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Abstract

The proBlem of representing an observed transient
waveform by a finite sﬁm of compléx exponeﬁtiéls is con-
. sidered. A least squares techniqué that involves over-
fitting the model signal and then eétimating the correcti
~order is applied to simulated data as well as data
recorded on photographs. In 311 the‘ekamples, the fitted
’w;veform approximates the original waveform well when

both functions are plotted on the same graph.
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SECTION I
INTRODUCTION

The singularity expansion method (ref. 1) has been used to compute transient
electromagnetic responses in terms of a finite number of Laplace transform poles
and residues. This has given rise to the question of how these poles and resi-
dues can be calculated from experimental data. The purpose of the report is to
discuss some of the techniques that have been used with related problems and to
describe the results obtained with one particular method using both simulated

data and data digitized from experimental transient waveforms. The problem to
be considered can be posed as follows.

Let Yio k=1, *++, N be samples T sec apart of a data waveform. Usually
in EMP work a data signal is recorded on a photograph, then digitized resulting
in the Yy We want to fit a signal of the form

oom
X, = 2% A, exp [si(k-l)T], k=1, ¢c, N (1)
i= :

to the given data sequence. The sequence Xy has poles S; and residues Ai' The
observations can be written as

Vi = X ey ' (2)

where e, represents the error between the kth observation and model signals.

The most common approach is to attempt to pick m, Ai and S; to minimize the
squared error
: ¢ N,

Thus, given Yo k=T, eeey N, find the values of m, Ai and s; to minimize the
expression

2
£2 =1 % (y - }m: A. exp [S-T(k-U]) - (4)
N k&= i 1

i=]
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This "pole extraction" problem has appeared in a number of different areas
including circuit theory, statistics, and control theory. The following sections
review previous work and discuss the results obtained from this investigation.
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- squared error function with respect to S5

~ the minimum E2 for m =

SECTION I1I
METHODS

1. DIRECT METHOD

A direct approach to the problem is to set the partial- derivatives of the

and Ai to zero and solve the resulting
equations. That is

3E% _ oE2 . - .
— T — = 0 J - ] L N 3 m . (5)
9S . . 4 4

sJ aAJ _

These are necessary conditions for a minimum with a fixed m.

How to minimize
with respect to m is still an open question,

The simplest approach is to find
1, 2, 3, «++ and choose the m that Tooks best according
to some criteria. One method is discussed in section II.3. Equations 5 give
N

éé% e, (k-1) exp [sz(k-l)] =0 =1, cee,m (6)

N | | R
= T(k=1 =0 i 1, XN 7
R K

Letting ZjA— exp,(sz), rearrange equations 6 and 7 to

N | N M ] L
DRCEIE SR DY Ai(k-l)(zizj)k 1 §=1, e, m (8)

k=1 ' k=1 i=1

N
k-1
y .z, =
| ég% I & &

As can be seen, equations 8 and 9 are a system of coupled nonlinear equa-
tions. The continuous time versions of equations 6 through 9 are contained in

- (9)
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reference 2 a]ong with an iterative technique for approximating the solution.
Another iterative technique is given in reference 3. One point to be noticed
here is that a fairly simple problem statement gives rise to a system of non-
linear equations with no known analytical solution.

For what we will do later it is important to notice that equation 9 can be
written as

N gl [ 2251 e > (22 -1 rA-
2 VI 2(11) z(m]) 1
k=1 k=1

B : (10)

ZN: kzm }L“; (Z]Zm)k-l % (2,2 ;)k-l A

fi=1 k=1 k=p AT I

which is just the system of normal equations that occur in least squares curve
fitting. Equation 10 shows that if the poles $; are known, then the equations

for the residues A are linear. So it would appear that the difficult part of
the problem is f1nd1ng the poles,

2. NONLINEAR REGRESSION METHODS

In the statistical ]iteraturé the problem is called a nonlinear regression
problem. A good reference is Bard's book (ref. 4). Solutions are usually
obtained by iterative techniques. Let W= (51"'°Sm’ Al,---Am) = vector of

parameters and let W, be the estimate of W at the ith iteration. Also let E(4)
be the resulting error. Then an iterative technique will start from an initial
guess W, and attempt to find a sequence Wys W,s Woeer such that E(1) > E(2) >
E(3) > <« . The calculations are terminated after E(i) reaches an acceptable
value. The big problem is in finding W i+ given N We can write W, ie1 T My
where V is an increment in the parameter vector. A number of techniques have
been proposed for choosing V
disagreement on this point (ref 4, chapter 4). Llet q, = 9E(i)

i = gradient vector
=i

evaluated at N Gradient methods choose V = CRiqi where Ri is a positive

definite matrix and c a positive scalar. It can be shown that if Y. is chosen

= W. + V.,

Gradient methods appear to be best, but there is

- I
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this way, then E(i+1) < E(i) for some ¢ > 0 (ref. 4). The simplest gradient
method is called steepest descent and puts Ri = ]. Newton's method computes the
Hession Matrix, H(w. , the matrix of second partial derivatives of E(i) with

;) !

respect to the unknown parameters and sets Ri = wa and'ci = 1. A difficulty
. - - e —
is that H &i may not be positive definite. There are several modified Newton

method schemes designed to overcome this problem. Gradient methods are very
general and have been used successfully in pole extraction type problems (refs.

3 and 5). However, they have the disadvantage that the computation is 1arger
than that of the methods described next. (For example, if a 20-pole function

is used, then 20 residues are needed so the Hessian matrix is 40 by 40 and this
matrix has to be inverted at each step.) Gradient methods need to be initialized
with a good initial guess, and they may not converge to a global minimum. On

the other hand, gradient methods have an advantage in not requiring equally
spaced data.

3. DiFFERENCE EQUATION METHODS

The difference equation methods replace the problem of estimating poles with
that of estimating the coefficients of a linear difference equation. The result
is that a nonlinear estimation problem is replaced with a linear problem, but
this presents a difficulty as shown below.

Prony's method (ref. 6) is a difference equation method. It is based on
the fact that the Xy given by

m
- (k-1) =Y. eee
X, = 2 AL k=1, +e+, N (1)
i=1
where
in = exp (SiT) i=1, =+, M (12)

satisfy the linear difference equation

e e = ]3
Xy *agX tooot 3 X m 0 k2ml (13)

where the a; are related to the Zi by

™ + a]z“‘“ #eesk a = (z-z])(z-zz)---(z-zm) (14)




So, if the a; can be found, then the Z, can be found as in equation 14. Then,
from equation 12 the poles are given by

-] 3 = L X X §
sy = Tfln Z. i=1, cee,m (1%)

Once the s; are found the problem of finding the Ai is simply a linear
regression problem. So the real effort must be directed towards getting the

coefficients a;. Reference 6 points out that if 2m values of X, are known, then
equation 13 can be written as '

w1l [ X N [A]
Xm+2 Xl Xm 77T X2 a2
= (16)
| Xom | | "2m-1 Y B

so that the a; can be found by solving the m linear equations 16. This procedure

is useful where the X, are known accurately (ref. 7)--for example, if the Xy have
been calculated on a digital computer. Unfortunately, equation 16 is of little

value in experimental work with high noise levels since the X, are not known.

The data that are available consist of Xy plus noise. As in equation 2,

Y = X * ek,is the available signal. Substituting this into the difference
equation 13 we get

e P A Y A T S A%k T S (7)

so-the observations Yi obey a difference equation. let Wy be the right side of '
equation 17; then “

Y = ¥y ¥ vt tYym Y Wy (18)

The Wy are called residuals. Now corresponding to equation 14 we have for the
case with observation noise '

Yol Yoo Yp1 TN 3 ]
= : s+ ] (19)
N YN-1 IN-2 °°" INen | | Zm Wy

[




where in equation 19 we have allowed for N > 2m. Since equation 19 contains the
additive noise terms, Wi s it would seem that we should use N >> 2m and find the
least squares solution. This is not completely correct. The residuals are cor-
related as can be seen from equation 17. If we put

- LN ] T
x= {ym+l yn-]]

H . _ym ee o ..y_‘

3 .
3 .

: : (20)
IN-T 7T YNem

T
[a] am]

T
[wm+1 Tt wN-]]

then the minimum variance, unbiased least squares estimate for a is

"

a

)

a = (TR TH)"! HTR'IX_ (21)

where R is the covariance matrix of the residuals. Unfortunately, R is not
known since it depends on a;. If one simply uses the ieast squares solution as
though the residuals were uncorrelated--that is, one puts R = 1 = identity
matrix--then the solution

a= (W) Wy (22)

is biased (ref. 8). This simply means that a will not equal the best a no
matter how much data are used. ("Best a" means the a; that in turn gives the
poles and residues that minimize the squared error E%.) To summarize all this,
Prony's method has the advantage that it makes the poles easy to find but the
disadvantage that when observation noise is present the poles are incorrect.

A number of schemes have been devised to hahd]e the problem of correlated
residuals. (See references 8, 9, and 10 for more detailed discussions.)
Although the schemes'vary a great deal in implementation, they all attempt to
whiten the residuals using some iterative technique. To explain how this works,




it will be convenient to change the notation in equation 18. Let

A(Z']) = 1+a, Z']+~~~+amZ"m | (23) .Il‘

where 71 is the backwards shift operator, that is
7y = (24)
Using this notation, the difference equation 18 can be written as

Az )y, = w, (25)

Now assume that the correlated residuals W, can be'represented as
Z 1) Vi (26)

.I( - 1 ... p ] .‘ LN ] p i
where c(Z ) 1+c]Z + +cpZ D( ) 1+d]Z + +d Z " and where v s a
white noise sequence. Then equation 25 becomes

-1

A(Z'T)yk =& Z_ Vi : (27) "N<E)

D{Z

The least squares estimate for the parameters of this model is the one that:

N
minimizes ;z:vﬁ . The problem has evolved to the point that in order to estimate
the a » We also have to estimate the additional parameters C; and d The maxi-
mum 11ke11hood method of Astrom and Bohlin (ref. 11) prov1des a so]utwon to the
problem. Unfortunately, the equations are nonlinear in the Ci and a gradient
algorithm is required. However, maximum 1ikelihood appears to be one of the
best available techniques. A number of schemes that are simpler to implement
come from setting the c; = 0. Then equation 27 becomes

A - o

Although equation 28 is 1inear‘in the parameters, it may be necessary to greatly
increase the number of d; when the c, are set to zero. This is because in

12

R e



~ losing data at the beginning of a record.

general one expects that a moving average-autoregressive process as in equation
26 will be a more economical representation (that is, have lower order) than an
autoregressiVe process alone. At any rate, estimates for the parameters in
equation 28 have been calculated using generalized least squares (refs. 8, 9,
and 11) and repeated least squares (refs. 8, 11, and 13). The author attempted
to use genera]ized least squares. The method seemed to work well on simulated
data but did not converge when real data were used. The repeated least squares

method seems. to be moderately successful as discussed below.

Before leaving the general subject of difference equation methods, it should

~ be pointed out that the method will work with arbitrary driving functions. Equa-
tion 18 can be generalized to
Vi ¥ Yt Y on = Bl gl g v - (29

where'uk, k =1, 2, *=+, N is a known input. Prony's method corresponds to the
special case where Uy is taken as a unit pulse. A1l the schemes for estimating
the coefficients a; still work, and there is no need to wait for the driving
function to die out as is sometimes done with Prony's method. This would avoid
(Unfortunately, the EMP problem is

more complicated.)

In this general case, the equation corresponding to equation 19 is

Y+l Y Vi1 T Y U Tt Y 17 [ Mw]
| + | (30)
IN “IN-T “IN-m UM UN-m an )
| b
0
i) LY

Here there are 2m+] parameters to be estimated sincg the bi are unknown. How-
ever, the residues can be computed directly from the bi without requiring another
least squares fit to the original data. Expressed in discrete transfer function
form, the equations are

A<Z‘])yk = B(Z_T)uk Wy
where _ (31)

B(z71) = b, + byZ +eeety 27

13




4. REPEATED LEAST SQUARES (RLS) PROGRAM

The RLS technique (called the covariance method in reference 13) is based
on the difference equation 28. 1In equation 28 the transfer function represents
the actual physical system, and D(Z']) represents the filter required to whiten
the noise and remove the bias in the parameter estimates. The scheme is easy
to implement. One simply uses least squares to estimate the parameters f. where

f(z1) =1+ F27 e 77 - Az ")o(z) (32)

For a large enough value of j the residuals Vi of equation 28 should be
white so unbiased estimates can be obtained. Given estimates of the fi we still
have the problem of finding the poles. Notice these poles are just the zeros of
7™A Z']) (eq. 14), so the zeros of ZjF(Z"l) consist of the zeros of ZpD<Z']) and
the zeros of'ZpA(Z']). That is, the poles due to the system and to the noise
will all be found. Which are which can be decided by making some additional
assumptions. Fortunately, when analyzing real data we are usually able to com-
pare the estimated poles with the original data record y(t) and with the Fourier
transform magnitude of Y and make a reasonable guess.

A flow chart of the program that has been implemented on CDC 7600 and 6600
computers is shown in fiaqure 1. At the present time it uses two AFWL library
programs: DECOMP, a program for solving linear equations, and ZRPRC, a program
for finding the roots of polynomials. The call to DECOMP can be eliminated with
a sequential regression algorithm. This algorithm has been tested and is used
in the pole finding part of the program.

The flow chart shows a 1ow-pass filtering operation on Yi (optional).
Usually using the filter allows smaller squared error for a given number of
poles, but the filtering operation can cause mistakes. This effect is discussed
in the conclusions. The filter used consists of NS sections of 2-pole Butter-
worth digital filters (ref. 15). The cutoff frequency and NS can be set in the
program. The filter is useful if the system poles are known to lie in some low-
pass region. The program also has the option of using only poles in the user
defined low-pass region when finding the residues. This can be done with or
without filtering. The proaram is initialized by specifyina the data file to
be read, the number of data points, the upper cutoff frequency, and the number
of poles and sampling interval in the data. At present, the number of poles
can be between 2 and 80 and can be incremented in a DO Tloop.

14
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()

READ yk
INPUT PARAMETERS
i MAX

l

FILTER y,
(OPTIONAL)

l

SET j=2

3

FIND f;, i=1, .. .j
USING LEAST SQUARES

l

COMPUTE POLES
$ijp i=h...L

'

FIND RESIDUES
TR S R’
USING LEAST SQUARES

'

COMPUTE SQUARED ERROR

j=j+1

NO

YES

Ficure 1. Fliowchart for RLS
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Output consists of all poles within the specified low-pass region and the
corresponding residues plus the computed squared error for each number of poles.

16
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SECTION III
RESULTS

This section contains several examples showing how the RLS program works.

. Each example was chosen to illustrate some particular point.

~ EXAMPLE 1. This first example shows what happens when "nice" data are used.

A data array was generated on the computer as
y(t) = exp(-1.5t)sin(20mt) + exp(-0.5t)cos(10mt) (33)

for t = 0.0, 0.01, 0.02, --+, 1.99. The RLS was run on this data array for two
cases. '

Case 1. Number of data points = 2 x (number of poles) = 8. The results

are
POLES RESIDUES
-1.500001 + j 62.83185 -0.3955032 x 10-7 + j (-0.5000000)
-0.5000012 = j 31.41593 0.5000000 + (-0.3950878 X 10’7)

which agree well enough to justify using the minimum number of data points when
the data are known accurately--in this case 14 decimal accuracy.

Case 2. Number of data points = 200. The results are

POLES RESIDUES
-1.500000 + j 62.83185 -0.6065163 x 10—9 + j (-0.5000000)
-0.5000012 + j 31.41593 0.5000000 + j <-O.5360294 X 10f9)

which is slightly better than the first case.

EXAMPLE 2. In this example we see what can happen if the data array is not
known as accurately as in example 1. An array was generated according to equa-
tion 33, multiplied by 250 and truncated. This simulates that kind of data we
can expect from a 10-bit ADC since we have roughly three significant figures.
This lack of precision has an effect similar to that of observation noise.

Case 1. Number of data points = 2 x (number of poles) = 2m. Poles with
m = 4:

17




-1.265881 + j (53.54892)
-120.6585 + j (106.2812)

1+

+

There is considerable error in the poles. If the number of poles asked for is
increased the situation improves. With 12 poles the result is
Poles with m = 12:

3.503043 + j (283.7881)

-4.205054 + j (284.3589)
-9.690239 + j (176.6259)
4.373128 + j (119.2774)
-1.523546 + j (62.80804)

-0.4787273 + j (31.40865)

“The Tast two pole pairs are the system poles and the first four pairs are the

result of truncation noise. Notice that two pairs have positive real parts.

Case 2. Number of data points = 200. With all the available data used
and 4 poles requested, RLS computed:

-2.143601 + j (62.98279)

-1.397793 + j (31.63991)
These poles are more accurate than those found in case 1, but show the effect
of truncation noise. With 12 poles:

-14.56595 + j 235.1918

-12.65917 + j 284.3796

-15.61268 + j 180.8489

- 7.641336 + j 124.337

- 1.501462 + j 62.83148
- - 0.5015126 = j 31.41628

+

+

The last two pairs are system poles and the first four pairs are the result of
truncation noise. The results for this case are more accurate and there are
no poles with positive real parts.

The first two examples show why it is advisable to use all the available
data rather than the minimum amount. We will not look at the minimum amount

case in the remaining examples. It appears that the real part of poles is
harder to find accurately than the imaginary part.

18
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EXAMPLE 3. This example shows what happens when the data have.even fewer
significant figures than in example 2. This kind of situation can arise when
the amplitude of a waveform to be digitized does not span the ADC's input range.

The data array was generated by multiplying equation 33 by 100 and then truncat-
ing. With four poles asked for, the results are:

i+

-5.740473 + j 63.58047
-5.327517 + j 32.25558

and with 12 poles:

-11.19230 + j 174.3681
-10.00480 + j 228.2428
- 9.900576 + j 285.1623
-10.67594 + j 121.3942
- 1.504183 + j 62.83713
- 0.5076418 + j 31.41431

I+

Again we see that in order to find the system poles accurately, it is necessary
to ask for extra poles. This is because of the bias problem explained in
section I1.3. It is up to the person analyzing the data to decide which poles
belong to the system and which do not. At this time the best way to make this
decision seems to be to look at the Fourier transform of the original data--a
process that is used in the remaining examples.

The first three examples use computer generated data. In order to test RLS
further, some tests were run on data digitized from photographs. The photographs

in examples 4 and 5 were supplied by Dr. R. L. Hutchins of The BDM Corporation;
they were generated by photographing the impulse of real networks. The Fast
Fourier Transform (FFT) of the data was computed on an HP9830 computer. A1l the
graphs were done on the 9830. The photographs used in the following examples are
pictures of oscilloscope traces. Several types of errors 1imit data quality.

The three best known oscilloscope errors are produced by a nonlinear sweep rate,
a variable trace width, and a misalignment of the scope's electron gun and front
face which produces a nonlinear distortion called the keystone effect.* Other
errors are introduced when the photographs are digitized.

EXAMPLE 4. The waveform from this example as diaitized and plotted on the
9830 is the damped sine wave shown in figure 2. The corresponding FFT magnitude

*Conversation with Mr. John Pod]esny, AFWL.
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appears in figure 3. The fundamental frequency is approximately 19 MHz. Smaller
peaks at about 38 or 57 MHz, etc., suggest some kind of harmonic distortion.

The remaining peaks at higher frequencies are beyond the 30 to 40 dB resolution
of the recording system and can be taken as the result of noise.

Figure 4 shows a reconstruction of the waveform using poles and residues
from the time waveform calculated by RLS. The corresponding FFT magnitude is in
figure 5. The number of data points used in the calculation was 185. The poles
were found by asking for 60 poles. Only poles with frequencies below 60 MHz (in
this case a total of 20 poles) were used in the residue calculation and recon-
struction. The squared error was 162. This graph is fairly smooth above 60 MHz
because only poles with lower frequencies were used in the reconstruction. When
all 60 poles are used in the reconstruction, the squared error is 42.6. The
error is less since the extra poles fit the noise. This brings up an important
point. Increasing the number of poles will usually decrease the squared error.
We can decide which poles correspond to the system by looking at the original
waveform in figure 2 and at its FFT magnitude in figure 3 and inferring that
the only "real" pole-pair is the one with frequency around 19 MHz. An interpre-

tation like this is always required to separate system and noise or distortion
poles.

Next, the original waveform was analyzed by filtering it with NS = 2 sections
and a cutoff frequency FC = 60 MHz. Figures 6 and 7 show the results. With 60
poles the squared error was only 17.6. Twenty-four poles were used in the recon-
struction. Here the error is that between the filtered waveform and the recon-
struction. The error is much less than that in the reéonstruction shown in
figure 4 since the high frequency noise was removed.

EXAMPLE 5. In this’example, a photograph of a signal containing two damped
sine waves was used. The photograph was digitized to 180 points. A graph of
the digitized waveform is shown in figure 8. Its FFT magnitude in figure 9
shows two Targe peaks and a number of smaller peaks of much lower amplitude.
Experience has shown that a waveform with an FFT 1ike this is rather easy to
analyze with RLS. When 56 poles were asked for and only those with frequencies
Tess than 35 MHz (a total of 14 poles) used in the reconstruction, the squared
error was 118. The reconstructed function and its FFT magnitude are shown in
figures 10 and 11. As can be seen, the reconstruction agrees very well with the
original waveform. When all 56 poles were used in_the reconstruction, the

21
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squared error was 6.37. This low error pkobably is due to the fact that the
original digitized waveform was very clean.

EXAMPLE 6. This last example uses a photographed "Green Box" response to a
double exponential input. The Green Box is a circuit box that has been used
to test AFWL transient data recording equipment (ref.'lﬁ). The photograph was
digitized to 200 points. A graph of the digitized waveform is given in figure 12
and its FFT magnitude in figure 13. The FFT magnitude graph does not extend be-
low about 1 MHz since limitations on the digitizer constrained the frequency‘
sampling interval to this value. The figures show large components at about
1 MHz and 25 MHz and a relatively Tow amplitude component at about 5 MHz. The
remaining peaks probably are due to noise and distortion. As mentioned earlier,
this kind of statement is just an educated guess. At any rate, the remaining
peaks are outside the instrumentation dynamic range. The peak at 5 MHz is only
marginally within range. This last fact made the Green Box response the most
difficult of the example waveforms to analyze. However, the results look good.
The poles were found by asking for 60 poles. Then poles with frequencies less
than 35 MHz (a total of 22 poles) were used to calculate the residues. The
resulting squared error was 59.6. The reconstructed function is shown in figure
14 and its FFT magnitude in figure 15. Figures 13 and 15 must be compared care-
fully as the vertical scales are different. When all 60 poles were used in
reconstruction, the squared error was reduced to 16.4.

In ana]yzihg these examples,using all the available data, RLS found no poles
with positive real parts. The poles and residues for the last three examples
are not printed here since no theoretical values are available for comparison.

The comparisons between original and reconstructed waveforms in figures 2 through

15 show that the method works if used carefully.
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SECTION IV
CONCLUSIONS

The RLS method has worked well on all the examples tested. Of the various

pole extraction techniques discussed, RLS is the easiest to program and probably
the fastest to run,

Some general conclusions can be made about its use. The examples show that,
unless the observed waveform is known very accurately, better results are
obtained by using all available data (N > 2m) rather than the minimum amount of
data (N = 2m). This allows for least squares solutions for the difference equa-
tion coefficients and for the residues. The examples also show that the order
of the difference equation, m, must be taken larger than the number of system
poles. A simple explanation for this is that the effect of noise is to put
extra peaks in the spectrum of the observed waveform. These peaks must be
fitted with extra poles. Deciding which poles correspond to the system and which

to noise still requires some judgment. In practice, the decision can be made by
Tooking at the observed waveform and its FFT.

Low-pass filtering the observed waveform to remove high frequency noise pro-
duces mixed results. For the same number of poles, the error between a filtered
waveform and its reconstruction is smaller than the error between the same wave-
form unfiltered and its reconstruction. This does not mean that the poles or
residues are more accurate. Unless the filter is used very carefully, it can
cause errors in the real part of the poles. Apparently this is due to the filter
attenuating part of the high frequency components of a damped sinusoid. Another
point is that although filtering will remove noise poles, it will put in other
poles to account for the sharp cutoff produced in the spectrum. At this time
we have to conclude that there is no clear advantage to filtering. However,
this point is worth more study. Some type of spectrum smoothing may be better
than sharp cutoff low-pass filtering.

One objective of this work has been to decide if pole extraction can be done
on ADSET's PDP-11/40. Most of the RLS computation involves solving the least
squares normal equations twice, plus finding the roots of an mth order polynomial.
These calculations can be segmented. Several improvements should be made in RLS.
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The normal equations can be solved more efficiently using Cholesky's decomposi-
tion (ref; 4, appendix A) rather than the general purpose algorithm in DECOMP;
DECOMP was chosen because it was available as an AFWL library program. The
sequential regression algorithm is easy to program but slower than DECOMP. OQur
conclusion is that pole extraction using RLS can be done on a minicomputer. But

a lot of work remains in deciding how the technique should be programmed effi-
ciently.

Another objective has been to evaluate the usefulness of pole extraction
methods for actual EMP test analysis. The present work has to be regarded as
only a preliminary study of this prbb]em. We have shown that RLS gives good
results when the data actually consist of damped sinusoids plus noise. Problems
encountered with EMP test data such as pulser deTay and the possibility of non-
expenential components have not been studied.

The author benefited from reading a preliminary draft of the users manual
for the SEMPEX computer code (ref. 17). The general approach used with SEMPEX
is similar to that described heré, but the calculations are done differently.
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