5.660924E-01+J 1.798075E+00
1.514558E-02+J-5.532048E-02

HORIZONTAL DIPOLE

3.504112E+00+J 1.667305E+01
1.518255E-02+J-5.543214E-02
-7.581100E-04+J-3.838788E-03

RELATIVE DIF.

4.61551E-03

3.80874E-03
3.64639E-03

3.51825E-03
3.64123E-03
2.76431E-03

3.56371E-03
2.74547E-03
1.79317E-02
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TABLE 7

COMPARISON OF THE EXACT DIPOLE SOLUTIONS WITH THE PLANE WAVE SOLUTIONS
FOR R = 5M and 6 =5°

FREQUENCY = 3.00E+08 C/S

REFRACTIVE INDICES OF AIR, CEMENT AND EARTH RESPECTIVELY

NO= - 1.0000+J 0.0000 EPSRO= 1.0E+00 SIGMAO= 0,

Nl=  1.7324+J .0346 EPSR1= 3,0E+00 SIGMAl= 2.000E-03
N2=  3.1637+J .0947 EPSR2= 1.0E+01  SIGMA2= 1.000E-02

Z= 0. M OBSERVATION HEIGHT
HO= 4.981E+00 M  DIPOLE HEIGHT
Hl= 1.000E-01 M SLAB WIDTH

R= 5.000E+00
THETA= 5.0 DE

M SOURCE TO OBSERVATION DISTANCE

G  ANGLE OF INCIDENCE

PLANE WAVE SOLUTION

EXACT DIPOLE SOLUTION

VERTICAL DIPOLE

Case I PARALLEL POLARIZATION
EX= 4.469625E-01+J 2.943260E+00 4.758635E-01+J 2.937652E+00
EZ= 2.556915E+00+J 1.032260E+00 2.559207E+00+J 1.053921E+00

 HY= 2.618556E-03+J-9.684097E-03 2.693199E-03+J-9.706489E-03

Case II PARALLEL POLARIZATION HORIZONTAL DIPOLE
EX= 7.238051E+00+J 3.317812E+01 7.033542E+00+J 3.307163E+01
EZ= ~1.213086E+00+J 3.568223E+00 -1.241987E+00+J 3.573827E+00
HY= 2.993023E-02+J-1.106897E-01 2.940826E-02+J-1.110340E-01

Case III PERPENDICULAR POLARIZATION HORIZONTAL DIPOLE '
EX= 7.304887E+00+J 3.334953E+01 7.095719E+00+J 3.324287E+01
HY= 3.000363E-02+J-1.109176E-01 2.948051E-02+J-1.112547E-01

HZ=

-1.691910E-03+J-7.723011E-03

-1.435503E-03+J-7.626778E-03

RELATIVE DIF.

9.89271E-03
7.87004E-03
7.73629E-03

6.81941E-03
7.78098E-03
5.44369E-03

6.90723E-03
5.40718E-03
3.52895E-02




o . TABLE 8
COMPARISON OF THE EXACT DIPOLE SOLUTIONS WITH THE PLANE WAVE SOLUTIONS
FORR= 2M and 6 = 5°

FREQUENCY = 3.00E+08 C/S
REFRACTIVE INDICES OF AIR, CEMENT AND EARTH RESPECTIVELY

144

NO=  1.0000+J 0.0000 EPSRO= 1.0E+00 SIGMAO= 0.

Nl=  1.7324+J .0346 EPSR1= 3.0E+00 SIGMAl= 2.000E-03
N2=  3.1637+J .0947 EPSR2= 1.0E+01 SIGMA2= 1.000E-02
Z= 0. M  OBSERVATION HEIGHT

HO= 1.992E+00 M  DIPOLE HEIGHT
Hl= 1.000E-01 M- SLAB WIDTH

R= 2.000E+00 M  SOURCE TO OBSERVATION DISTANCE

THETA= 5.0 DEG  ANGLE OF INCIDENCE

PLANE WAVE SOLUTION

Case I .  PARALLEL POLARIZATION
EX= 1.545409E-01+J 7.501099E+00
EZ= 1.615506E+01+J 5.831475E+00
HY= 7.398143E-03+J-2.403323E-02
Case II  PARALLEL POLARIZATION
EX= 1.520181E+01+J 8.329597E+01
EZ= -4.198126E+00+J 8.520029E+00
HY= 8.456116E-02+J-2.747011E-01
Case III PERPENDICULAR POLARIZATION
EX= 1.529195E+01+J 8.374011E+01
HY= 8.476476E-02+J-2.752657E-01

HZ= ~-3.569897E-03+J-1.949360E-02

EXACT DIPOLE SOLUTION

VERTICAL DIPOLE

3.753434E-01+J 7.440945E+00
1.632323E+01+J 6.192073E+00
7.903052E-03+J-2.432010E-02

HORIZONTAL DIPOLE

1.406266E+01+J 8.273756E+01
-4.418928E+00+J 8.580113E+00
8.166476E-02+J-2.771462E-01

HORIZONTAL DIPOLE

1.413194E+01+J 8.317381E+01
8.186386E-02+J-2.776816E-01
-2.067248E-03+J-1.895070E-02

RELATIVE DIF.

3.
2.
2.

07164E-02
27907E-02
27088E-02

.51167E-02
.37102E-02
.31191E-02

.53008E-02

1.30404E-02

-38119E-02




TABLE 9

'COMPARISON OF THE EXACT DIPOLE SOLUTIONS WITH THE PLANE WAVE SOLUTIONS
FORR= 1M and 8 =5° A

FREQUENCY = 3.00E+08 C/S ;
REFRACTIVE INDICES OF AIR, CEMENT AND EARTH RESPECTIVELY

Sy

NO= 1,0000+J 0.0000 EPSRO= 1.0E+00 SIGMAO= 0.
N1=  1.7324+J .0346 EPSR1= 3.0E+00 SIGMAl= 2,000E-03
.0947 EPSR2= 1.0E+01 SIGMA2= 1.000E-02

N2=  3.1637+J

Z= 0.

M OBSERVATION HEIGHT

HO= 9.962E-01 M  DIPOLE HEIGHT

Hl= 1.000E-01

R= 1.000E+00 M

M SLAB WIDTH

THETA= 5.0 DEG ANGLE OF INCIDENCE

PLANE WAVE SOLUTION

SOURCE TO OBSERVATION DISTANCE

EXACT DIPOLE SOLUTION

RELATIVE DIF.

Case I PARALLEL POLARIZATION VERTICAL DIPOLE
EX= -3.269468E+00+J 1.510750E+01 -2.054056E+00+J 1.480040E+01 8.38968E-02
EZ= 6.391610E+01+J 2.673160E+01 6.635744E+01+J 2,977550E+01 5.36491E-02
HY= 1.848267E-02+J-4.727991E-02 2.063998E-02+J-4.916431E-02 5.37204E-02
Case II PARALLEL POLARIZATION HORIZONTAL DIPOLE
EX= 1.745629E+01+J 1.668591E+02 1.408939E+01+J 1.653235E+02 2.23030E-02
EZ= -1.247930E+01+J 1.507274E+01 -1.369472E+01+J 1.537938E+01 6.08701E-02
HY= 2.112579E-01+J-5.404118E-01 2.019166£-OI+J—5.521007E-01 2.54531E-02
Case III PERPENDICULAR POLARIZATION HORIZONTAL DIPOLE
EX= 1.735417E+01+J 1.677735E+02 1.395721E+01+J 1,661773E+02 2.25070E-02
HY= 2.117521E-01+J-5.415180E-01 2.024030E-01+J-5.531612E-01 2.53506E-02
-4,276396E-03+J-3.977823E-02 1.152342E-03+J-3.781872E-02 1.52540E-01

HZ=




TABLE 10
COMPARISON OF THE EXACT DIPOLE SOLUTIONS WITH THE PLANE WAVE SOLUTIONS
FOR R = 40M and 9 = 30°

FREQUENCY = 3.00E+08 C/S
REFRACTIVE INDICES OF AIR, CEMENT AND EARTH RESPECTIVELY

9y

NO=  1.0000+J ~ 0.0000 EPSRO= 1.0E+00 SIGMAO= 0.

Nl=  1.7324+J .0346 EPSR1= 3.0E+00 SIGMAl= 2.000E-03
N2=  3.1637+J .0947 EPSR2= 1.0E+01 SIGMA2= 1.000E-02
Z= 0. M  OBSERVATION HEIGHT

HO= 3.464E+01 M  DIPOLE HEIGHT
Hl= 1.000E-01 M  SLAB WIDTH

R= 4.000E+01 M

THETA= 30.0 DEG  ANGLE OF INCIDENCE

PLANE WAVE SOLUTION

SOURCE TO OBSERVATION DISTANCE

EXACT DIPOLE SOLUTION

RELATIVE DIF.

Case I PARALLEL POLARIZATION VERTICAL DIPOLE
EX= 1.437133E-01+J 1.893798E+00 1.474782E-01+J 1.894765E+00 2.04542E-03
EZ= -4.784605E-01+J 1.238629E+00 -4.819455E-01+J 1.237909E+00 2.67874E-03
HY= 2.695425E-03+J-6.511408E-03 2.708718E-03+J-6.508282E-03 '1.93700E-03
Case II PARALLEL POLARIZATION HORIZONTAL DIPOLE
EX= 2.836756E-01+J 3.277238E+00 2.795649E-01+J 3.275409E+00 1.36870E-03
EZ= -8.962937E-01+J 2.117395E+00 -9.000589E-01+J 2.116427E+00 1.69039E-03
HY= 4.668614E-03+J-1.127809E-02 4.664216E-03+J-1.128116E-02 4.39537E-04
Case III PERPENDICULAR POLARIZATION HORIZONTAL DIPOLE :
EX= 5.380985E-01+J 3.943960E+00 5.323133E-01+J 3.943285E+00 1.46378E-03
HY= 5.062744E-03+J-1.225890E-02 5.060208E-03+J-1.,225636E-02 2.71151E-04.
HZ= -7.141734E-04+J-5.234488E-03 -6.879130E-04+J-5.226215E-03 5.22310E-03
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TABLE 11

LY

COMPARISON OF THE EXACT DIPOLE SOLUTIONS WITH THE PLANE WAVE SOLUTIONS
' FOR R = 40 M and 0 = 45°

FREQUENCY = 3.00E+08 C/S
REFRACTIVE INDICES OF AIR, CEMENT AND EARTH RESPECTIVELY

NO=  1.0000+J ~ 0.0000 . EPSRO= 1.0E+00 SIGMAO= 0.

Nl=  1.7324+J .0346 EPSR1= 3.0E+00 SIGMAl= 2.000E-03

N2=  3.1637+J .0947 EPSR2= 1.0E+01  SIGMA2= 1,000E-02

Z= 0. M OBSERVATION HEIGHT

HO= 2.828E+01 M  DIPOLE HEIGHT

Hl= 1.000E-01 M  SLAB WIDTH

R= 4.000E+01 M  SOURCE TO OBSERVATION DISTANCE

THETA=45.0 DEG ANGLE OF INCIDENCE

PLANE WAVE SOLUTION EXACT DIPOLE SOLUTION

Case I PARALLEL POLARIZATION VERTICAL DIPOLE
EX= 1.344091E-01+J 2,307705E+00 1.404201E-01+J 2.309452E+00
EZ= -9.663265E-01+J 2.339685E+00 -9.780035E-01+J 2.336757E+00
HY= 3.697138E-03+J-8.753624E-03 3.730370E-03+J-8.744980E-03

Case II PARALLEL POLARIZATION HORIZONTAL DIPOLE
EX= 1.710933E-01+J 2.305275E+00 1.625238E-01+J 2.30260E+00
EZ= -1.003414E+00+J 2.324021E+00 -1.009424E+00+J 2.322275E+00
HY= 3.697138E-03+J-8.753624E-03 3.692385E-03+J-8.755548E-03

Case III PERPENDICULAR POLARIZATION ~ HORIZONTAL DIPOLE
EX= 6.785937E-01+J 3.479004E+00 6.697619E-01+J 3.481107E+00
HY= 4.397418E-03+J-1.088206E-02 . 4.406347E-03+J-1.087186E-02

HZ= -1.273699E-03+J-6.529977E-03 -1.231597E-03+J-6.527462E-03

RELATIVE DIF,.

2.70551E-03
4,75238E-03
3.61170E-03

3.88864E-03
2.47166E-03
5.39685E-04

2.56099E-03
1.15536E-03
6.34941E-03




TABLE. 12
COMPARISON OF THE EXACT DIPOLE SOLUTIONS WITH THE PLANE WAVE SOLUTIONS

FOR R =-40 M and 0 = 80° .
FREQUENCY = 3.00E+08 C/S
REFRACTIVE INDICES OF AIR, CEMENT AND EARTH RESPECTIVELY .
NO=  1.0000+J 0.0000 EPSRO= 1.0E+00 SIGMAO= 0.

SIGMAl= 2.000E-03
SIGMA2= 1.000E-02

EPSR1= 3.0E+00
EPSR2= 1.0E+01

Nl=  1.7324+J  .0346
N2=  3.1637+J  .0947

8Y

Z= 0.

HO= 6.946E+00
Hl= 1.000E-01
R= 4.000E+01
THETA= 80.0 DE

M OBSERVATION HEIGHT
M DIPOLE HEIGHT
M  SLAB WIDTH

M SOURCE TO OBSERVATION DISTANCE

G  ANGLE OF INCIDENCE
PLANE WAVE SOLUTION

PARALLEL POLARIZATION

EXACT DIPOLE SOLUTION

RELAT1VE DIF.

Case I VERTICAL DIPOLE
EX= -1.017360E-01+J 1.228208E+00 -1.270977E-01+J 1.221023E+00 2.14724E-02
EZ= -1.092006E+00+J 2.027570E+Od —1.16206SE+OO+J 1.983039E+00 ‘ 3.61174Ev02
HY=V 2.944724E-03+J-5.464346E-03 3.116624E-03+J-5,352220E-03 3.31373E-02
Case II PARALLEL POLARIZATION HORIZONTAL DIPOLE
EX= 3.920985E-02+J 2.208427E-01 2.117261E-03+J 2.130390E-01 1.77914E-01
EZ= -1.954812E-01+J 3.559357E-01 -1.701755E-01+J 3.629195E-01 6.54922E~02
HY= 5.192342E-04+J-9.635117E-04 4.324112E-04+J-9.836515E-04 8.29486E-02
Case III PERPENDICULAR POLARIZAT ION HORIZONTAL DIPOLE
EX= 4.760656E-01+J 1.082661E+00 4.616274E-01+J 1;100581E+00 1.92824E-02.
HY= 9.865458E—O4+J-3.776933E-03‘ 1.046706E-03+J-3. 784495E-03 1.54418E702
HZ= -1.244486E-03+J-2.830190E-03 -1.198245E-03+J-2.878184E-03 2.13767E-02




TABLE 13

STEEPEST DESCENT RESULTS

FOR R=40M, and 6 = 30°, 45°, 80°

FREQUENCY = 3.00E+08 C/S
REFRACTIVE INDICES OF AIR,CEMENT AND EARTH RESPECTIVELY

NO= 1.0000+J 0.0000 EPSRO= 1.0E+00 SIGMAO= 0.

Nl= 1.7324+J .0346 EPSR1= 3.0E+00 SIGMAl= 2.000E-03
N2=  3.1637+J .0947 EPSR2= 1.0E+01  SIGMA2= 1.000E-02
Z= 0. M OBSERVATION HEIGHT

SLAB WIDTH
SOURCE TO OBSERVATION DISTANCE

Hl= 1.000E-01 M
R= 4.000E+01 M

6%

8 = 30°, ho:=34,641n 6 = 45°, ho = 28.28m 6 = 80°, ho = 6.946 m
Parallel Polarization
Vertical Dipole
EX = 1.476711E-01+J 1.894917E+00 1.412327E-01+J 2.309387E+00 -1.293017E-01+J 1.219652E+00
EZ = -4.813033E-01+J 1.238235E+00 -9.769887E-01+J 2.336869E+00 -1.163315E+00+J 1.979569E+00
HY = 2.708173E-03+J-6.508386E-03 3.729027E-03+J-8.745169E-03 3.121152E-03+J-5.342210E-03
Parallel Polarization
Horizontal Dipole
EX = 2.790657E-01+J 3,274560E+00 1.619211E-01+J 2.302223E+00 2.012439E-03+J 2.119788E-01
EZ = -8.998380E-01+J 2.116889E+00 -1.008123E+00+J 2.323156E+00 -1.692147E-01+J 3.641888E-01
HY = 4.662933E-03+J-1.128274E-02 3.689543E-03+J-8.757071E-03 4.332300E-04+J-9.896551E-04
Perpendicular Polarization
Horizontal Dipole
EX = 5.322586E-01+J 3.943356E+00 6.701051E-01+J 3.481016E+00 4.621943E-01+J 1.101173E+00
HY = 5.059257E-03+J-1,225730E-02 4.404040E-03+J-1.087320E-02 1.056692E-03+J-3.786900E-03
HZ = -6.884591E-04-J-5.226918E-03 -1.233093E-03+J-6.527412E-03  -1.198232E-03+J-2.883319E-03
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Table 14
COMPARISON OF THE EXACT DIPOLE SOLUTIONS WITH THE QUASI-STATIC SOLUTIONS
FOR R = 0.005M AND 6 = 4.5°

FREQUENCY= 3.00E+08 C/S
REFRACTIVE INDICES OF AIR,CEMENT AND EARTH RESPECTIVELY

NO= 1.0000+J 0.0000 EPSRO= 1,0E+00 SIGMAO= 0.

Nl= - 1.7324+J .0346 EPSR1= 3.0E+00 SIGMAl= 2.000E-03
N2=  3.1637+J .0947 EPSR2= 1,0E+01 SIGMA2= 1.000E-02
Z= 0. M OBSERVATION HEIGHT

HO= 4,985E-03 M  DIPOLE HEIGHT

Hl1= 1.000E-01 M  SLAB WIDTH

R= 5.000E-03 M  SOURCE TO OBSERVATION DISTANCE
THETA= 4.5 DEG  ANGLE OF INCIDENCE

QUASI-STATIC SOLUTION EXACT DIPOLE SOLUTION
Parallel Polarization Vertical Dipole
EX = -1.339861E+05 + J-4.472028E+06 -1.337351E+05 + J-4.498663E+06
EZ = -1.135130E+06 + J 1.134747E+08 -1.134994E+06 + J 1.134375E+08
HY = 3.749333E+02 + J 3.750498E+00 3.747873E+02 . + J 3.749815E+00
Parallel Polarization Horizontal Dipole
EX = -5.590979E+05 + J-1.868388E+07 -5.618232E+05 "+ J-1.867090E+07
EZ = 1.339565E+05 + J-1.343289E+07 1.337351E+405 "+ J-1.344194E+07
HY = 3.962958E+03 + J 2,035858E+01 3.966040E+03 + J 2.433938E+01
Perpendicular Polarization Hofizontal Dipole
EX = -5.702029E+05 + J-1.901706E+07 -5.722937E+05 + J-1.902040E+07
HY = 3.970331E+03 + J 2.057906E+01 3.973397E+03 + J 2.455947E+01

HZ 2.499527E+02 + J 1.257811E-~02 2.498108E+02 + J 1.093684E-02
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To further demonstrate the range of validity of the approximate
methods, we show in figure 6 the magnitude of Ez on the slab surface
versus the distance R (R==R12) for a fixed observation angle 6= 5°,

The solid curve represents the exact field calculation for the two differ-
ent orientations of the dipole source (vertical and horizontal) observed
in the plane of the dipole (6 =0°). The long dash line represents the
asymptotic results while the long dash-short dash liné represents the
quasi-static result. Similar comparison can be made for other components
of the field.

As pointed out by Lytle, et al.(ref.l4) a conven*ent way to display
the electromagnetic field structure near the dipole s¢urce involves the
use of the power flux or the time-average Poynting veétor P defined as
tRe(E xH*). It is well-known that in the far-zone the power flux fo

of an isolated dipole in free space can be given as

- - 2 _ -2
Po = arPo sin“0; Po = no(ZA Rll)

where n, = 120m ohm is the free-space characteristic impedance and A is

the free-space wavelength. Thus, the power flux densﬂty in this case
2

1
magnitude of the power flux on the other hand vanishes along the dipole

points radially outward, while decaying with the rate:of RI The

axis at 6 = 0° but is at maximum in the broadside direction, i.e. 8= 90°.
The power flux of a vertical dipole source, normalized to Po above

a two-layer earth surface, is plotted in figure 7. It is seen that the

direction of the power flux , as indicated by the dire;tion of the arrow,

departs significantly from the radial direction near the slab surface.

Magnitude of the normalized power flux (1 cm of the thick arrow corresponds
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Figure 6. Magnitude of the vertical electrical field E
on the slab surface as a function of distance
R for an angle 6 = 5°.
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Figure 7. Magnitude and direction of the normalized time average power
density distribution for a vertical dipole source
(1 cm of arrow length = unity): f =300 MHz, A = 1 meter,

n, = 1.732 + i0.0346 and n, = 3.1637 + 10.0947.
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to a unity) also decays faster than Rll This situation can be attributed
partly to the rapid decay of the inductive field near the source region
and partly to the dissipation of the electromagnetic field underneath

the slab surface. On the slab surface the power flux, or the Poynting
vector, is generally tiled into the surface.

A similar plot of the power flux for a horizontal dipole source shows
some remarkably different features. As seen in figure 8 and for observation
in the plané of the dipole, the power flux no longer vanishes along the
dipole axis. Furthermore, in the region close to the dipole on the slab
the direction of the vector also does not always point toward the slab surface.
Since the dipole field in the absence of the two-layer earth is known to
be small in this direction, the phenomenon undoubéedly is caused by the
scattered field in the source region near the slab surface. For observa-
tion points in the plane perpendicular to the dipole (8 = 90°), figure 9
shows that the power flux now behaves in a more predictable manner.

To further investigate the field behavior on the slab surface, figures
10 and 11 show, respectively, the magnitude and the tilt angle of the
normalized power flux as a function of observation distances. It is seen
that, except for the region close to the source, the tilt angle, or the
direction of the Poynting vector of a horizontal dipole observed in the
plane of the dipole, approaches to that of the vertical dipole, while
the tilt angle observed in the perpendicular plane approaches to a
different limit. As is well known in the theory of ground wave propa-
gation (ref. 2), the tilt angle depends, in addition to the
refractive indices of the different media, mainly upon the type of

polarization of the impinging wave, rather than the exact orientation
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Magnitude and direction of the normalized time-average power

density distribution for a horizontal dipole source in the -

plane of incidence; ¢= 0°, (1 cm of arrow length = unity),

f = 300 MHz, A = 1 meter, n, = 1.732 + 10.0346 and n, = 3.1637
. 1 2
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A = 1 meter, n, = 1.732 + 10.0346 and n, = 3.1637 + 10.0947.
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THE MAGNITUDE OF THE RESULTANT VECTOR FOR THE REAL
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Figure 10. Magnitude of the normalized time-average power density

on the slab surface as a function of observation distance
for a vertical dipole (¢ = 0°), a horizontal dipole
(¢ =0°) and a horizontal dipole (¢ =90°¢).
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THE TILT ANGLE OF THE REAL

PART OF THE POYNTING VECTOR
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Figure 11. Tilt angle of the time average Poynting vectors on

the slab surface versus the normalized radial
distance for a vertical dipole (¢ = 0°), a horizontal
dipole (¢ = 0°) and a horizontal dipole (¢ =90°).
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of the dipole source. Thus, the tilt angle of both the vertical and the
horizontal dipoles observed in the plane of the dipole should approach to
the wave tilt of a TM-wave, while the other approacheg to the wave tilt
of a TE-wave.

As shown in figure 10, the change in the magnitude of the power flux
along the slab surface for the three dipole arrangemedts as a function of
observation distance algso differs significantly. In the case of a horizon-
tél dipole, a minimum and then a maximum are observed és one moves away in
the plane of the dipole. The tip occurs at §-= 0.45 or for an observation
angle of 77.5°. However, no such tip is observed in the other two arrange-
ments. To examine the occurrence of this tip in detaiﬁ, included in
figure 12 is themagnitude of the power flux versus observation distance for
several slab thicknesses, including.h1 =0 which corresponds exactly to the
case of a homogenous earth in the absence of the slab. It is shown in
this case, the tip occurs at %-z 0.65. As the slab thickness increases
the location of the tip moves toward the source until hlf 03 m; thereafter,
a second tip emerges. Figures 13 and 14 show the chanée in the magnitude
of the power flux for the other two dipole arrangements. However, no
drastic change in the magnitude of the power flux is observed as one moves

away on the slab surface in these cases.
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THE MAGNITUDE OF THE RESULTANT VECTOR FOR THE REAL

PART OF THE POYNTING VECTOR NORMALIZED TO 9,4 (2R, )
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THE MAGNITUDE OF THE RESULTANT VECTOR FOR THE REAL

PART OF THE POYNTING VECTOR NORMALIZED TO ¢, (2R A)
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SECTION VI

CONCLUSION

In this report a numerical program is devised which computes all
components of the electromagnetic field simultaneously by integrating an
array of functions along the real axis in the comple# o-plane. Increased
efficiency is obtained with the incorporation of the quasi-static and
asymptotic approximations. The inclusion of a root éinder in the program
also makes it possible to integrate efficiently for qhe case when a pole is
‘close to the path of integration. It should be noted, however, for the
typical parameters we have studied, the poles were s@fficiently away from the
real axis so that no particular effort is needed. In{principle, we can also
extend the method to treat the case involving more than one pole.

The computer program is also capable of finding %he field for a semi-
infinite half-space problem. In this case, the slab yidth h1 will be
either zero or infinity. However, if quasi-static apbroximation is used, the
the case where hlapproaches infinity should be chosenL The reason for
this restriction is that the approximations we have u%ed assume a finite hl

so that beyond a certain value of o analytical expréssion for the integral

can be obtained.
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APPENDIX A

QUASI-STATIC APPROXIMATIONS OF sz) aﬁd ng)

In this appendix, the analytical expression for ivglz), 2=1,2 given

in (50) is derived.

) -y.b |
viz) =f [Fy @) - Fy (e)]e ° I pada (A-1)
Cp ‘

Now, if we use the choice of o to be large such that tanh[YlHII =1,
then the expressions for No and Ko in (8) and (9) Mill reduce to Yl

and Y /nz, respectively. Therefore V(Z) and V(Z) cah be written as
171

1 2
2 ;
2n -Y.b
v = f e w R el R IR ACOL -2
o o 1 (n1+1)Yo ‘
and
- |
-Y b ;
Q) . f 1 1 o |
N -=le % J_(ep)aude (A-3)
2 b Yot Yo 0

By expanding in the inverse power of Yo Véz), % =1,2 can be

approximated to the following form:

) _ _ | -
vi¥ oy 2 =1,2 1 (A-4)
where
TP -3 -2 |
V= fe 3 (e [1+0(Y;9) + ... 1dal (A-5)
ao ‘

The constants C., and C2 are given by

2
1

-2n§/(ni + 1)

and

1]

c, (ni - 1)/4

Thus if we just keep the leading terms of (A-5)and the assumption that

a >> 1 then
[o]
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0

. -ab - da
v —f e Jo(ao)az
%
The above integral can be evaluated by taking the derivatives with respect
to p and then splitting up the integral into two parts; one has the limit

of 0 to infinity and the other from 0 to -

-] aO
v -ab do -ab do
5o = {f e @) - f e J, (@) 3 }
0 o)
The first integral can be found exactly [Gradshteyn and Ryzhik (ref. 15)]

f:-ax 3 @ & . el + g2 - oy’
o v X N (A-6)
Re v > 0, Re &> |ImB|

therefore

- d -1 -
[0 L2 @byt = omen)!
]

However the second integral has been evaluated approximately by using

Taylor expansion of two variables b and p around b, p =0

% o
-ob da _ o 2
./O e Jl(OLQ) o 57 p + O(R")

After substituting the values of the first and second term in (A-6), we can
integrate back with respect to p which will lead to
% 2

V = -R + b 2n(R+b) * 50 - C(b)

where C(b) 1is a function of b only and is given by

E,(a_b)
—C=b-ban2b+-22C
o)
Here E2 is the exponential integral of order 2 and is given by [ Abramowitz

and Stegun (ref. 16)],
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-a b @ 1)"em"
E,(@b) = e +Y(agb) + ab in(ab) +ab )

1
n=1 nn.

where Yy 1is Euler's constant 0.5772.

Since R << 1, terms of the order R2 or greater will be ignored.
Also, it should be noted that we have assumed that dbb and ap are
small compared to the leading terms that are of the order R—l. Thus V

can be written in a simpler form as
-0 b
o

V=-R+bly+n(/2)] + & — +b (b + R) (A-7)
o 1

The substituion of (A-7) into (A-4) then gives the analytical expression

for the correction terms Véz) , £ =1,2 as indicaﬂed in (50).
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APPENDIX B

QUAST-STATIC APPROXIMATIONS OF Vél), V§2) and Vés)

In this appendix, approximate solutions for ng) » (=1,2 and 3) is N
obtained as R approaches zero. As in appendix A, we assume that %G is
large compared to Hl so that tanh[Ylﬂl = 1 can be used. However, the
product of a R is still assumed to be small compared tol as R>0. The

(1

leading term V3 in (54) is written here as

[
-y b
a)_ 9 Yo -1
V3 = B3cos ¢ 50 . db oe Jo(ap)aYO do (B-1)
iR12
The integral with respect to & is known as G12 = e /RIZ' If we

now split up the integration over b into two parts, one runs from 0 to *

and the other from 0 to b, the first integral then reduces to the Hankel -
function form %; Héllp). However, for the second integral, Taylor
expansion of G12 will be used since R12 is very small. After integrating

the first three terms of the expansions, it is easy to show that Vél) can

be given as

viD =B cos ¢ (- T uM () + 2+ & sinh™} (b/0)} (8-2)

It should be noted that in obtaining the above result the differentiation
with respect to o 1is applied after the integration over b is performed.
Expression for V§1) can be further simplified if we replace the Hankel

function by its small argument expansion to yield
v= - B pcos ¢ {[R®R+b)]™H -0.5 In(Reb) - 3(Y-}-Ti/2-%n 2} (B-3)

where Y= 0.5772 1is Euler's constant.

The second term from (54) that needs to be evaluated analytically

is V§2) and is given by
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® -~ b
(2) _ Lie 05 (o
v < ngcos o & [Yf - Tle ©, Golada (8-4)
0

Again, the integral can be divided into two parts, éme runs from 0 to Oy
and the other from % to « and approximation techniques similar to the
ones given in appendix A can be applied here. It should be noted that

the outcome of the integration should be independentlof Oy - Now ng) can

be written as
(@ . @, @

3 - '3l 32 | (B-5)
where
v @) 3 "o 1 1.7 b
31 = B3 cos ¢ 30 f [ > Yz le Jo(ap)ada (B-6)
°M o
and
v?) . 2 ‘ -
32 = Bs(n1 1)I cos ¢ (B-7)
®© | ®
-y b Yo b
I-= _aa_J e © J_(ap) XL - fp f e °J (ap)2
% A - % Yo
(B-8)
In writing Vgg) above, we have replaced (—%—-- —%—J}by [(ni -1)/(Y0Y1)2]«
Y Y
1 o

Then, we have used the assumption that ao is large |so that Yl would be
replaced by Yo Thus, the differentiation of I with respect to b is
known as - %%- , where V is given by (A-5) and kﬂown explicitly in (A-7).

Hence, %% can be written as

a ——
R0

Integrating the above expression to get the value of I as

= 3[p sinh Y (b/0) +bp R + B) ™1 - K(p)] (B-9)
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and the integration constant K(p) is determined from the condition at

b=20

=< %

K(P) = J 3, (oo 4

o
o} Yo

«©

- : do
o o
0

It is then not difficult to show that K(p) satisfies the first order

differential equation

>}
K _ | da
+p—'-J JOCOLD)OL
%

Q| @
O~

The integral on the right side of the differential equation can be replaced
by a two term expansion, ignoring the series terms which are of the order .
0% or greater [Abramowitz (ref.16) page 481, Eq.11.1.20]. Thus the
differential equation reduces to the following form

K K
B tp =Y ln(aop/Z)

which has a known solution of the form
K@) = -2y +2en@/2) -] - 2o
2 o) 2

where Y here is Euler's constant. The substitution of the above value of

K(®) into (B-9) and then the value of I into (B-7) will give Vgg) as

2
(n;-1)
2)_ ~1
V3'= =3

pB

5 cos & [In(+R) + bR+b) ™! + (y-%-2n 2 + &n a)l  (B-10)

Clearly, the result we have obtained for Vgg) is dependent on o and this

term should cancel out with the contribution from Véi) up to the order of
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2 .
R®. Since h and p are both small a two yariable Taylor expansion

}
around b, p = 0 gives approximate expression of V(g) and is given by

31
aO
2) 3.1 1 ‘
V31 ~ Bl p COS ¢ o, [-—2 - —z-']da (B-11)
0 Y1 Yo

The evaluation of the integral can be readily carried out, provided the

integration path is understood as being indented into the lower half-plane

at g = 1.
o2on?
2 2 o 1 2 2
Vél) = - %BS cos p[nlzn( > ) + (n1 -1)2n(ao -1)
o -1
o
- nf gn nf + ﬁi(ni - 1} (B-12)

we finally have the resultant

Thus, with the assumption that ao:x>|n1|

expression in the form of

2 2
(n;-1) n -
V§§)= 12 B3 o cos ¢ [_ wn ao + ..__2_1_.____ n ‘nl - 121—] (B—lS)
(nl - 1)

(2)

3, in (B-10)

Substitution of the expressions for Vgi) in (B-13) and V
into (B-5) now yields the result

@ -1

(2)_
Vs - 2

By pcos ¢ {2n(b+R) + bR + b7

2
n

2
1

+ (y-%-m/2-202)+ fn n,} (B-14)

(] -1)

which is then independent of the parameter R that we somewhat arbitrarily
have chosen.

The last integral that needs tobe evaluatedis Vgs)&n (54). Since ao
is large such that tanh|y1H1| =~ 1, then N and K = will be replaced

by Y; and Yl/ni, respectively. Thus, v§3) can be written here as
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2% -1) @?-1) ., -vb
1 1 1o

o}
J Jo(qp)ada

(-]

(3)_ 9
V3 = B;cos ¢ 55" J n2(

Ny 2,7 2 2
a1 0o * W 0o v Y/ (o + 1Y

(B-15)
(3-1)

If we now approximate Y = Yot

(ST

» the leading term of V§3) in
Yo

{(B-17) can be shown to be associated with the integral I given in (B-8) which

is evaluated in (B-9). Consequently, we have

vE) = - cp cos ¢ [In(b+R) + bR+ + (Y-4-In 2-%n )]

(B-16)

where
C; = Gnl + D] - 1)/ @) + DI/8
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- APPENDIX C
PROGRAMMING PROCEDURE

A computer program was developed to find the ele?tromagnetic field
response of a tilted dipole above a finitely conductin% two layered earth
according to the numerical scheme describedinSectionEIII,with provision for
the asymptotic and quasi-static calculation as explained in section IV. A flow
chart of the program is shown in figure C-1. The program mainly consists of
three subroutines called QSTATC, RESULT and ASMPT, ea¢h of which is capable
of calculating field components for different ranges of observations in
space.

The‘subroutine RESULT is used to integrate along the real axis of the
complex a-plane for a given integrand. It.follows the same steps given in
Section ITI, where theintegration has heen spiit up into two different regions
as given in (34). As mentioned before, a provision is}made when the location
of the pole is close to the path of integration. By d;awing a circle of
influence with a radius og = Iap-1| and centered at ap, we can integrate
separately the interval within this circle in order to}insure good numerical
accuracy. Thus, og determines how the integration paﬁh should be split up,
for example if og > 1 then the integration will proéeed exactly accord-
ing to (34). But if a; < 1 then the path of integration will be subdivided.
Obviously our path of integration is taken beneath the jbranch cut for o
between 0 and 1 and the pole could have stronger influence if it is close to
or beyond the branch point ata= 1. Usually the situation where the pole is
close to the branch point at o = 1, occurs when we have a two region conducting
half-space (such as air and earth). For a typical application of a concrete
slab above a homogenous earth and for the frequency radge (100- to 1000 MHz), the

poles are actually not very close to the path of integration as shown in table 3.
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LARGR > FIELD DIPOLE PROOT
Plane Wave Free space Finds roots
Solution Green's of eqgs. (35, 36)
Function
IQIA = IQIA =1
IQIA =2
RESULT
ASMPT
Follows sec- Fo}lows Sec- QSTATC
tion IV-1 tion III Follows Sec-
tion IV-2
IQIA=1 op > 50
CORREC ASYMP
INTEGR
Romberg Qv3
Integration
a>1 a <
‘———__.___—.....,
GGRT1 GLES1
Second First
term in term in
eq.(34) eq.(34)
| I SUBG U
FACTOR BEJY
™| Calculates |¢
J Jl,Y Y
uv
Calculates
™ Functions listed
in Table 2
Function
W(Z)
FVALUE
Calculates .
F1oFpiFs
FINDZY
Calculates
N ,K, etc.
o’ o
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Figure C-1. A flow chart of the computer program




However, we have left these subdivision criteria in the program so that

the program can be a general purpose one. Our program without further
modification cannot handle the cases where the poles are directly on the
real axis which corresponds to lossless slab above a perfectly conducting
sheet. But in most of the cases which involve losses in both media, the
poles usually move upward away from the real axis. A root finder called
PROOT was developed which uses the poles of a lossless slab above a perfectly
conducting sheet as a basis to march toward the roots for a lossy slab and
earth. A combination of bisectional and Newton's methods is: used to search
the complex roots of (35) and (36). Figure C-2 is a flow chart of the

‘root finder, ‘where the subroutine ROOT will first search

the real roots of the lossless slab above a perfectly conducting sheet; then these

roots (if any) will be used in ZROOT to search for the complex roots of a
lossy slab above a finitely conducting earth.

Except_fof the regioh nearby the pole, the two integrals.in\(34) are
further broken up into segments where numerical integration based upon a
modified Romberg scheme is performed. Segment interval is determined either
from the nature cycle of the Bessel functions, i.e. Aa = 2m/p, or from
the decay rate of the exponential function, i.e. Aa = 3/(Z+Ho). Obviously,
the number of integrations and the computation time increase when p and
@z + Hb) are either very small or very large. In such cases, the program
is then switched to the quasi-static and asymptotic routines even though the
normal integration method can be performed.

We now discuss the type of convergence criteria adopted for the
truncation of the infinite integral-in (34). Judging from the expression
for the integrand as given in (30), it is obvious that one can simply

integrate until the argument of the exponential function YO(Z+H0) is large
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PROOT

ZROOT
Complex
functions

root

finder

:

CROOT
Searches for
complex root
by using both
Newton's and

bisection
method
¥ ¥
Function Function
CY(2) CX(2)
given in eq. given in eq.
(35) (36)

ROOT
Real

functions
root finder
bisection
method only

X

.

Function
FY(2)
given in eq.

(39)

Function
FX(Z)
given in eq.

(40)

Figure C-2. A flow chart of the root finder
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enough, say 12, so that the remainder of the integration will be of the order
10'7 or smaller. However, this criterion becomes less effective for obser-
vation near the surface when (Z-+Ho) is small. In that case, we switch the
truncation criterion to one that depends on the argument of the Bessel function
op, where p = kor and r 1is the horizontal distance from the source to
the observation point. When op 7reaches a certain large number, say 50 or
more, we can replace the Bessel function byits asymptotic form [Abramowitz
(ref.16)]. Then the remainder of the integral can be evaluated analytically by
an asymptotic series. Since each term-of the series decreases by the factor
(oap)-1 from its previous term, we used a two term expression and estimate
the error bound. The truncation is then determined by a specified accuracy

of five digits. These remainder terms can be deduced from (30) and typically

given as follows:

'Tm(gt) = ,fF(;xJ,[cos X - P(@) sin x]do m=0,1 (C-1)
4n°-1
where X = (0p - g; - %-), P(@) = ‘ga; and at is the limit where

the Bessel function can be replaced by its asymptotic form. F(a) is

given by

F@) = @/mo)? a6y,

and G(a) 1is a typical function listed in table 2. Now, if we twice perform

the integration by parts in C-1, Tm(at) will reduce to approximately

sin ¥ cos ¥ dF
[o] [o) |
Tm(&t) = - 5 F(Qt) pz da la =at
2 cosy
(4m®-1) 0 -3 (C-2)
= Flo,) + 0(p )
8oy p2 t
= ( Bl R |
where Xo QP 5 " 4

The result given in (C-2) will be added to the truncated integral if the

truncation was made on the Bessel function argument. The subroutine that
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handles the evaluation of Tmﬁxt) is called ASYMP. In the case of the
quasi-static method,we have added'a third criterion for the truncation of
the integration,and that depends on oy according to the method discussed
in section 1V-2,

As we mentioned before,numerical integration of individual segment along
the real axis is performed by a modified quadrature Romberg scheme. The
subroutine that performs the integration is called INTEGR, which is known to
be a fast convergent one unless there is a discontinuity in the function
within the integrated limits. INTEGR has been developed to integrate an
array of functions. Thus,all six integrations of the EM field components
in the space region can be performed at once. The usual criterion

the integration is by checking if either the absolute or relative error of

the integration has reached the needed tolerance. More specifically in
figure C-1, theintegration routine calls two functions, GLES1 and GGRTI,
which Trepresent the functions of the first and second integral in
(34), respectively. SUBG gives the value of T(x) for any x as required in
(34). SUBG calls two other subroutines; One., - BEJY. calculates
the Bessel function Jo and J,; the other, UV computes the
values of the functions GE&,)L&), £ =0,1 and w = X,y,z, listed in
table 2. Two other subroutines,EVALUE and FINDZY,are used in UV for the
purpose of calculating the functions Fgﬁi), £ =1,2,3, and No’ Ko, etc.,
as given respectively by (29) and (8) for a single slab.

As we have noted earlier the usual method of integration becomes a
time consuming one fpr large R. For sucha case, we switch the program to a
subroutine called ASMPT, based upon the asymptotic solution derived in

section IV.1. For computing efficiently, this part of the program is further

split up into a sky-wave region and a ground-wave region. This means we use
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a two term sky-wave solution where the observation is made away from the
ground (subroutine LARGR) and a twb-term ground wave solution as described

‘in section iV.l (subfouting<FACIOR).

The subroutine QSTATC serves the purpose of finding the fields for a
very small value of R, where R = koR12 is the normalized distance from
the dipole image to the observation point, R12 = [(z + ho)2 * rz]* . This
subroutine follows exactly the procedure described under section IV-2 except
Maxwell equations have to be used first to find the electromagnetic field
components. The finite integration from 0 to Ay for sz 2 =1,2,3) in (51)
and (55) was performed by calling the subroutine -RESULT-. However, analytical
expression has been used to replace the integration from ay to infinity, i.e.
Véz) (2=1,2) in (53) and v§3) in (58). Thi; analytical result has been
built in subroutine CORREC which is called from RESULT automatically

when the integration has reached the upper limit a,- The leading terms,

(1) 1)
2

calling two other subroutines, ' FIELD and QV3 , the first calculates

i.e., V (2=1,2) in (52) and V; in (56), are calculated in QSTATC by
the free space Greens functions given in (24) and the second calculates the

leading term of the cross coupling field V3 given by (56).

Finally, we emphasize that the subroutines QSTATC and ASMPT
are built to speed up the program. They are auxiliary routines to the main
program, which provide adequate approximate answers as an alternative to

the exact but time consuming results available from the subroutine RESULT.

79




APPENDIX D

LIST OF THE COMPUTER PROGRAM.
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OO0 AOQOI OO IO OOOO

SUBROUTINE DIPOLE (FREQN,EPSRySIGMA4H1oHOsRs THePH s THPsNOROOT 4 AQ
1 : ACCINTsTOTFLDHIFLAG)

SUBRQUTINE DIPOLE WAS DESIGNED TO FIND THE EM FIELD DUE TQ AN
ARBITRARY=QRIENTATED DIPOLE SOURCE ABOVE A TWO LAYER CONDUCTING
EARTH o THE INPUTS TQ THE PROGLRAM ARE!

FREQNEFREQUENCY OF GPERATION. ’

(EPSR) AND (SIGMA) EACH OF WHICH SHOULD MAVE TmE OIMENSION OF 3

REPRESENTING THE DIELECTRIC CONSTANT AND CONDUCTIVITY {(MHO/M)

IN THE THREE MEDIA1AIRsSLAB REGION AND GRUUND RESFECTIVELY.

M1SSLAB WIDTH,

HOSHMEIGHT OF THE DIPOLE FpOM THE S_AB SURFACE.

RETHE DISTANCE OF TwE DIPOLE IMAGE ABOVE A PERFECTLY CONDUCTING
GROUND TO THE OBSERVATINN PQINT, RISGRT((Z+M() 422+ (SR)®®2) 3
WHERE SRISMALL R 1S THE PRQJUECTION OF R INTO THE Xe=Y PLANE,

THETHETA IS THE IMAGE ANGLE (IN DEGREES) wHICH THE QBSERVATON
POINT MAKES WITH THE 2«aAXIS (REFER TO FlGe5 OF THE REPORT),

Phighi IS THE OBSERVATICN ANGLE (IN DEGREES) MEASURED IN THE XeY

LANE . ’

THPETHETA-PRIME IS THE aNGLE (IN CEGREES) THAT THE DIPOLE MAKES

WITH THE VERTICAL AxIs. IF THF=0 THME DOIPOLE IS VERTICAL AND
IF THP=90 THEN TME QIPOLE 1S RORIZONTAL,
NOROQOTSIS A LOGICAL STATEMENT wmEN IT 1S TRUE NO SEARCH wlLL BE
MADE FOR THE POLES (PHYSICALLY *SURFACE WAVE MODES) IN THE
SLAE REGION ALSO NO CALCULATON OF THE SOMMERFELD POLE WILL
BE MADE IN THE HALFSPACE CASE.IF (NOROOT) IS FALSE THEN
A SEARCH FOR POLES wILL BE MADE.

AOZIS THE POLE CLOSEST TO THE REAL-AARIS IN THE COMPLEX ALPHA=PLANE
.51; SHOULD BE SPECIFIED ARBITRARILY [F THE ROOT FINDER IS NOT
USED.

ACCINTEIS THE ERRQR TOLERAMCE OF THE NUMERJICAL INTEGRATION.

TOTFLDEARE THE CALCULATED VvaALUES CF ALL TmE EM FIELD COMPONENTS.

IT SHOULD BE DIMENSIONED AS TOTFLD(342). THE FIRST COLUMN
ARE THE E=FIELD COMPONENTS (EA+EY AND EZ) s AND ThHE SECOND
COLUMN ARE THE HMeFIELDS (HXyHY AND HZ) o
1FLAGEIS A LOGICAL STATEMENT wHICr IF IT 1S TRUE QUASI=STATIC AND
ASYMPTOTIC APPROX. WILL BE (SEDe IF (IFLAG) IS FALSE THEN
USUAL NUMERICAL INTEGRATION METROD wl_lL BE PERFQRMED ON
THE SO CALLED SOMMERFELD INTEGRALS.

COMMON /MAINL/N(3) 9MIERPSR(3) sRKO9KQeZMM, TOL
COMMON /MAIN2/ByPHIoTHETADICT19ST19CPLaSPLlyCPE,SP2
COMMON /MAINI/SS(3),EE(3) JHHIOM
COMMON /TYPE/IQIA
LOGICAL NOROOT,IFLAG
COMPLEX NoADsJsFALA
COMPLEX DI,DSySOMFLDTOTFLDeWAVE+PZSsPXSsPZI4PXI
REAL KQ+Mup
DIMENSION A(S)sSIGMA(3)
DIMENSION DI(392)40S(3¢2)SOMFLD(342)9P25{3,2)+PXS(342)
14P21(392)9PRI(3+2) swAVE (342) +TOTFLD(392)
TOLSACCINT
Je(0etla)
P1=23,141592653
C22.99793E+08
EPSO0=8.854E=12 $ My0=4 ,#PT#],0E=Q7
EGZI=SQRT (MUO/EPSO)

CONV=FI/180.

OMEGA=2.#p [ #FREQGN

K0=OMEGA/C

HaH1#K0 . -
FBSKO®K0/4,/P1 s FASJ#EGZ]eFB
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DO 12 Ls=l,3
12 N(L)=CSQRT(EPSR(L)*(0esle)#SIGMA (L) /OMEGA/EPSO)
51 THETA=THeCONV
Z=R*COS(THETA)=HQ § ROZR*SIN(THETA)
ZH=Z+HO s ZHM3ZeHA
BaZH*KQ s RKOz2Ro#K0
PRINT 8B+FREQANy (N(L) IEPSR (L) +SIGMA(L)9Lnl93)

88 FORMAT (1n]®FREQUENCY=S®ES 291X°C/58/ 9 IX¢REFRACTIVE INDICES OF AIRe
1CEMENT AND EARTH ResPECTvaLYo/1xonu='F9.aoo~Job9.u.1ox¢EPSnoa~£a.
2193X®SIGMAQ=#E 103/ XONL=6FFe600e aF Y0ty 10X2EPSRIZHER, 191 3X*SIGMALS
I#EL0e3/91X#N23F G499+ J0FGg,49] 0XSEPSR2=4EB, 19 3X*SIGMA22%EL0,3/)

PRINT 149Z4HOsHLl9RsTH

14 FORMAT (1X9%Zz®E)10,392Xou0s3x208SERVATION HEIGHT'IIX'H030E10.3911
1eM® ¢ 3XOIPOLE MEIGHT®/1ARMIS®E 10434 1KMo IXOSLAB WIDTH®/1X%R=2E1Q.
2312X¥MO 4 3X2SOURCE TO OBSERVATION CISTANCE®/]1X®THETA=#FS,1lslx#DEQG®,
I3X*ANGLE OF INCIDENCE®/)

NO SEARCH FOR POLES wILL BE AVAILABLE WMEN NOROOT IS TRUE.THUS THE

c
€ POLE LOCATION A0 SHOULD BE SPECIFIED «IF THESE POLES ARE FAR AWAY
C FROM THE REAL AXIS»ASSIGN ANY ARBITRARY POLE IN THE FIRST QUADRANT
C ~ OF THE COMPLEX ALPHA=PLANE. THIS PQLE SHOULD NOT BE CLOSE TO THE
G PATH OF INTEGRATION,
IF (NOROOT) GO TO 22
€ CHECK IF wE HAVE A TWQ-LAYER EARTH MODELsIF SO CaALL RROOT
IF (HeGTel,0E=05:0R,HelLTo]+0E«05) GO TO 26
c IF NOTy WE HAVE A SINGLE LAYER EARTH JHENCE WE NEED TO FIND THE
' SOMMERFELD POLES
IF (HeLE41,0E=05) AQ=N(3)/CSART(N(3)#N(3)*1,)
IF (MeGE«1,0E+05) AQ=N(Z)/CSART(N(2)¥N(2)¢1,}
60 TO 22 ‘
C SUBROUTINE RROOT WAS DESIGNED TO FIND THE SURFACE WAVE MODES THAT
c EXIST IN A DIELECTRIC SLAH ABOVE A DISSIPATIVE EARTH.
26 DO 23 I=21,3
EE(I)SEPSR(I)
23 sS(11=SIGMaA (I
OM=0OMEGA $  HHzm
cALL RROOT (AyAQ)
C A0 WILL BE THE POLE CLOSEST TO THE PaTH OF INTEGRATION,
c (A) WILL BE THE POLES THAT ARE FOUND « PLACES WHERE RROOT FAILS A
C MESSAGE WILL BE PRINTED aND THE ARBITRARY POLE (,95+.15) wliLL 8E
C ASSIGNED, UP TO § POLES WwILL BE SEARCMED WITH THE EXISTING DIMENSION
¢ OF a(S)e 1F MORE EXIST +THE DIMENSION OF (&) IN DIPOLE AND (Z2ERO)
¢ IN RROOT SHOULD BE INCREASED.
22 PHI=PH&#CONY §$ THETAP=THP#CONV
CT1=COS(THETAP) $ STI=SIN(TRETAP)
CP1=COS(PHI) $ SP1=SIN(PHI)
cP2=C0S (2,%PK]) s SP2=SIN(2,.ePh])
1IF (IFLAG.LE.N) GO TO 165
c THE FOLLOWING THREE RQUTINES WILL BE USED FOR THE EVALUATION OF
c THE SOMMERFELD INTEGRaLS
c (1) QUASI=STATIC APPRQX.

iii_ﬁQB_AL_lNlEﬁBAIlQN_ALQNﬁ_IhE_REAL_AAls_lﬂ_I_E.QQMELEL_ALEHAH

82




oo

PLANE . '
(3) ASYMPTOTIC TECHNIQUES (USING STEEPEST DESCENT METHOD )e

BNaR*KO
IF (RNeGT ,Se0E=02.0ReRN,LT+3¢0E«01) GO TO 1lp5
IF (RN,GE,3+0E«01) GO TQ 77

QUASI=STATIC APPROX, WILL BF PERFQRVNED o«

1QlA=l

CALL QSTATC(AQsWAVE.312+I01A)
G0 TO 33

ASYMPTOTIC APPROX. wILL BE PERFORMED o

77 1Q1A=3
CALL ASMPT (AQyTHETA WAVE3+2)
60 TO 33

IN HEREY JUST REGULAR INTEGRATION METROD wILL BE USED TO FIND THE
SOMMERFELD INTEGRALS .

165 CALL FIELD(DSsKO9ZHMIRO4PZSIPXS9342)
CALL FIELD(DIsKO9ZH+ROWPZI4PXI93+2)
1Q1A=2
CALL RESULT{AOsSOMFLD9342+1QIA)
DO 6 JJ=1y2
po 6 Il=1,3 :
6 WAVE(IIoJu)=DS(ITodJ)=DI(I19JJ)eSQMFLD(ITvJU)
33 p0 2 JJuzle2
D0 & II=sls3
IF (JJJEQ.2) GO TO s6
TOTFLD (Il 4yJ)aFASWAVE (1T euJ)
GO TO &
TOTFLD (I, J)=FBeWAVE (110 JJ)
CONTINUE
CONTINUE
RETURN
END

w
N &
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SUBROUTINE FIELD(DyKeZHOsRO9XsY T oM}

THIS SUBROUTINE EVALUATES ALL THE ELECTROMAGNETIC FIELD COMPONENTS
DUE TO aN ELECTRIC VECTOR POTENTIAL OF THE FORM G1l1zExP(J®R11)/R1]
OR Gl2=EXP{J¥R12)/R12 +WHERE R]11=SQRT((Z~H0)w#2+RHQu%2) AND
R12=SGRT ((2eHQ)w#2+RHO4%2) +ZyHO AND RHO ARE NORMALIZED TO THE FREE
SPACE WAVELENGTH KOs THE INPUTS ARE

tly K 1S FREE SPACE WAVELENGTH,

{2) RO IS A RADIAL DISTANCE. .

{3) ZMp REPRESENTS THE NON=NORMALIZED DISTANCE (Z=HO) OR (Z+HO)e
THE OUTPUTS ARE 3

(1) D REPRESENTS THE FIELD ODUE TO Gll OR Gla.

(2) X AND Y REPRESENT THE FIELD DUE TO A VERTICAL AND A HORIZONTAL
DIPOLE RESPECTIVELY.

COMMON /MAIN2/8B+PeT+CTsST
COMPLEX GlloJoeFeDeXeY
REAL K

DIMENSION X(342)+Y(3+2190(3+2)

JE(Qeole)

RISGRT§RO'R002HOﬁZH0)

A=1,7 (K®*R)

Gll= CEXP(J#KaR)®A

BzAeA

‘XR=R0OsCOS (P) /R $ YR=RO®#SIN(P) /R
ZR=ZHO/R

FRle¢3e®JOA=], 4B

X(191)m=FoXROZR*G11%CT § Y(lol)=a=(FaXROXR=1,~J®A+B)4Gl16ST
X(291)a=FaYROGLI4ZROCT $ Y({2+1)==F®YR6G]]10XRaST )
X(391)3=(FPZR4ZR=] o =JoA+B) #G114CT §  Y(3.1)=<FuXR4ZR®G1]1oST
X(192)2(J=A)aYROGLI14CT §  Y(le2)3(0es04)
X(292)x(A=J)#GlloXRacT $ Yt2s2)3(J=a)¢Gl10ZReST
X(3r2)2(0e10,) $ Y(312)=(A=J)?YROGLI®ST

D0 22 JJysls2
‘DO €2 II=sl,3
22 D(Ilsdd)=X(ITedd) oY (I 4JJ)

RETURN
END
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SUBROUTINE LARGR(THETA,FLDs LI »MM)

THIS SURROUTINE EVALUATES THE EM FIELD COMPONENTS IN THE AIR REGION
ASSUMING A PLANE WAVE INCIDENCE ON THE AIR AND SLAB INTERFACE (SKY=
WAVE ASYMPTOTIC APPROXIMATION OF THE SOMMERFELD INTEGRALS) «THE INPUT

IS THETA=ARCTAN(RO/(Z+H0)).THE QUTPUT 1S FLD. II AND MM ARE VARIABLE
DIMENSIONS,

COMMON /MAINLI/N(3) ¢yHeE (3) 9RKsKO ¢ ZHM
COMMON /MAIN2/BPsTPsCTeSTHCP
COMMON /2YY/YZ(3)

COMMON /FUV/AL+GG0+GGL,GG2

REAL K0

COMPLEX GGO+GGl9GG29P2SsyPXSPZIsPXIsYZIREFL1+REFL2
1,01+s0S+FLDINVJ

DIMENSION DI(3+2)908(3+2)sFLD(IIsMM) 4P2S(3,2)+PXS(3+2)
10:PZ1(342)2PX1(302)

JE(OQevls)
ALsSIN(THETA) $ GGO0==JoCOS(THETA)
GG1=CSQRT (AL#AL=N(2)*N{2))
GG2=CSQRT (ALeAL=N(3) aN(3))
ZH=B/K0 $ RO=RK/K0
CALL FINOZY

PARALLEL POLARIZATION REFLECTION COEFFICIENT,
REFL1=(GGO=YZ2(1))/(GGO+YZ(]1))

PERPENDICULAR POLARIZATION REFLECTION COEFFICIENT.
REFL2=(GGO=YZ(2))/(6GB0eYZ(2))

EM FIELD DUE TO Gll=EXP(I#Rl1)/R1]
CALL FIELD‘DS.KO.ZHM.ROyPZSoPXSoII-HMI

EM FIELD DUE TO Gl2=EXP(I®Rl2)/R12
CALL FIELD(DI KOosZHoROJPZIyPXI oI 1MM)
DO 5 M=l MM
00 5 I=1,11

S FLD(I.M)ZPZS(IsM)«REFL1®PZI(IsM)sPXS(I?M)e
L(=REFLL9CP+REFL2%(1=CP))9PXI (I M)

RETURN
END
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SUBROUTINE RESULT(ALPHAQ.VALUE +KKLL1Q)

THIS SUBROUTINE CALCULATES THE SOMMERFELD INTEGRALS GIVEN.IN EQ,
(3p) OF THE REPORTIHOWEVER WHEN 1Q=1,THEN IT CALCULATES THE

INTEGRALS OF (S]) AND (55), T

INPUT ESALPHAO) IS PQLE LCCATION IN COMPLEX ALPHA PLANE.
QUTPUT S(VALUE) skK AND LL ARE VARIABLE DIMENSIONS.

COMMON /MAIN1/N(3) sHIEPSR (3) sRKIFK 4 ZMr TOLKNS
COMMUN /MAIN2/8yPHITHETARP

COMPLEX NyalLPHAQsVALUE

COMPLEX SuMiSAVE

DIMENSION SUM(392)9SAVE (3,2) s VALUE (KKsLL)
EXTERNAL GLES19GGRT)

LOGICAL TEST

PI=23.141592653

NI=2048

EE=1,0E=0¢

CRITERIA FOR THE SURDIVISION OF THE INTEGRATION.

CR=6.0/ (RK+EE) s C2=23,0/(B+EE) H CH=1.0/ (HeEE)
FACT1 =AMINI(CRyCZyCH) ,

CRITERION FOR UPPER LIMIT TOUNCATION IN THE QUASI~STATIC CASE
SEE SECTION 442 OF THE REPORT.

ENSCABS(N(2)) 3 ENI=10,%EN
HCESQRT (50,0°CHeCHEN®EN) $ CCH=AMAX ] (HCYEN])
po 1 LIsl, L .
no 1 Klsl,yxK
1 SAVE(KIZLII=(0e90,)
ACC=TOLRNS

HERE+®E DETERMINE THE CIRCLE OF INFLUENCE DUE TO THE POLE MOTION -
AS DISCUSSED IN SECTION 3.

ARSREAL (ALPHAQ) $ AI=AIMAG (ALPRAQ)
RR=SQRT ((AR=1,)#%2epl002)
IF (AR.GT.1e) GO TO 33
DIF=le=4s4RR s ADD=7 ,+4,%RR
60 TO 3& '
33 DIF=AR=4 4RR $ ADD=AR+4+#RR
36 tF (DIF) 15915416

THE POLE HAS NO INFLUENCE ON THE PATH OF INTEGRATION +THUS THE
PATH WILL BE SUBDIVIDED As GIVEN BY EQe (34) OF THE REPORT

15 T1=0. $ T2=1.
fJ=l 3 60 TO 27
16 IF (DIF.LE.l.) GO To l0S

THE POLE HAS AN INFLUENCE BEYOND THE BRANCH POINT AT ALPHAZl.

EPSI=SQRT(DIFe*DIF~1,) s EPS2=SURT (ADD#ADD=14)
T1=0. $ 2=},

1J=3 $ Il=)

EPS=EPS)

RZ=AMIN1(CRYCZ)

iF (EPS1.GE«RZ) EPS=RZ

G0 TO 27

HEREs THE POLE HAS AN INFLUENCE IN THE REGION FOR ALPHA BETWEEN
0 AND 1.

105 gPS1=SQRT(1.~DIF*DIF) L3 EPSaSQRT (ADD#ADD=1,T
T1=0. $ T2=EpRS]
1J=2 $ 1=
EPS2=AMIN1(EPS»CR4C2Z)
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C FIRST INTEGRATION FQOR ALPHA BETWEEN @ AND 1 AS GIVEN IN THE FIRST

c TERM OF (3e), bLESl-REPRESENTS THE FUNCTIONS TO BE INTEGRATED IN
c THIS REGION,

27 caALL INTEGR(TlvTZ.AcC;NI-GLESloSUNoKK'LLoxyxRELvNUSEDvTEST)
DO 3 LlI=lyLb
D0 3 KI=1l,KkK

3 SAVE(KIWLI)3SAVE(KIsLI)e(Ngaol, ) eSUMIKISLI)
IF (TEST) PRINT 2004X9XRELsT1yT20((SUM(KIsLI)YSAVE (KIsL])
loKIZ=1oKK) 9L I219LL) #NUSED
IF (IJ.EQ,1) GO TG 25
IF (1l.EQ.)) GO TQ 2o

Ti=T2 $ T2=1,0
11=1 $ ACC=TOLRANS $ 60 T0 27
30 NI=lp24 § IF (IJ«EQ.3) GO TQ 6§
T1i=0, $ T2=EPSZ $ 1Is2
ACC2TOLRNS /3.0
60 TO &0
90 T1=0. 3 T2=ERS] 3 1=}
60 TO 40 :
45 T1=T2 $ T2zEPS2
ACCSTOLRNS [ I1i=2
60 TO 40
35 T11=0,. $ T2aT2+FACT]

¢ SECOND INTEGRATION IS FOR TWE REGIQN BEYOND THE BRANCH POINT AT
C ALPHA=]le GGRTIZREPRESENTS TRE FUNCTIONS TO BE INTEGRATED.

40 CALL INTEGR(TI,TZ.AccoNIvGGRT1.suv KKQLL.X.XRELoNUSEDvTEST)
D0 8 LI=1sLL
D0 5 KlI=l,ykK

S SAVE(KIsLI)SSAVE(KIsLI)eSUM(KIsLI)
1F (TEST) PRINT 200¢X9XREL¢T1, Tav((SUM(KIoLI)vSAVE(KIvLI)
1oKIZ1oKK) oL I=19LL) sNUSED
IF (IJ«EQ, 3--‘?\0-;;.&0 1) 6O TO 45

ACC=TOLRNS/3.0
A=SQRT (1.¢T2%T2)
FACT2ZA®RK _
C CHECK IF THE ARGUMENT OF THE BESSEL FUNCTION HAD REACHED THE VALUVE
C OF 509 IF SO 9USE ASYMPTOTIc APPROX, FUR THE REGIUN BEYOND THIS
c POINT AS DESCRIBED IN APPENDIX=C EQ, C=2 OF THE REPORT,
IF (FACT2.GE«50.0.,ANDeT2.GE.EPS) GO TO 239
[ CHECK IF WE HAVE A QUASI=STATIC CASE,IF SOs PERFORM THE INTEGRATION
€ GIVEN IN EQ, (51) AND (55) AND +THEN,ADU THE CORRECTION TERMS
C WHICH REPRESENTS ANALYTICAL AFPROX. OF THE INTEGR. FROM ALPHAT
Cc TO INFINITY AS DESCRIBED [N AFPENDICES A& AND 8.

IF (IQ4EGQ,1+AND.T2.GE.CCH) GO TO 115
202 TT=BeT2

C CHgCK IF THE EXPONENTIAL FUNCTION EXP(=GAMMAQ®#B) nAS REACHED
C THE VALUE OF EXP(=12) +IF SUs STOF THE INTEGRATION.

1F (TTeGT.124) GO TO 100

Ti=T2 $ T2sT2+FACTI
60 T0 4o

115 cALL CORREC(AsSUMyKKoLL)
60 TO 110

39 CALL ASYMP{AySUMIKK,LL)
110 pO 7 LI=1yLL
DO 7 KI=1,KK
7 SAVE(KIZLI)SSAVE(KI,LI)eSUMIKTIWLI)
100 pO 9 LI=lyLL
DO 9 Klzl,ykK
9 VALUE(KIsLI)=SAVE(KIWLI)
200 FORMAT (/S5X9#ABSeyRELe ERRS+=#2(2XE13+6) 13Xa L=?E13,5+3X#UL=9E13,5
1/71X%SUM MATRIX®/1X916(2E13,595X92E13.5/)92XNUMBe OF ITER.="16/]
RETURN
END
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SUBROUTINE INTEGR (AvBoEPSINSTEPIF 9 VALUEILsMy X2 XRELTVKG)

THIS SUBROUTINE PERFORMS AN (LsM) ARRAY OF COMPLEX FUCTIONS
INTEGRLITION USING MODIFIED ROMBERG TECHNIQUE.
ASLOWER LIMIT , BSUPPER LIMIT OF THE INTEGRATION
EPSZREQUIRED TOLERANCE,

NSTEPZ MAXs NUMBER OF [TERATION TO BE USED FOR PERFORMIG THE
INTEGRATION,

FS A SUSROUTINE HWAS AN (LeM) ARRAY OF FUNCTIONS (INTEGRANDS).

VALUEZ QUTPUT OF THE INTEGRATION ,(LoM) ARRAYS OF vaALUES.

XE RETURNED ABSOLUTE ERROR o XRELTVE RETURNED RELATIVE ERROR.

KSENUMBER OF  ITERATION USED IN PERFORMING THE INTEGRATION,

GSLOGICAL STATEMENT IF IT 1S FALSE oTHEN THE INTEGRATION was
PERFORMED WITHIN THE REQUIRED TOLERANCE (EPS) AND THE ITERATION

SIZE (NESTEP)., OTERWISE IF IT IS TRUE +THEN X 4XRELTV AND K
WILL BE RETURNED.

COMPLEX FCNAJFCNB+FCNXIoToSUMQX]1»@X29VALUELQ
DIMENSION SUM(3+2) oFCNA(302) +FCNB(3+2) 9T (392)+FCNXI(3+2)
1QX1(3¢2) 0QX2(3+2) s VALUE (L9M) 9@ (164302)

LOGICAL 6

HaB=A

CALL F(AFCNA L M) $ CALL F(B.FCNByLIM)

Do 67 MJsl M

DO &7 LJ=1sL

67 TILJoMJ)=(FCNA(LJIIMI) +FCNB(LJIIMJ) ) #H/2,

NXxal
Nsl

1 Kzs2ean

HaW/2,
DO 22 MUzl M
DO 22 LJ3lsL

22 SUM(LJIMJI=(0400,)

DO 2 1=1sNX
X122+*FLOAT(I) =],
XAzAexIoH

CALL F (XA FCNXI oL oM)
00 24 MJU=l¢M

DO 24 LJu=lsl

26 SUMILJIMJIYZSUM(LYIMJ)Y «FCNXT (LJIMJ)
2 CONTINUE

D0 26 MJ=z1M
D0 26 LJ=lsl
TILJoMNI 2T (LJYsMJ) 724 +HOSUM (LI MUY

26 QINILJIMI)S(T(LJoMU) eHaSUM(LUIMY) I ®2,/3,

IF (N=2) 1043,3

3 F"-,

DO 4 JU=m2sN
IzNe+l=y
FaFeé4,

D0 27 MJslyM
DO 27 LJ=1lsl

z7‘°(x.LJ.MJa=°(:01.LJ.MJ)o(°<1.1.LJ.MJ)-°<1.LJ.MJ))/(r-x.)
4 CONTINUE

IF (N=3) 945,5

5 x=0. $ XRELTV=0,

DO 29 MJsz1l oM

DO 29 LuJzlrL

XREALaABS(REAL(thoLJoMJ)'QXZ(LJcMJ)))*ABS(REAL(QXZ(LJcMJ)

=QGXl{LJeMJI))
llenG:AéS(AIMAG(O(l.LJ.MJ)-GXZ(LJ.MJ)))oABS(A:MAGtQXZ(LJoMJ)
1=QX1 (LJoMI))) -

CR=CABS(Q(lsLJsMU))

IF (CR.EQ.0.0) GO TO 33

XRzAMAX1 (XREALXIMAGY/CR & GO TO lo7
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(s X eXe)

33 XR=0.0 ’ ’
107 XRELTvaAMAX] (XRyXRELTV)
29 X=AMAX] (XoXREAL s XIMAG)

COMPAzX«3,vEPS
COMPRaXRELTVe3,*EPS
IF (COMPAokE-OQQ-OR.COMPR-LE.O.O) 118
8 IF (NSTEP=K) 1191149
9 DO 37 MJzlM
00 37 LJdsl,L
37 QX1(LJaMI)=2@X2 (LIeMJ)
10 00 39 MJ31M
DO 39 LJ=]lsL
39 AX2(LJsMIY =@ LI MUY
12 NXaNXe2
. NaNe+}
GO TO 1
11 DO 41 MJ=1l,M
D0 41 Lusisl
41 VALUE(LJoMJ)I=Q (1oL JsMY)
GENSTERPLTK
RETURN
END

SUBROUTINE GLES1(TsGLeIvJ)

MEREs WE EVALUATE THE FIRST INTEGRAND OF EQ. (34) OF THE REPORT

THE REGION IS FOR ALPHA BETWEEN 0 AND 1,
T IS THE INPUT .OUTPUTEZGG IS AN ARRAY OF (I+J) FUCTIONS.,

COMPLEX GoGL
DIMENSION GL(1+¢J)9G(3+2)
X2SQRT(1e=ToT)
CALL SUBG(XsGelrd)
00 10 N=l,J
DO 10 M=sl,l
10 GL (MeN)3G(MyN)
RETURN
END

SUBROUTINE GGRT1(T+GGe1sd)

THIS SUBROUTINE EVALUATES THE SECOND INTEGRAND OF EQ. (36)
REPORT. THIS REGION IS FOR ALPHA GREATER THAN 1. -
T 1S THE INPUT ,QUTPUTEGG 1S AN ARRAY OF (IsJ) FUCTIONS.

COMPLEX G»GG_ )
DIMENSION GG (14J)96(3+2)
XaSQART (1eeTaTy
CALL SUBG(X+GsI9J)
DO 10 N=ley
0o 19 M=l,
10 GG {MsN)=G(MyN)
RETURN
END
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‘SUBROUTINE SUBG (ALPHA+GsIIvdd)

C HEREs WE CALCULATES THE FUNCTIONS GIVEN IN EQ. (30) OF THE REPORT.
c INPUTZALPHA s OUTPUTEG IS AN ARRAY OF (1l.JJ) FUCTIONS,

COMMON /MAINI/N(3)yHsEPS(3) sRKO
COMMON /MAINZ2/B
OIMENSION BESSJ(2)9BESSY (2)9Y(392)9Z(392)9G(119Jd)
COMPLEX NoCXoGAMAO Y eZeJO0vJ1 4G
AsALPHA
IF (Xele0) 10,20,30
10 GAMAQOZ (Qev=14)*SORT (le=XuKX) 3 GO TO 40
20 GAMAO=(0es04) $ 60 TO 40
30 GAMAQ=SQRT(X#Xel,)
.40 RAmXeRKO
CXaCEXP («GAMAQ#8)

c A CALL wILL BE MADE TO SUBROUTINE (UV) TO EVALUATE THE FUNCTIONS
c LISTED IN TABLE=2 OF THE REPORT.

CALL UV(XsGAMAOIYZsIT4dy)

-G THE OTHER CALL wILL BE MADE TO BEJY TO EVALUATE THE BESSEL
o FUCTIONS JO AND J1 o :

CALL BEJY(RA'BESSJ'BESSY240)
JO=BESSJt1) $ J1sBESSJ(2)
00 22 UMalsJJ
00 22 [M=1,11

22 GUIMIJM)SCXU (Y (IM9UMIBJ0eZ (IMyUM) 0JL)
RETURN
END

SUBROUTINE UV (ALPHA»GOsUosVsIds 1K)

SUBROUTINE UV CALCULATES THE FUNCTIONS LISTED IN TABLE=2.INPUTS ARE}
(1) ALPHAWWHICH IS REAL SINCE THE INTEGRATION IS ALONG THE REAL-
AXIS IN THE COMPLEX ALPHA=PLANEs
(2) GO=SQRT((ALPMA)®##2=1) sHERE GO IS COMPLEX AND THE CHOICE OF
THE BRANCH CUT IS G0s«J#SQRT(l=(ALPHA)®#2) FOR A_PHAC],
THE OUTPUTS ARE 3
(1) U AND V REPRESENT THE VALUES OF THE LEFT AND THE RIGHT COLUMNS
OF TABLE~2 RESPECTIVELY. IJ AND IK ARE VARTABLE DIMENSIONS.

000000 OO0

COMMON /MAIN1/N{3) ¢HEPSR(3) 4RKO
COMMON /MAIN2/BsPsToCTeSTeCPsSPCP21SP2
COMMON /F INOF /F(3)

COMMON /FUV/A,GAMAOD,61,G2
COMPLEX NyG0,Gl91G2,4GAMAQ

COMPLEX FyFGoUyV

DIMENSION Ut342)eVI(3e2)

AzALPKA

GAMAQ0aGO

GlaCS0RT{A#A=N(2)#N(2))

G2=CSQRT (A®A=N{3I)oN(3))

RK=RX(

A2sAeA
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FIND THE VALUES OF (GO®F1),(G0%F2) AND (GO®F3)+WHERE FlsF2 AND F3
ARE GIVEN IN EQ. (29) OF THE REPORT,

CALL FVALUE
FGaF (2)=G0#F (3)

Ullel)a(F(2)=FGPA24CPOCP) *ST

V19112 (FGPCP2¥ST/RK*GQ*F {1} #CR¥CT) ¥
Ul2s1)==A20FGaSP20ST/2, i
V(291)sA® (FGOSP24ST/RK«GOVF (1) #SP«CT)
U(3s1)2424F (1) 9CT

VI391)8A% (GOSFG=F(3) ) 9CPaST
U(lr2)m=A208F (3)nSP28ST/2,

V{le2)mA® (F (3)#5P245T/RK=F (1) @SPaCT)
U(212)=(=GO®F (2) s A24F (3) #CP4CP) aST
V(292)34% (=F (31 %CP2%ST/RK*F (1) #CP®CT}
U(3s213(0,40,)

V(3+2)8A6F (2) aSPuST

RETURN
END -

SUBROUTINE FVALUE

THIS SUBROUTINE EVALUATES DIFFERENT TYPES OF FUNCTIONS DEPENDING
ON THE VALUE OF (I) IN THE COMMON BLOCK (TYPE)., (I) DETERMINE THE
FOLLOWING CASES

(1) If I=1s THEN +IT CALGULATES THE QUASI-STATIC FUNCTIONS LISTED

IN EQs (51) AND (55) OF THE REPORT.

{2) FOR I=2, FVALUE CALCULATES (GO®F1)+ (GO®F2): AND (GO®F3) WHERE
FlsF2s ANO F3 ARE GIVEN IN (29) OF THE REPDRT AND
GOuSQRT ( (ALPHA)#82a1,)

(3) WHEN 1=3, (FVALUE) CALCULATES Fl,F2 AND F3 AND THEY WILL BE
USED IN THE ASYMPTOTIC FORM FOR THE EM FIELD COMPONENTS,

THE OUTPUT OF THIS SUBROUTINE IS THE COMMON BSLOCK /FINDF/

THE INPUTS ARE THRU THE FOLLOWING COMMON BLOCKS

/MAINL/ N(3) AND EPSR(3) ARE THE REFRACTIVE INDICES AND RELATIVE

DIELECTRIC CONSTANTS OF THE THREE MEDIA.

/FUV/ (A) =(ALPHA) o (50)=3(GAMMAOD) , (Gl)=(GAMMAL) ,(G2)=(GAMMAZ) .
H IS THE NORMALIZED SLAB WIDTH,

72YY7 Ty (l) =(KO) o 2Y(2)3(NO) » ZY(3)=l/Wwl AS GIVEN IN EQ. (8Bl

(9) AND (11} OF THE REPORT.

COMMON /MAIN1/N(3) sHeEPSR(3)
COMMON /F INDF /F (3)

COMMON /FUV/A4,G0,Gl (G2
COMMON 72YY/2Y(3)

COMMON /TYPE/I

COMPLEX FsZY,LAMDALl,LAMDAZ
COMPLEX NyGO,Gl9G2+E1¢E2
CALL FINDZY

El=N(2)8N(2) $ E2xN(3)oN(3)
LAMDA23l,/E2«l,/EL

LAMDAl = AMDA2aZY(3)=1,1,/E1

F(l)=m2,9G0/(GO+ZY (1))

Ft2)=22,9G0/(G0+ZY(2))
F(3)sLAMDAL®(F(2Y=F (1)) (ZY(2)=2Y (1))
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10

30

20

IF (I=2) 1042030

FUl)=F(1)=24%E1/(Els1.)

F(2)aF(2)=l,

F(3)8F(3>-(E1-1.)°GOI((El*l.)°61602!

RETURN

F(l)= 247(G0e2Y(1))
Flala 2,/7(GoezY(2))

F(SI-LAMDAlu(F(Z)-F(I))/(17(2)-ZY(1))

RETURN
END

SUBROUTINE FINDZY

THIS SUBROUTINE CALCULATES THE VALUES OF KOsNQs AND 1/W1 AS GIVEN IN

(8)9(9) AND
8LOCK szvYY/

20

10

(11) OF THE REPORT , THE QUTPUT 1§ THRU THE COMMON

COMMON /MAIN1/N(3) +HsEPS(3)
COMMON /FUV/A,G0,Gl,G2

COMMON /ZYY/2Y(3)

COMPLEX NeGO,GloG24224¥2,242Y4T4EL4E2,CT9DENYHDENZ

ElaN(2)eN(2) s £2aN (3) N (3)
Z3{0ss]4) G} [ TEZ#H

Y2aG2 s 22zv2/E2
ZI=AIMAG(2,5T)

IF (ABS(ZI)+GE+60+0) GO TO 10

CTaCSIN(T)/CCOS(T)
DENY®Z2+Y2u(CT

DEN2=Z/El+Z206CT

3
ZY(3)=Z'Z/(EloDENZ#DENY“o.S’(l.oCCOS(Z-GT)))
IY(1.2(Z/E1)»(22=-29CT/E]) /DEN2Z
ZY (2)aZ® (Y2=-24CT) /DENY

RETURN
ZY(3)1(0|'°¢)
DENY=ZeY24CT $
@0 TO 20

END

CTa(0.0l,)
DENZ=Z/E1+Z20CT
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SUBROUTINE BEJY(X9BJeBYsMoN}
DIMENSION BJ(2),.8Y(2)

BEJY CALCULATES THE BESSEL FUNCTIONS JOsJ19Y0 AND Y1.INPUTS ARE}
(1) X wHICH IS THE ARGUMENT OF THE BESSEL FUNCTIONS.
{2) M ANO N DETERMINES WHICH TYPE OF BESSEL FUNCTIONS IS NEEDED»
EXAMPLE WHEN (MyNY=(1.0) JO WILL BE CALCULATED.

THE QUTPUTS ARE 8y AND BY REPRESENTING BESSEL AND NEUMANN FUNCTION
RESPECTIVELY.

TIX/S.
YaT#T
Zade/X
IF(XeGEe3.) GO TO 10
BU(l)al =Y9(2,2499997ayun (]l 26562080 (,3163866=y0(,0644479a
1Y9(400394442y0,0002100)))))
GO TO 11
10 W=SQRT(X) ‘
AF=,79788456-26(,00000077¢2%(,00562740+Z%(,00009512-24(.,00137237
1=Z%(¢00072805-24,00014476)))))
THETAmX=,78539816=2%(,04166397+Z%(.00003954=24(,00262573
1=2%0.0005412542%1,00029333=2%,00013558)))))
BJ(1)sAF®COS(THETA) /W
11 IF(N«GT.0) GO TO 20
IF (MsEQ.2) GO TO 40
RETURN
20 IF(X«GE«3,) GO TO 30
BY (1)224/3,141592650A1L0G(X/2,)#BJ(1)+,36T4669]14y0u(,60559366a
1Y9(76350384aya(,25300117=Y#(,04261214=Y%(,00427916-Y2,00024846)))
2N
G0 TO 31
30 BY(l)=AF*SINITHETA) /W
31 IF(M.EQ.2) GO TO 40
RETURN
40 IF(XeGE+3.) GO TO 50
BJ(2) g0 ¢5eYs(,562469985yn(,21093573ey0(,03954289~y0(,00643319
laY®#(,00031761-Y%,00001109}))))
BJ(2)aBJ(2) #X
G0 TO S1
50 AF=.79788456429(,00000156¢Z% (40165966742 (,00017105=24(+00249511
1=Z2(,00113653.72,00020033)))))
THETAZX=2,356]1944942Z6(,12499612+24(+00005650=29(,00637879
1=2%(,00074348+Z%1,00079824=2%,0002916673)))
8J(2) =AF*COS (THETA) /W
51 IF (N.EQ.2) GO TO 69
RETURN
60 IF(XeGEe3s) GO TO 7O
BY(2)224/34141592654%X9AL0G(X/2.)%8J(2)=,6366168+Y4(,2212061sy4(
12016827095 (1,3164827=v4(+3123951~Y5(+0400976=Y#,0027873))}))
BY(2)aBY (2) /X
GO TO 71
70 BY(2)=AFSSIN(THETA) /W
71 RETURN
END
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SUBROUTINE ASYMP(X9Zs1I,JJ)

THIS SUBROUTINE CALCULATES THE TRUNCATED INTEGRALS FROM ALPHAT

TO INFINITY AS SHOWN IN C=2 OF THE REPORT,INPUT (X) REPRESENTS

THE LOWER LIMIT OF THE INTEGRAL., (Z) IS THE OUTPUT WHICH [S THE
CALCULATED ANALYTICAL APPROX. oIl AND JJU ARE JUST VARIABLE DIMENS.

COMMON /MAINI/N(Q) ¢HsERPS(3J) oRK

COMMON /MAIN2/8

COMPLEX FoGGyFFoYYsZZ1YXeZX9sNyGAMAQ1Z+G19G210YZ9sDFYsDFZsPFRF-
DIMENSION YY(392)9ZZ(3+2)9YX(302)eZX(392)9GL(392)062(302)4Z(I19JJ)
1oPF(34342)91RF(39342)90FY (392)¢DFZ1(3+2)

FF{XXsGGrRR) =2XXPSQART(2¢/(3¢1415926534#RR) ) #CEXP (=GG*R) /GG
PI123.,141592653

GAMAQRSQRT (X2X~=l,)

RA=X#RK L 1 PP=RA=PY /4

CALL UV(XsGAMAQsYYZZeI10JJ)

SIsSIN(PP) § Cl=COS(PP)

FaFF (X+sGAMAQ'RA)

00 10 usl.JJ

00 10 1=1,I!

PF(lolod)=aFayyY(l4J) $  RF(1LyI.DaF22Z(1v))

10161(I!J)S(-PF(IDIOJ)’GSI'CI/(G.'RA))’RF‘I’I-J)’(CI-S.“SI/(8-°RAJ))
/RK

Dzl ,0E=04
DO 39 M=2,3
"~ XDzXe (M=]) 0D 3 RO=x0=#RK
GAMAQ=SQRT (XDeXD=14)
CALL UV(XDsGAMADYX92ZXs110JJ)
DYZ=FF (XDyGAMAORD)
DO 37 Jsl,JJ
00 37 1=1,11
PF(MeloJ)z0YZeYX{IsJ)
37 RF(MeleJd)=0YZ0ZX(10J)
39 CONTINUE
R2sRK#RK
DO 20 J=l,JJ
00 20 I=l,II
DFY(I1oJ)B(=3 ., #PF(19leJ)sbe®PF(2010J)=PF(3919J))7({24%D)
DFZ(led) 2 (=3, 8RFt1oleJd)ebe®RF(2914J)=RF(I919J))/(2.20)
G2(1vJ)=(=CIeDFYL9J)=SIeDFZ(IsJ))/R2
20 Z(1oJ1mBl(19d)eG2(Ivd)
RETURN
END
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SUBROUTINE QSTATC(AO.TOTLoIfoJJ-IQ)

QUASI=STATIC APPROX, WILL BE EVALUATED IN THIS SUBROUTINE.

(AO0) REPRESENTS THE POLE LOCATION IN THE COMPLEX ALPHA=PLANE,
(TOTL) IS THE OUTPUT OF THIS SUBROUTINE WHICH IS THE CALCULATED
ARRAY OF FIELD COMPONENTS, II AND JJ ARE VARIARLE DIMENSIONS,

(

10

20

IQ) IS A FLAG AND IT SHOULD BE 1 IF QUASI=STATIC APPROX. IS NEEDED,

COMMON /MAIN1/N(3)sHsE(3) 'RKsKOsZHM

COMMON /MAIN2/BsPHI9T+CT,ST

REAL x0

COMPLEX NyDS,DIsPZS+PZI+PXSsPXIyQ¢TOTL+SOMyCsAQsE]L

DIMENSION 05(3921oDIl302§’PZS(31Z)'PZI(302)o9!$(312!o912¢3921
LoTOTL (Il oJJ) 9SOM(3492)1+Q(392) .

E1sN(2)®N(2)

ZH®8/K0 [ ROZERK/ KO

CALL FIELD(DSKO4ZHMIROyPZSIPXS»ITsJJ)

CALL FIELD(DIosKOeZHoROYPZIWPXIsIIvJJ)

CALL QV3I(QyIToJJ)

CALL RESULT(AQ0s»SOMsITr»JJe1Q)

Cal,*El/(Elsl,)

D0 10 JUsl,yJJ

0O 10 I=1,11I
TOTL(I9J)=DS(ToJ)=DI(L1eJ)*CHPZI(2ed) ¢PXI(19J)«Q (I JINST+SOM(TsJ)
RETURN

END

SUBROUTINE QV3(MEsIsd)

COMMON /MAIN1/N(3)sHesEPSR{I) 4RK .

COMMON /MAIN2/B4P T»CT,STsCP,SP,CP2ySP2
DIMENSION HE(3+2)9T1{3s2)9T2(302)

COMPLEX NyCoHE)T19T2sK4EsELWJ

PI'301‘1592653 S Ja({0erls)

ElaN(2)*N(2)

KB (El/2(Elwle) )0 (=o61593151=454J9P1+CLOGIN(2}))
Ca(N(2)8N(2)al )/ (N(2)0N(2)0)

Ems(El-l,)»C/2,

ReSQRT (BeBeRK¥RK)

AASALQG (ReB)

R3al,/R#e3 $ RS5=21,/R%%5 § RBlal./(ReB)
RB2aRB1®RB1] $ RR=RB1/R $ RBa(2.*R+B)¥RIVRB2
T1{191)3 CO{R3=3, RS0 (RKACP) 442+ ,50((BYCP/R)82+SPoa2) /R)
T1(211)2=CoRKaRKoSP24(]1,59R5+,254R3)
T1(391)2=CoRKOCP* {RR*3.#AYRS+ 54 (A®RI=AA))
T1(192)2CORKOIRK#SP2% (,5¢RB+«25%RR)

T1(292)2Co (RR=RB® (RK#CP)vH2e 54 (AA+RRO (RK4CP)0%2))
T1(302)3(0e404)

T2(1lv1)3E*RBlo (BuCPecP /ReSPUSP)

T2(291)==E®SP22 (RK¥RAL) ##2/R
T2(39]1)SERRKUCPO (=2 #RAR+*AA+B2RB]L +K)
T2(1+2)=20,52Ee5P20 (RKOPRB]) 282
T2(212)3~E9 (AA+RB1 % (RuCPaCP+g#SPaSP) 4K)
T2(302)=(0420,)

00 20 JJ=lyyJ

D0 20 II=1y1 ] .
HE(IIoJUI=TL(IT0dJ)eT2(IT0JdV)

RETURN

END

95




OO0OO0O0O0

SUBROUTINE CORREC (X¢Fs I odd)

THIS SUBROUTINE IS USED WHENEVER A QUASI=STATIC CALCULATION Is
NEEDEDs AFTER THE INTEGRATION HAD REACHED CERTAIN LIMIT (ALPHAO)

AS DESCRIBED IN SURROUTINE (RESULT) THIS SUBROUTINE wILL BE EXCUTED
TO GET THE REMAINDFR OF THE INTEGRATION IN AN APPROX. FORM,

THESE 4PPROXe HAVE SEEN SHOWN IN SECTION 442 s EQS, (50) AND (54)
OF THE REPQRT,.

COMMON /MAINI/N(3) +HsEPSR(3) +RK

COMMON /MAINZ/BsPeTsCT ST1CP,SP,CP2s502

DIMENSION F(3,2)4T1(342)0T2(3+2),T3(3,2)

COMPLEX NyElyFodsK1eK2eT10T2,T3,K3

EI'N(Z).Nfz) 3 J=(00'10) $ pI=311‘1592653
K23 (El=le)/4s  § Klme2e9E1/(Elel,)®02
KSS-(Sc“El'I-)'( fEl"lo)/(El“l-))““Z/&u

RESQRT (B*B+RK*RK)

BRzl,./(R+B) 3 RR=BR/R
C3204115931514AL06(X)

AL=ALOG (R+8) s E=EXP (=X4B)

Tl(lel)aK1loRKaCPaCTHRR .
thlvl)axz“(t-l.ocl.-B/R1°CP'CP1¢BR08~tAL-C)-n~E/x)~sv
T3(11])=2,#K30 (BoCP2CP/ReSPUSP) #gRST
T1(2+1)3K19SP4CToRKSRR
T72(291)30,50K225P2% (R=3) 8RR®ST
T3(2+1)3=K34SP26STo (RK4ER) 852 /R
Tl(391)8K1®(1,/Re (Xe1./X)PE+B9 (AL+C)=R)SCT
T2(341)=2K29RK4CPaSTHRR
T3{3'1)lKS“CPOSTGRK#(-Z.GRROALOB°8R‘C)
Tltlv2)a=KlsRKeSPECT4 R
T2(l92)2(0490,)
73(1.2)=.56K3u592»sT°(RK05R)o¢2
T1(2v2)3K]18RKeCPsCToBR
T2(2s2)=K28 (AL+C~E) 85T
T3(2-2)=-K3#5Tl(ALoc.(nacpocp.aosposp,wga)
T1(3+2)2(0e90.)
T2(342)3K29RKaSPaSTegR
T3(302)3(0ar0,)
00 10 JUNs3l,2
00 10 IN=a1,3

10 FUINIJNISTL(INSUN) «T2(INyJIN) +TI(INyIN)
RETURN
ENO
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SUBROUTINE ASMPT(POLE«T,EHsIIsdd)

THIS SUBROUTINE PERFQRMS THE ASYMPTOTIC EVALUATION OF THE EM FIELD
COMPONENTS USING STEEPEST DESCENT METHOD. SKY WAVE APPROX. IS
PERFORMED BY SUBROUTINE (LARGR) AND GROUND WAVE SOLUTION IS
CALCULATED USING SUBROUTINE (FACTOR)e. THE INPUTS ARE 3

(1) POLE WHICH IS THE POLE LOCATION IN THE ALPHA PLANE,

(2) T IS THETA WHICH IS THE ANGLE GIVEN BY ARCTAN(RO/ (Z+H0))
EW IS TWE RETURNED ASYMPTOTIC FIELD.II AND JJ ARE VARIABLE DIMENS.

COMMON /MAINI/N(s)'H'E(S)ORRQKO'ZHH

COMMON /MAIN2/B4PHIsTP .

ggrELsg POLE EHISMR9S1+S290S9sDIsPZSsPXSsPZIsPXIsNsGeGPsIJoP
QIMENSION EH(IIsJJ) sSMR(392) .
1005(302)001(302)09251302)OPZI(3021vPXI(302)'pxs(302’
IJo(0esle)

GPa=1J9CSQRT (POLE®POLE=]1,!

20 XsSIN(T) $ C=COS(T)

RaSGRT (RR#RR+BuB) .

RO=RR /K0 $- ZH=sB /K0

Pa(leald)#CSART ((]1,=GP#C=XsPOLE)4R/2,)

CP=CABS (P)

IF (CP.GE.7.5) GO TO 25

CALL FACTOR(TsX9sCoPOLEWRISMRII 1JJ)

CALL FIELD(DSsK0+ZHMeRO+PZSIPXSIIJdJ)
CALL FIELD(DI+KO»ZHIROWPZIVPXIVII*JJ)

DO 10 J=1l,JJ
0o 10 1al,I1:
10 ER(Isd)30S(Is0)=DI(Lod)eSMR(I4J)
GO TO 30
25 CALL LARGRITsEHIYITIJY)
30 RETURN
END

SUBROUTINE FACTOR(TTsAsG02APRaHEKKyLL)

THIS SUBROUTINE CALCULATES THE ASYMPTOTIC FORM OF THE EM FIELD
IN THE AIR REGION TAKING INTO CONSIDERATION THE GROUND WAVE
SOLUTION.TWO TERM APPROX, HAS BEEN USED OUT OF THE ASYMPTOTIC
SERIES.FORWARD,CENTRAL AND BACKWARD DIFFEZRENCE METHOD HAS BEEN
USED TO REPLACE THE DERIVATIVES IN THE SECOND TERM,.

COMMON /MAIN1/N(3) sHeE{3) RO

DIMENSION BESJ(2) sBESY(2)9U(302)9V(392)450(49302)19S1(493+2)

1 sTR1 (34215 TR2(3+2)+D05(3+2)+005(3+2)¢85(3,2) +HE (KKyLL)
COMPLEX WB1loWB2+GGeUsVS09S14CFeTR1ITR2,D0S,005¢SSHE

COMPLEX NyAPyJ9BeGl20GPsFRyHLOSHLL19FoFOsFloWsPoW]

JE{Qeale) $ Pl=3,141592653
RaPaREAL (AP eaP)

IF (RAP.LT+1.0) GO TO 17

GP3=JuCSQRT (AP®AP=l,) $ GO TO 34

17 GP=CSQRT(1,=ApsAD)

34 B (1eeJ)#CSQRT ((1,=GP4G0=AP®A) /24)
FB'loo .
AB=AIMAG(B)

IF tABoLTooco) FB=-1.°
P=FBeB®SQRT(R) .
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G123CEXP( J#R)

Wl=w(P)®Fg

c.------------—----.-------------—-------
g WP)ZEXP (=PaP) #ERFC (=JuP)

wBl=wl/8 5§ WAZ2zBe(JsWleFR/(PeSQRT(PI)))

CF=Ple(l,=J)2BuBagl2

D2S,0E=04

AD1=TT*D $ AD2ETT=D

DO 39 M=l,4-

IF (AD1eGEs1.570796,0R,AD2.LEe0e0) GO TO 42

IF (M.GEss) GO TO 201

ADaSIN(TT+FLOAT (M=2)#D)
1020 i
GO TO 88

42 IF (AD1.GE.l1,0) GO TO 72
iD=l s ADaSIN(TTSFLOAT (M=l)4D) $ GO TO &8

72 1032 §  AD=aSIN(TT=FLOAT(M=1)4D)

88 GA=SQRT (l.~ADw®AD) $ GGa=JoGA

40 X3AD*RO
FuADPCEXP (=JuX)/SQART((1+GA®GOeADGA) #2,)
CALL BEJY(XsBESJ«BESY2,2)
M10=BESJ(1)+JsBESY (1) $ H1l1lsBESJ(2) +JeBESY (2)
FOaMlQeF 3 FlzHller
CALL UV(ADIGGesUIVIKKLL)
DO 22 L=lsLL
00 22 K=1.KK
SO(MeksL)BFOBU (KoL)

22 S1(MexsL)aFleV(Kel)

39 CONTINUE

201 CONTINUE
IF (ID.GE.l) GO TO 85

c CENTRAL DIFFERENCE

DO 83 L=lyLL
00 83 K=],KK
DS(KIL)IB{SO(IoKIL)=SO(1aKsL)*4S1(3eKsL)=S1(1sKeL))/(2.%D)
DOS (KoL) (SO(3sKsL)=242S0(29KsL)eSO(1aKsL)eS1(IsKsL)=2e951(29KrL)
10S1(14Ksl))/Duu2

83 SS(Ke)m=UsGOR(SO(21KsL)+S1{20KsL))

G0 TO 106
85 IF (ID.EQ.2) D==D
c FORWARD OR BACKWARD DIFFERENCE

D0 93 L=l,tL
DO 93 KSI’KK
DS (KoL) Z(=342S0(1sKIL)+4eSO(29KsL)=SO(31KsIL)=3:¢S1(19KoL)
1¢6,#S1 (29K} =S1t3rKsL))/(2e4D)
DOS(KIL)IS (2SO (19KIL) =5,%S0(29KsL)*4¢#SO(39KsL)=SO0(%sKL)
1020951 (1sKIL)=5,95] (24KeL)*4e®S1(39KsL)=S1(4eKrL)) /D082
93 SSIKILIZ=J®GO»(SO(1sKIL)+S1(1eKIL))
106 DO 57 Lsl,LL
DO 57 Kal KK
TR1(KsL)SCFOWB]1 2SS (KoL)
TR2 (KoL) SCFoWB2¢ (w29 JoA#0S (KoL) +J®G0#DDS(KIL) *(J/B2224¢T5) #
1SS(KsL))
ST ME(KoL)STRLI(KeL)*TR2(KsL)
. RETURN
END
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Cree-

c w

10

S
100

122
124
120
226

COMPLEX FUNCTION w(2)
(ZYSEXP (=Z#Z) 9ERFC(=142)

COMPLEX I192921922425¢53+8%9P1yP3,KyK1HFR
I=z(0e9los)

X=REAL (Z) $§  YRAIMAG(2)
IF (XeGTe3¢9.0RsYeGT«3,0) 10,100
Plalez $ 252202

!F (X.GT060000R0Y05T0600, Go To 5
WzP1#(,4613135/(25=¢1901635)¢409999216/(25=1,7844927)
140002883894/ (215°5+5253437))

RETURN
WEPL®(,5124242/(25=+2752551)+,05176536/(215=2,724745))
RETURN

Pa2./SQRT(3,141592653)

Il==102

53221 S S4283 s 12=7]0#2

00 120 J=1+200

NaJ=1

Al=FLOAT (2%Ne1) s A2=3F| OAT (2¥N®##2+548N+3)
P3a§30Z2%Al /A2

$33P3 $ P53CABS(P3)

IF ((N/2%2) «NE.N) GO TO 122

SesS4=P3 $ GO TO 124

S4xS4+P3

IF (PS.LE.1,0E=09) GO TOQ 226

CONTINUE

Kz({leglse) $ Kistleo=ls)
FRaKaegasPs2,

WRCEXP (=20Z) 8 (le=K14FR)
RETURN
END
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SUBRQUTINE RROOT (ZERO,AP)

THIS SUBRQUTINE SEARCHES FOR THE SURFACE MODES THAT EXISTS WITHIN

A LOSSY QIELECTRIC SLAR ABQVE A FINTELY CONDUCTING GRAUND (REFER TO
SECTION<3 OF THE REPORT).aT FIRST,THE REAL ROOTS OF A LOSSLESS
OIELECTRIC SLAB ABOVE & PERFECTLY CONDUCTING SHEET,wILL BE SEZARCHED,
THESE ROOTS ARE OF TWO TYPES OF POLARIZATION,TM (EVEN) AND TE (00D}
AS GIVEN BY EQs (39) AND (40) OF THE REPORT,THE ROOTS ARE THEN,
PLUGGED IN EQS (37) AND (38) RESPECTIVELY To SEaRCH FOR THE COMPLEX
OF A LOSSY SLAB ABOVE 4 FINITELY CONDUCTING EARTH, UP TO S5 ROOTS ARE
SEARCHED ANDTHEN SEND 8Sack TO THE MAIN PROGRAM VIA THE VARIABLE
(ZERQ) , IF MORE ROOTS EXISTS +THE DIMENSION OF (ZERO) SHOULD RE
INCREASED. THE ROOT CLOSEST TO THE REAL AXIS IN THE COMPLEX ALPMHAA
PLANE WILL BE SENT THRU THE VARIABLE (AP), IF THE PROGRAM FAILS TO
FIND ANY ROOT WITHIN A GIVEN INTERVAL AN ARBITRARY POLE LOCATION
(¢95s415) WILL BE ASSIGNED FOR ALPHA. THE INPUTS ARE THRU TRE

COMMON BLOCK ,MAIN3/, SIG(3) AND EPSR(3) REPRESENTS THE
CONDUCTIVITIES AND RELATIVE DIELECTRIC CONSTANTS IN TwWE THREE MEDIA
STARTING WITH REGIONS t1) AIRs (2) sLAB AND (3) EARTH.

HSSLAB WIOTH « OMEGAZ ANGULAR FREQ. IN RADJIANS,

OUTPUTS ARE}

ZEROZ ZEROES FOUND,

APZ THE ROOT CLOSEST TO THE REAL AXIS IN THE COMPLEX ALPHA=PL ANE .

COMMON /MAIN3/S1G(3)+EPSR(3) yHsOMEGA
DIMENSION ZERO(S)
COMPLEX ZERQ.2Z4AP
LOGICAL 6
EXTERNAL FXyFy
PI=3,141592653
F2=aH#SQRT (EPSR (2) =14}
INBINTt2.%F2/p]) o]
Il=sIN |
X=FLOAT(IN) /2, $ YSFLOAT(IN/2)
IF (X.EQ.Y) GO TO 55

62 Tl:FLoAT(IN-l)6P1/2.01.DE-08
TT2=FLOAT(IN) 8Pl /2,=1,0E<05
T2aAMINL (F2,TT2)

. PRINT 65

65 FORMAT (1X+%RQOT OF TM TYPE MODESs/)
CALL ROOT(TIOT?!FY’XI’10091005'0501000 1G)
IF (6) GO TO 305 ‘
RALPHAZSQRT(EPSR(2) =X1%X1/H/H)
PRINT 75,X1,RALPHA
IMs2
CALL ZRQOT(IMsX142246)
IF (6) GO TO 4
ZERO(IN) =22 s GO TO 10}

4 PRINT 79,22 :

ZERO(IN)=2(495,,15)

105 PRINT 72, IN .

101 INaINe] .
IF (INJLE.O) GO TO 15

55 T1aFLOAT(IN=1)9P1/2,41,0g~05
TT22FLOAT (IN)#P1/2.=1,0E<05
T2=AMINLI(F2,TT2)
PRINT &9

69 FORMAT (1Xy5ROOT OF TE TYPE MODES®/)
CALL ROOT(T1yT24FX9X1910091¢0E=0541004+G)
IF (6) GO TO 3107
RALPHASSQRT(EPSR{2) «X1®x1/H/H)
PRINT 754x1,RALPHA
IMal
CALL ZROOT(IMyX1e2Z46)
IF (G) 6O TO ¢

ZERQ(IN) =22 H GO TO 109
6 PRINT 79,22
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ZERO(INY3(,95,,15)
107 PRINT 72,1IN
109 INaINe] $ 60 TO 62
7S FORMAT (lXewGAMAL Hiz9E13.5,3x9ALPHA REAL=#E13,5//)
72 FORMAT (1X9»REGIONSI34SxuNQ REAL ROOTS HAVE BEEN FOUND® /)
79 FORMAT (1x#NO ROOTS ARE BEING FOUND OR IT OIDNT CONVERGE®,]x
l°Z=02(2xEI3.Sl/)
1S IF (I1.LE.1) GO TO 9
AAaAIMAG (ZERQ (1))
Do 12 1a2,;
AlaAIMAG (ZERO (1))
IF (AALLE.AL) GO TO 12
IKsa] 3 AdzA]
12 CONTINUE
AP=ZERO (IK) $ 60 To 1s
9 AP=ZERO(])
16 RETURN .
END
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SUBROUTINE ROQT(AyBsFsXsJUMAXsEsEL+G)

THIS SUBROUTINE USES THE BISECTION METHOD TO SOLVE FOR ONE 0DD
ROOT OF F(X) = 0 ON THE INTERVAL (AyB)e THE FUNCTION PASSED
THROUGH F MUST BE DECLARED EXTERNAL IN ALL CALLING PROGRAMS, E IS
INTERVAL OF UNCERTAINTY DESIRED FOR THE ROOT. AND MUST BE SMALLER
THAN THE STARTING INTERVALs W = Be=A, THE NUMBER QF BISECTIONS IS
DETERMINED BY NMAX = LN(W/E}/LN(2)e AFTER BISECTINGs THE FUNCTION
VALUE IS COMPARED TO El, 1IF ABS(F(X0)) » E1l THEN THE SUBRQUTINE
PRINTSt OISCONTINUITY AT X 3 X0, A RANDOM SEARCH OCCURING JMAX
TIMES IS USED TO LOOK FOR A CHANGE OF SIGN IF SIGNIF(A})) =
SIGN(F(B))

DISCONTINUITY AT X = « A RANDOM SEARCH OCCURING JUMAX TIMES IS
USED TO LOOK FOR A CHANGE OF SIGN IF SIGN(F(A)) = SIGNIF(B)).

A PLOT OPTION IS AVAILABLE THROUGH ENTRY POINT PLOT

THAT WILL PLOT THE FUNCTION F ON THE INTERVAL (AsB) AT JMAX
EQUALLY SPACED POINTS. WHEN USING THE PLOT ENTRY, JUMAX MysT BE

S 100y AND THE FOLLOWING SUBROUTINES ARE NEEDED: KPXNYNs KPRINT,
AND KSC120.

LOGICAL G
REAL LN2
DIMENSION Y(3)

QUESTION! DQES FtA) = 0,

Yi=F (A)

IF(Yl ,NEJO.) GOTO 10
A=A

GOTO 80

QUESTIONS DOES F(B) = 0,

10 Y2=F(8)
IF(Y2.,NE«0s) GOTO 20
X=8
GOTO a0

QUESTION: ARE THE SIGNS QOF F(A) AND F(B) DIFFERENT.

20 I1sSIGN(l.sY))

12aSIGN(l.rY2)
WaB=A

IF(I1,NE.12) GOTO 60
SEARCH FOR A CHANGE IN SIGN.

D0 30 J=1,JMax
XzA+RANF (0,o) oW
13=SIGN{lesF (X))}
IF(I3,NE.I1) GOTO 5S¢
JMzy
30 CONTINUE
PRINT 40 .
40 FORMAT(1X8NO CHANGE OF SIGN FOUND#/
GaJM.EQ.JMAX
RETURN
50 B=X

DETERMINE NUMBER OF BISECTIONS
60 LN230,693147181

NMAX=ALOG (W/E) /LN2+1.
Y{2¢Il)=A
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70
80

8e

8s
90

Y(2=11)3B
BEGIN BISECTION

DO 70 N=1,NMax
XB(Y(1)*Y(3))/2e

Y3=sF (X)

IF(Y3,EQ.0.) GOTO 80
133SIGN(1.9Y3) o
Y(2+13)=X

IF(ABS(F(X)).LE«E1) GOTO 8%
CONVERGENCE TO A DISCONTINUITY

PRINT 82sX
FORMAT(1X®DISCONTINUITY AT X a #E12e4/)

GEABS (F (X)) «GT.EL
RETURN

CONVERGENCE TO A ROOT

PRINT 90X

FORMAT (1XoONE 00D ROOT AT X = ®El2.4/)
G=ABS(F (X)) eGTWHEL

RETURN

END

FUNCTION FX(2)

EQ. (40) sSECTION 3 OF THE REPORT, TE (00D) TYPE ROOTS WILL BE

EQe (39) +SECTION 3 OF THE REPORT. TM (EVEN)

SEARCHED.

COMMON /MAIN3/S(3)yEt3)4H
FXSZ*TAN(Z)@SQRTIIE(2) =1,) #HOH=Z97)
RETURN

END

FUNCTION FY(2)

SEARCHED.

COMMON /MAIN3/S(3)+E(3)sH

ElsE(2) :
FYR(Z/E1)@TAN(Z) =SQRT((E1=1+¢) #HPH=282)
RETURN

END
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SUBROUTINE. ZROOT(IT+X+2Z+GGG).

THIS SUBROUTINE WILL SEARCH FOR THE COMPLEX ROOT OF A LOSSY SLAS
ABOVE A FINITELY CONDUCTING EARTH. BY USING THE REAL ROOT FOUND FROM
THE SUBROUTINE (ROOT) AND SENT THRU THE VARIABLE (X) TO THIS PROGRAM
FROM THE SUBRQUTINE (PROQT) » A COMPLEX ROOT WILL BE SEARCHED FOR
THE SITUATION OF A LOSSY SLAB ABOVE GROUND . THE VARIABLE (IT)
DETERMINE IF THE ROOT IS IN THE TM OR TE CATAGORIES. (2Z) IS THE
RETURNED COMPLEX ROOT «(GGG) IS A LOGICAL STATEMENT »IF IT IS TRUE
NO COMPLEX RQOQT IS FOUND OR PROBABELY FAILED To CONVERGE TO A ROOT,
OTHERWISEs (GGG) IS FALSE aND +THUS. A COMPLEX ROOT IS FOUNp,

COMMON /22ZZ/N(3) yHeEPSR () ' ‘

COMMON /MAIN3/S(3)+E13) sHHIOMEGA

COMPLEX NyCX,CENTR4ZERO»ZsCY ALPHA

EXTERNAL CX.CY

DIMENSION SIGMA (3)

LOGICAL GG+GGG

Pla3,141592653

EPSQ=g,854E=12

FREGN=QMEGA/2./P

HaHH .

00 99 JJ=1,3

SIGMA (JJ)=STJUY)

99 EPSR(JJ) =E (JJ)
Do 12 J=l,3

12 N(J)SCSURT(EPSR(J)+(04s91.)#SIGMA(J) /OMEGA/EPSO)
CENTR=X .
IF (IT.EQe2) GO TO 115
CALL CROOTI(CX,CENTRYZERQ,TT»GG)
IF (GG) GO TO 66

_ GO TO 90

115 CALL CROOT(CY,CENTRYZERC,TT4GG)
IF (GG) GO TO 66

90 PRINT B88,FREQN, (N{J) +Jal,3)

88 FORMAT (1X99FREQ.3%E11,3/720X2N0RSFT7,3,%+J0F9,4/,
L20XON1B9F Te34#¢J#FQe4/920X*N2E*FTeI9#+J0FG44//)
ALPABCSQRT (~ZERO®ZERO/H/H+N(2)9N(2))
PRINT 18,ALPHA

18 FORMAT (lXs¢ALPHAZ¢E]13,5,%+¢J0E13,5/)

109 Z=ALPHA
GGG=TT.GT.1 QOE'S
RETURN

&6 Z2CSQRT (=ZERO®ZERQ/H/HeN (2)#N(2))
PRINT 6742,TT

67 FORMAT (lX9%IT FAILED TO CONVERGE®+4X9ZERQ=9E]13.5y#eJ?E13,5,
14xeTEST=%E13,5/)
BGG®TTeGTele0E"S
RETURN
END
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SUBROUTINE CROQT (CFsZ0,ROOTsTEST,6)

c IN THIS SUBROUTINE A NEWTONS METHOD PLUS A HALVING TECHNIQUE WILL
c BE USED TO SEARCH FOR COMPLEX ROOTS.

COMMON /PRIME/DCF

COMPLEX CFDCF

COMPLEX R007059079200219201
LOGIcaL G

Js0

I=0

FaCF (20) s DFaDCF
TESTOxCABS (F)

iF cTESTo.eT.1.gﬁ-osy g0 TO 25

TEST1=TESTO 6o TO 100
25 Zl=Z0«F/0F
30 FsCF(21) $ OF =DCF
TEST1aCABS(F) s 201s21-20 $ 20=21

IF (TEST1.LE.1.0E=05) GO TO 100
IF (J.GE.S0) GO TO 100
JuJsl
IF (TESTL.LE.TESTO) G0 To 25
CAB=2CABS(201)
IF (CAB.LE.l1,0E=05) so To 100
Z1aZ0-201/2, Ialel
IF (1.GE,10) GO TO 100
60 TO 30

100 ROOT=20
TESTsTEST]
531’55705711 OOE.OS
RETURN
END

COMPLEX FUNCTION CX(2)
C EQ. (38) +SECTION 3 OF THE REPORT.

COMMON /PRIME/DCX

COMMON /ZZZZ/N(3) +HIEPSR(3)

COMPLEX DCX

COMPLEX NoZsE19E29GN2+UsHN

COMPLEX G0+6240G09DG2+CS,CCrG2

H2=HoH § El=N(2)eN(2) § E2=N(3)eN(3)
UB=29Z+E1%H2

MNaE2aH2

G0=CSORT (U=H2)

G2=CSORT (U=HN)

CSsCSIN(2) s ce=¢Cost2)

0GO=-7,/G0 $ D62z-2/62

0ZxG08G2/Z~Z

CX2G2eCS/CCeG0+G2
DCX=GZ/CC/CC+(DGO*GR/Z+DG2%G0/2~80%G2/2/Z=1.) #CS/CC+D60*062
RETURN

END
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COMPLEX FUNCTION CY (2)

c EQ. (37) +SECTION 3 OF THE REPORT.

&7

"COMMON /PRIME/DCY

COMMON /ZZZZ/N(3) HEPSR(I)
COMPLEX DCY

COMPLEX NoeZyEL1sE21GN2+UsZZyHN
COMPLEX G01G2,0Gn1062+C5.CCGZ
H2sHYH $ ElaN (2)aN(2) s E2=aN (3) N (3)
UsaZ®Z+E1%H2

HN=E2uH2

GO0=CSQRT (U=K2)

G2x2CSART (U=KN) )
Z23Z/g1 H GN2=G2/E2
CSsCSIN(2) 3 CC=cCO0S(2y
0Go==2,G0o $ 0G2z=2/G2
GZ=G0#GN2/22-22
CYRGZHCS/CCeGO+GN2

DCYl(-GO'GNZ/ZZ/ZO(DGO'GNEOGO'DG?/EZ)IZZ'I./EI)°CS/CC

14GZ/CC/CCeDGO+DG2/E2
RETURN
END
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