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Abstract

This report discusses a procedure for finding the zeros of an analytic
function. Cauchy's theorem is used to find the number of zeros in a contour
and a simple extention of this theorem yields relationships involving the
locations of the zeros. A simple procedure involving integration by parts
is shown to simplify the equations involved yielding those that can be more
accurately numerically integrated. Three automated computer subroutines
are discussed for numerical evaluation of the locations of the zeros.
Numerical examples involving the roots of a 20th order polynomial, 20th
order polynomial times an exponential and the natural frequencies of a thin
wire are also discussed.




I. Introduction

Since the advent of the SEM (Singularity Expansion Method)1 various
techniques have been investigated to find the zeros of a complex function.
Most of these techniques have been based on iterative methods such as
Muller and Newton-Raphson. 2 The major difficulties of using such itera-
tive techniqués are twofold: (1) they require knowledge of the approximate
zero of the complex function; (2) they are unreliable if the complex function
has an exponential behavior. Although the general problem of SEM is very
complicated, general principles of complex analysis apply to the SEM.
Since our motivation in developing the present method has been SEM, we
will briefly discuss this method.

For objects of general interest, the electromagnetic response can

be written as the solution of an integral equa’cion3 written as

< Fee) 3 B> = o) | (1.1)

~
—

where ~ (tilde) denotes a bilateral Laplace transformed quantity. I" is the
dyadic kernel, %‘(s ) the normalized delta function response of the object,
2I‘(s) the forcing function appropriately normalized, and the notation <:>
indicates a dot product between dyadic-vector quantities along with the
integration over common coordinates. Natural frequencies s, of the

scatterer are solutions of the homogeneous equation

<%(s) : 5’0 - (1.2)
or ~ '_\;
i T >-70 (1.3)

where ;a and ’-Ia are the natural mode and coupling vector, respectively,

at the natural frequency. Natural frequencies can then be defined as the
x

complex frequencies at which the response U(s) has a pole assuming that

the forcing function T(s) does not have a pole at the same frequency.




Since in most cases of interest no branch points have been observed in the
complex s plane we will not deal with this occurrence. Branch points in
the compléx plane do not cause any problems as long as these are not
encircled by the contour.

There are some simple structures such as thin wires, spheres and
prolate spheroids for which the natural frequencies and natural modes can

be computed analytically. 4,5,6

However, for most cases of interest, one
resorts to the well-known Moment Method (MoM). In the MoM formulation

(1.1) can be written as

(Pn,m(s)) - (T _(s) = @ (s) 1n,m=1,23,...,N (1.4}

and the response (ﬁm(s)) can be written as

@pen = @ ™ @ () (1.5)
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In (1.5), the response function has a pole in the compléx frequency plane

ats =s_ whenever the determinant of L' (s ) (detT (s )) is zero
o n,m o n,m'

subject to the condition that the forcing fu’nction does no'; have a pole or a
zero at s = S,° In general, one can then find the natural frequencies of a
given scatterer by matricizing the corresponding integral operator and
finding the points (sa) in the complex s plane where the determinant is zero.
In this respect, the problem of finding the zero of a complex function or
that of a determinant become the same problem; as such the development
in this report can be used in finding the zeros of any analytic function.

In principle, our method resembles that used by Delves and Lyness ’
and Beasley and Meier. 9 However, the differences are too numerous to
enumerate here. In some respects the subroutines described here may
not be as sophisticated as that of Delves and Lyness. It will become clear
in later sections why such elaborate criteria are not necessary in our

method.




We have in general assumed that those who will use these subroutines
will use a normalized complex plane. In the case of SEM, suitable normal-
izations may be of the form S = s&/7c or S = s£/c where s is the complex
radian frequency, c the velocity of light in free space while £ is propor-
tional (proportionality constant of one being perfectly acceptable) to the

long dimension of the scatterer.
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II. General Theory

If a function f(z) is meromorphic in a simply connected domain D
containing a Jordan contour C, there arek well-known methods to find the
- number of zeros minus the number of poles in this contour C and relation-
ships involving their locations can also be found. 10 In this section we will

discuss these techniques in detail and catalogue various formulae.

A. Principle of the argument

Consider a function f(z) which is meromorphic in a domain D. We
draw a Jordan contour C in D such that no zeros or poles of f(z) lie on the
contour. In simple problems involving analytic solutions, it is easy to
draw these contours. However, :'m'an automated numerical technique,
some test criteria may have to be found which detect a zero or a pole on
the contour. For reasons which become clear later, we will not treat the
case of a zero or a pole on the contour. Assume that the contour C has
been drawn properly and let N0 represent the number of zeros of f(z) in
C while Np represents the poles of f(z) in C counted according to their

multiplicity. Then

1 £f'(z) _
m % f(z) dz = NO - Np (2. 1)
C

where a prime superscript denotes a derivative with respect to z, and the
counterclockwise direction of travel around the contour is important. We

can also write (2.1) as

1

d _
T a;(lnf(z))dz = N_-N (2.2)

o p
C

or taking the principal branch of ln[f(z)],




1 - =
-2-7arg(f(z))¢ =N -N =N | (2.3)
C

This is known as the principle of the argument and N the argument number.
The pr1nc1p1e of the argument suggests that the argument number is equal
to the number of times the argument of f(z) winds around some reference
axis in the complex plane. This axis corresponds to some chosen point on
the contour.

If the contour C contains only zeros of f(z) or alternatively only poles
of £(z), (2.1) through (2. 3) can be simplified by dropping the term Np or
No depending upon whether the contour contains zeros or poles. Since
poles of f(z) can be considered to be zeros of F(z) = ffl(z), we will con-
fine our discussion to the zeros of an analytic function f(z). If a
meromorphic function G(z) is given, we assume that the singularities of
G(z) have been suitably determined and G(z) has been converted into an

analytic function of z.

B. Location of the zeros
Consider a complex function g(z) analytic in the domain D. If the
zeros (poles) of f(z) described in section A occur at Zo; using the residue

theorem we can write
1 £1(z) R
— f ez =2 ) oz, ) (2.4)
i=1

where Zog is the location of the ith zero (pole) of f(z) in C, and n is the

total number of zeros (poles) in C. Here zeros (poles) are counted
according to their multiplicity. The + sign in (2.4) is appropriate if f(z)
has only zeros in C while the - sign is applicable if f(z) has only poles in
C. Remembering that a pole can be treated as the negative of the zero,
we need to consider the case of zeros of f(z) alone.

In (2.4) we are free to choose any analytic function g(z) and we

select




. ‘
g(z) = z k=0,1,2,...,N0 (2.5)

No being the number of zeros of f(z) in C. Representing the left-hand side
of (2.4) for each k by Ik’ we have

Z +z  + etz =1
o o

% 2 N 1
o
zi + zi + etz = I2
1 2 N
o
) (2.6)
N0 N0 N
%o * Zc> o A Zo - I‘N
1 2 o
o
where
1 kf'(z) _ '
Ik - 27ri f Z f(z) dZ k. - 0’ 1’ z’noo’No (2. 7)
C

We note that if we set k = 0 in (2.7) we obtain (2.1). Assuming that I.k can
be evaluated for a given analytic function, the system of nonlinear equations
given by (2. 6) can be solved to obtain the locations of the zeros Zo; for each
contour.

The procedure described above, however, assumes that the number
of zeros in a contour are known accurately. This knowledge of number of
zeros is criticai since this determines the number of equations in the
system given by (2.6). As a consequence, the procedure used for deter-
mining the number of zeros in a contour should be very reliable.

Returning to (2.7), there are various ways of expressing (2. 7). It

can be written as




o1 k 1
Ik Y f z 1(z) dz f(z)dz (2.8)
: C

- 51— f k oy 4(E(2)) (2.9)
C

zk d% (Inf(z))dz (2.10)
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where 1k can be considered as the kth moment of the logarithmic derivative.
There are several ways of evaluating integrals of the form I.k We will
discuss two such procedures here and the readers are referred to earlier

works for others. 78,9

C. Evaluation of I.k by an approximation of the logarithmic derivative

In this procedure the integral representation of the form

L f kL
Ik =5 2" %) Y 3z f(z)dz (2.12)

C

is used. Following the procedure used by Baum, 11 we can write (2.12) as

1 k
~ A(f(z)) (2.13)
or E All(z) |

In the first choice of approximation we can write

A(f(z)) = f(zm+1) - f(zm) (2. 14)
1T -k -k
f(z) 5—[ Z 1 f(zm+1) + z., f(zm)] (2.15)

O




and
O f(Zm+1) - f(zm)

N
L = E Zk k=0,1,2 N
t K ot )+ R ) 4 °; o
m m

4
m=1 "m+l1 "m+l . j=
1= (2.16)
Here M represents the number of points around the contour with Z 41 z,
and f(zm+1) = f(zl).
The second choice of approximations is
_1
Alt2) = 3oz, ) - L] (2.17)
f(z) = f(zm) (2.18)
and - )
o
L z g Dot - ) Y K kx-onL2,....N (2.19)
Ami m fz_ ) %s. T e Genees g 4.
m=1 m =1 ]
If k = 0 the real part of (2. 16) or (2.19) rounded off to the nearest
C) integer represents the number of zeros in C while other values of k from

1to N0 yield a system of equations relating the position of the zeros in the
contour C. In the representations in (2.16) and (2.19), the derivative is
approximated and as a consequence, the accuracy of this procedure is
strongly dependent upon the number of points M. For numerical implemen-

tation this procedure was found to be inefficient.

D. Evaluation of I.k by integration by parts
The integral of the form (2.10)isthe mainstay in this procedure and

as a consequence we will discuss it here in detail. Rewriting it here for

convenience,
L - E}T_lf 2L (1n(£(2)) dz |  (2.20)
C
Edz—ln(f(z)) =’aclz-[1n“f(z)l) + i arg(f(z))] (2.21)




If in a given domain D we draw a Jordan contour C, and if f(z) has no zeros
in that contour, 1n(f(z)) is a continuous function of z on that contour. Hence
the kth moment of the logarithmic derivative of f(z) around a Jordan contour,
where the contour does not contain any zeros of f(z) is zero. However, if
the contour does contain zeros, the logarithm of f(z) contains a branch
point at each of the zeros of f(z) in that contour. We recall from basic
complex variable theory that 1n(|£(z)|) is a continuous function of z while
arg (f(z)) is discontinuous as one traverses around the contour, provided
f(z) has zeros in the contour. ‘It is clear from Rieman surfaces that

arg (f(z)) can be made into a continuous function of z except at the end points
of the contour. Hence we can make arg(f(z)) a continuous function and
represent it by adj (arg (f(z)) where the symbol adj stands for adjusted to
mean that the argument of f(z) has been adjusted such that it is a continuous
function of z around the contour. We will discuss the process of adjusting
the argument of f(z) in the numerical section.

Rewriting (2.20) via (2.21) and the adjusted argument of f(z)

L = 5%1- zk[aqz_ 1n(|f(z)“ + iaclz-{adj(arg(f(z)))}]dz (24.22)

C

where the adj(argf(z)) is a continuous function except at the end points of
the contour. Integrating (2.22) by parts and using the fact that 1n|f(z)| is

a continuous function yields

k

i
o

1]
MIN

Cini ini (2.23)

were C represents that the contour starting and end points are taken as

Z. .. We can simplify (2.23) as
ini

10

{adJ arg (£(z) 4) i _2_17%? zk-1[1n(]f(z)|)‘+ iadj(arg(f(z)))]dz

O




L - No - .zi f [mlf(z)l + iadj(arg(f(z)))]dz (2.24)
C,

where No‘ is the number of zeros in the contour C.

The procedure described above is very different from those the
authors are familiar with and does not involve any approximations such as
polynomial fit or approximations in representing the logarithmic derivative.
If the complex function f(z) or its value is known around the contour, we

can evaluate (2.24) and obtain the system of equations given by

ZI; - N zl.{ . l Zk-1[1n(lf(z)|) + iadj(arg(f(z)))]dz
j

Cini (2.25)

k = 1,2,...,No

N i} .
N, = 37 ladJ(arg(f(z)))§ (|) number of zeros in the contour  (2.26)

ini
Under the present formulation, it is necessary that this initial point be the
same for the remaining integral in (2.25). As can be seen from (2.25) and
(2.26) if we know the logarithmic magnitude and the adjusted argument of

f(z) around the contour, we can determine the number of zeros and the

locations of the zeros of the analytic function f(z) within the contour.

11




IIl.  Numerical Evaluation of the Integrals

If the analytic function f(z) is given, the number of zeros of this
function and their locations within a given contour can be determined by
(2.25) and (2.26). Determination of the number of zeros of f(z) in a given
contour is made purely by the phase information while the relationships

involving the locations of the zeros contain integrations.

A. Finding the number of zeros in a contour

The number of zeros of an analytic function f(z) in a contour C is
determined by the phase information. Let us consider an arbitrary contour
C as shown in figure 3.1. The arrow on the contour shows the positive
direction of travel around the contour. The contour is divided into M not
necessarily equal parts and the dividing points are numbered 1 through M
in an increasing order with the counterclockwise direction being the posi-
tive direction of travel around the contour. The complex function f(i) is
evaluated at these n points and its argument arg (f(z)) is found such that it
is between 0 and 27. We now perform a phase test to adjust the argument
 £(z). This test is performed as follows: consider the ith and i+1st points
on the contour. Suppose that arg(f(z)) (0 < arg (f(zi)) < 27) is in the first
quadrant while arg (f(zi +1)) is in the fourth quadrant, the phase is taken to
have changed by - 27 between these two points and arg(f(zi+1)) is adjusted
such that

adj (arg(f(zi+1))) = -27 + arg(f(z,,,)) (3.1)
Alternatively, ifarg (f(zi))is inthe fourth quadrant while arg (f(zi +1)) is in

the first quadrant, the phase is taken to.have changed by + 27 between the

points and

adj-(arg(f(zi+l))) =27 + ;a.rg(f(zi+1)) (3.2)

Adjustments of the form (3.1) or (3.2) are performed on all points starting

with i+l up to i-1 along with any other adjustments necessary because of

12
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Figure 3.1. Arbitrary closed contour in the complex plane
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the tests made on subsequent points on the contour. If for a given contour
N + represents the number of times the phase crossed the 27 line going in O
the positive direction and N_ the negative direction, (N . N_), if greater
than zero denotes the number of zeros in the contour while, if negative,
the poles in the contour, assuming that f(z) has only poles or zeros in C.
If (N+ - N_) is zero no zeros or poles of f(z) exist in C. The test procedure
as described here assumes that between two adjacent points, the phase
difference is no greater than 7/2. Although this might appear to be a bad
assumption, in extensive tests performed no problems have been observed.
As will be seen later, the procedure has performed well even when a zero
is on the contour.
One could construct an alternative test procedure as follows: con-
sider arg (f(zi)), arg(f(zi+1)) and arg(f(zi_l)). A phase test is performed
between arg (f(zi+1)) and arg(f(zi_l) as described above. Phase informa-
tion of arg (f(zi)) is used to observe the direction of rotation of the phasor
between f(zi_l) and f(zi+1) and hence the argument number. Another
alternative procedure could be to pick a point between two adjacent points, O
if the phase difference exceeds 7/2 between the original points. One could
use the phase information of this new point to obtain the direction of

rotation.

B.  Finding the locations of the zeros (poles)
Let us assume for now that f(z) is an analytic function and hence
contains only zeros within the contour C. The relationships involving the

locations of the zeros is given by

No

Z, . "
0 inl 2ri

Z‘Z . . Zk-l[ln]f(z)l + iadj(arg(f(z)))]dz (3. 3)
=1 ] o :

Since 1n(|f(z)l) and adj (arg (f(z))) are continuous functions of z, the inte-
gral in (3. 3) is well behaved and the numerical integration is easy to

perform. Although trapezoidal or Simpson's method may be used to

14



perform the integration, because of better convergent properties Gaussian
quadrature formula was found to be better suited. In this procedure, the
contour C can be bquen up into M number of not necessarily equal segments
as shown in figure 3.2. Each of the segments of this cdntour is broken up
according to the order of Gaussian quadrature formula used. If we assume

this order to be q, (3. 3) can be written a.s12

NO M .
Zk~NZk _ kK ZMq k-1 plz ) (3.4)
0.~ “o%ini " 271 2 ; Zg WePlZy .

=1 3 m=1 =]

where

p(zﬂ) = [lnif(zz)l + iadj(arg(f(zﬂ)))]‘ (3.5)
(Zn T Zn-1 Zn M Zn-1 ‘

(e, (e

with x 0 being the location of the £th zero of gth order Legendre function
while w 2 is the corresponding weight function. One could impose a conver-
gence criterion and increase M until that criterion is met. We will discuss
this procedure later. ,

As discussed earlier, if the contour C contains No number of zeros,
one would obtain N0 equations relating the locations of the zeros which can
be manipulated into an equation of the form

N N -1 N -2
z © + ° +czoO +eee4 ¢ =0 (3.7)

o clzo
whose roots are the locations of the zeros of f(z) in C. In general ¢y in
(3.7) is complex and analytical methods are known only up to a 4th order
equation. 13 Computer routines discussed in later sections cannot find the
locations of the zeros if more than three (3) zeros are in a contour.

If the contour C contains poles of f(z) alone, by virtue of (2.4) one

can obtain an equation similar to (3.7) whose roots yield the pole locations.

15
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Figure 3.2. Division of a closed contour into segments
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Alternatively, poles of f(z) are the zeros of f-l(z), hence, one can use
(2.25) and (2. 26) by substituting f-l(z) for £(z). If f(z) contains both poles
and zeros in C, one would have to evaluate either the pole or zero locations
analytically and remove the same from f(z); using the above discussed pro-

cedure one could then evaluate the pole or zero locations by using (2.25)
and (2.26).

C. Exponential normalization procedure

If the complex function of interest f(z) has a complex exponential
associated with it, the phase of f(z) would be varying very rapidly and the
adjustment of the argument of f(z) becomes increasingly difficult. One way
to counter this problem is to take increasingly larger number of points
around the contour until the phase difference between two adjacent points
on the contour is small. This procedure may not always be successful
because of large magnitude variations and for problems involving large
matrices such as moment method this becomes cost prohibitive; as a
consequence, some other method has to be used.

Consider a general analytic function f(z) which has exponential

behavior around the contour. We now normalize f(z) such that

F(z) = nz) (3.8)

where h(z) is an entire function without any zeros within C. We choose
h(z) to be of the form

h(z) = ce®® (3.9)
where ¢ and a are real constants so that h(z) is conjugate symmetric in the
z plane (h(z) = h(z) where — indicates conjugation). Now let us consider a
rectangular contour C as shown in figure 3.3. On portions of the contour
denoted by Ca and C_ the magnitude of h(z) is constant. We now chose ¢

b
and a such that the average magnitude of h(z) is the same as that of f(z)

17.
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Figure 3.3. Rectangular contour in a complex plane
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on Ca and Cb’ the reason being, large phase variations, in general,
accompany large variations in the magnitude. As such if the variations

in the magnitudes are reduced, so are the phase variations. Hence we

obtain
avg(lf(z)lc )
_ 1 a
a - HEEN lnlavg(lf(z)lcb) (3.10)
c =e avg(lf(z)lc )
b a -
- - (3.11)
_ b
= e avg(lf(z)lc )
B b/

where avg represents average while the subscript Ca or Cb indicates the

portion of the contour over which the average is taken. Using a and ¢ given
by (3.10) and (3. 11), it is easy to show that the average magnitude of F(z)

on Ca and Cb is 1. The argument of F(z) is given by

arg(F(z)) | arg(f(z)) - arg (%)

(3.12)

arg(f(z)) - alm(z)

It has been observed that in general the average magnitude of F(z) around
the contour is approximately 1, while rapid phase variations of f(z) do not
appear in F(z). Since h(z) is an entire function without any zeros within
the finite complex plane, the zeros (poles) of f(z) are undisturbed.

If the contour is circular as shown in figure 3.4, a and c are calcu-
lated using

|£(z)|
z

a = 1 In
Za " %y l?(Z)Iz

a

(3.13)
b
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Figure 3.4. Circular contour in a complex plane
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-az ['f(z)lz ]
c =e a[m_z_a_] (3.14)

b

where the subscript z, orz, indicates that the magnitude of f(z) is evaluated

at those points with real parts z, and Zy e

We have discussed here normalization procedures for rectangular and
circular contours only because of ease of implementing these in numerical .

evaluation. However, the normalization procedure might be used for other

contours also by using the method described for a circular contour.
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IV. Description of the Computer Programs

Three computer subroutines have been written to facilitate numerical
evaluation of the locations of the zeros of an analy;cic function f(z) in a given
area of the complex plane. | These subroutines have characteristics which
make them suitable for different purposes. A brief description of these
subroutines is given below and the listing for the subroutines is given in the

appendix.

A, Subroutine SEARCH

If the analytic function f(z) is complicated and computationally expen-
sive, SEARCH is a well suited subroutine for finding the zeros of f(z).
Supposethat we wish to find the zeros of f(z) in some rectangular area of
the complex plane called the scan area. In general, this scan area is
divided into smaller rectangles and the zero locations of f(z), if any, are
found in each of these rectangular areas called contours. Consider a rec-
tangular scan area A enclosed by the contour C as shown in figure 4.1,
this scan area can be uniquely described by the complex coordinates of the
lower right corner (CSF') and those of the upper left corner (CSL). Let
this scan area be divided into Nc smaller contours such that Nc = NRxNI
where NR is the number of divisions ¢ is subdivided into while NI is the

1
number of divisions c, is subdivided into as shown in figure 4.1. We note

that two adjacent contiurs have one common side. As such, if the function
values calculated on these common sides are stored, they can be used for
its adjacent contour. Subroutine SEARCH stores these function values in
two large arrays known as CV and CH.

Since the integration is done by Gaussian quadrature formula, once
the order of Gauss' formula to be used is chosen, choices being 12, 20 or
40 order, the function f(z) is evaluated at proper points on the vertical and
horizontal lines in C which subdivide the scan area and is stored in the

vertical array CV and the horizontal array CH, respectively. Using the

procedure described in section IV, the zeros of f(z), if any, and their

22
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Figure 4.1. Division of a rectangular scan area into small
rectangular contours
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locations in each contour are found. If no zeros of f(z) exist in a particular
contour, a message indicating that no zeros of f(z) exist in that contour is
printed. If a pole of f(z) is detected by SEARCH in a contour, a message
indicating that a pole of f(z) exists in that contour is printed; however, the
location of the pole is not found. If more than three (3) zeros of f(z) are
detected by SEARCH in a contour, a message indicating that the capabilities
of SEARCH have been exceeded is printed. For each contour, the coordin-
ates of the lower right-hand corner and the upper left corner are printed
along with the number of poles or zeros in that contour detected by SEARCH
are printed. If less than four (4) zeros of f(z) are detected in a contour,
the locations of these zeros are found. A check is made to see if the zero
location is inside the contour; if it is not, a warning message indicating
that the zero is outside the contour is printed. If this occurs for a contour,
it can be corrected by increasing the order of the Gaussian quadrature inte-
gration or by using subroutine SEEK (see section C). The average value of
the magnitude of the function around the contour and the value of the magni-
tude of the function at the locations of the zeros is printed for each contour.
A summary of results is printed for each scan area which includes the
locations of the zeros, average value of the magnitude of the function around
the contour in which the zero is located, magnitude of the function value at
the zero and the ratio of the magnitude of the function at the zero to the
magnitude of the average value of the function around the contour. The
value of this ratio indicates the quality of the zero; the smaller the ratio
the better is the zero location. If one desires to improve the results found
by SEARCH, subroutine HOMEIN can be called by setting the proper flag.
This subroutine is discussed in the next section. If the HOMEIN option is
to be utilized, one would set NH = 1, otherwise NH = 0.

The header card of subroutine SEARCH reads as follows:

2l
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CFCTS:
CSL:
CSF:
NR:

NI:
ND:
NH:

FACTOR:

AVE:
CH:
CVv:

CSA:
FUN:

X1, W1:
X2, W2:
X3, W3:
X, W:.

ARG:

CF:

SUBROUTINE SEARCH (CFCTS, CSL, CSF, NR, NI, ND, NH, FACTOR)

where

Complex function whose zero locations are to be found.
Coordinates of the upper left corner of the scan area.
Coordinates of the lower right corner of the scan area.

Number of major divisions of the real axis within the
scan area.

Number of major divisions of the imaginary axis within
the scan area.

Order of the Gaussian Quadrature formula to be used.
Choices are 12, 20 and 40.

HOMEIN option indicator. If NH=0, HOMEIN subroutine
is not called, if NH=1 it is called.

This is factor by which you would expect the function
value at the zero found by HOMEIN to be smaller than
that found by SEARCH.

Array in which the average value of the magnitude of the
function around a contour is stored.

Array, used for storing common points (horizontal lines)
between contours.

Array, used for storing common points (vertical lines)
between contours.

Array, used to store the zero locations found by SEARCH.

Array, used to store the magnitude of the function values
at the zero locations found by SEARCH.

Arrays, used to store data for 12 point Gaussian Quadrature.
Arrays, used to store data for 20 point Gaussian Quadrature.
Arrays, used to store data for 40 point Gaussian Quadrature.

Arrays, used to store the data for proper Gaussian
Quadrature order specified.

Array, used to store the argument of the function
evaluated at proper points around the contour.

Array, used to store the integrals.

Array, used to store the complex function values evalu-
ated at proper points around the contour.
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CS: Array in which the coordinates of the points around the O
contour are stored.

CSH: Array, used to store the zero location found by HOMEIN.
FZH: Array, used to store the magnitude of the function value
' at the zero location.
TMAG: Array, used to store the magnitude of the function at
proper points around the contour.
PI: = T~ 3.14159265

A listing of this subroutine is provided in the appendix and numerical

results are presented in section V.

B. Subroutine HOMEIN

This subroutine evaluates the location of the zero much more accu-
rately than SEARCH. This subroutine can either be used in conjunction
with SEARCH or by itself. This subroutine is very useful if the approxi-
mate locations of the zeros of an analytic function are known or if one
wishes to improve the precision of the zero location obtained by SEARCH.

This subroutine takes the approximate location of the zero and the ‘O
absolute function value at the zero as inputs. Approximate location of the
zero is taken as the center of a circle and a circular contour of radius R
is drawn in the normalized complex plane, where R is chosen according to
the location of the center. For instance, if the center is within a radius
R1 of 3, the initial radius of the contour is chosen as ,08*R1 where R1 is
the distance from the origin of the complex plane to the center. If
3 <R1£5, R=,06*%R1 and if 5<R1<8, R=,04*R1 and if R1>8, R=,03*R1.
These radii have been chosen such that the contour will be small, motiva-
tion being, the smaller the contour, the more accurate the results.

Initially KDM+*ND points are chosen around the contour C, where
KDM=2 and ND=40 in this routine. As in the case of SEARCH, a phase
test is performed to find if any zeros are enclosed in C. If no zero is
detected, the radius of the contour is increased in multiples of 2 until

zeros are detected in C or until the radius reaches ten times the initial

O

.
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radius whichever occurs first. If no zero is detected within this final
radius, a message stating this fact is printed. If zeros are detected in C,
a test is made to see if there are less than 4 zeros in C. If it is found that
more than 3 zeros are enclosed by C, the radius is decreased in steps of

. 9 until three zeros are enclosed or until the radius decreases to the mini-
mum radius RMIN=. 7*Inifia1 radius, whichever occurs first. If at the
minimum radius more than 3 zeros are detected in C, a message stating
the number of zeros detected, the center of the contour, and the radius
within which they are detected is printed. Experience indicates that this
is a multiple zero of order greater than 3 and the user may choose to treat
it as such. '

If less than 3 zeros are detected in C, the locations of the zeros are
evaluated as in SEARCH and the absolute value of the function is evaluated
at the zero locations. The smallest of these function values (in the case of
more than one zero in C) or the function value at the location of the zero
found by HOMEIN (in the case of one zero in C) is compared to the function
value at the approximate zero given to this subroutine. If this new function
value is smaller than the original function value, the zero locations found
by HOMEIN and the function values at these locations are printed. If this
subroutine is used in conjunction with SEARCH, a summary of results is
printed in SEARCH.

If the new function value is greater than the original function value
inputted, the number of points taken around the contour is increased in
multiples of 2 until a better zero is found or until the number of points are
greater than KDMX*ND, If this limit has been exceeded, a message stating
that HOMEIN could not find a better zero within the number of points speci-
fied is printed. Although the subroutine uses KDMX to be 10, the user may
change this number by proportionally increasing the array sizes of TMAG,
ARG, CS and CF.

The header card of subroutine HOMEIN reads as follows:

SUBROUTINE HOMEIN (IHH, CENTER, FUN, FACTOR)
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If subroutine HOMEIN is used in conjunction with SEARCH, it suffices to
specify the HOMEIN option as described in section A. If HOMEIN is used
as an independent subroutine with the intention of improving the known
locations of the zeros of the complex function CFCTS, the user may call
HOMEIN in a do loop by feeding the approximate location of the zero as the
center and the absolute value of the function at this location as FUN. IHH
is a dummy variable which is equal to zero when HOMEIN is called for the
first time. This variable is used as a counter to store the zero locations
and the function values at the zero locations for purposes of summarizing
in SEARCH. FACTOR is as ,described ’in SEARCH. This has to be
inputted by the user. The larger this nuinber, the better will be the
zero found by HOMEIN.

IHH: Set equal to zero the first time HOMEIN is called from

a do loop.

CENTER: Approximate location of the zero.

FUN: Absolute value of the function at the approximate zero.

CFCTS: Analytic function whose zero is to be improved.

PI=7r~3.14159265

TMAG: Array in which the magnitude of the complex function
is stored.

ARG: Array in which the adjusted argument of the complex
function is stored.

CS: Array in which the coordinates of the points around the
contour are stored.

CF: Array in which the complex function values are stored.

C: Array in which various integrals are stored.

CSH: Array in which the zero locations found by HOMEIN are
stored. _

FZH: Array in which absolute values of the complex function
values at the zero locations are stored.

X: Array in which Gaussian Quadrature integration data
is stored.

W: Array in which Gaussian Quadrature integration data is
stored.

28

O




A listing of this subroutine is provided in the appendix and numerical

examples are discussed in section V.

C. Subroutine SEEK

The basic principle behind this subroutine is the same as SEARCH.
Given the coordinates of the lower right corner and the upper left corner
of a rectangular contour, this subroutine finds the zeros, if any, of a com-
plex function. An added feature in this subroutine is a ratio test. It is
clear that at the location of the zero, the function value is zero. However,
numerically this will be a small number compared to the values of the func-
tion away from the location of the zero. We define a real number called
ratio as the ratio of the absolute value of the function at the zero to the
average of the absolute value of the function around the contour. Clearly a
lower ratio at the zero location indicates a better zero. The user inputs

-7

the ratio criterion to be met, typical suggested values are 10“5 to 10

Given the coordinates of the contour and the ratio, SEEK, working
the same way as SEARCH or HOMEIN, does a phase test to find if any
zeros are enclosed. This is initially done by taking 160 points around the
contour. If no zero is detected, a message indicating this fact is printed
and the control is returned to the calling routine.

If 1ess than four zeros are detected in the contour, their locations
are found as in SEARCH and the absolute value of the function is evaluated
at the zero locations. The ratio of the highest of these function values to
the average of the absolute value of the function around the contour is cal-
culated and compared to the ratio specified by the user. If the calculated
ratio is smaller than the specified ratio, the zero location along with the
magnitude of the function at the zero location and average value of the
function around the contour are printed and the control returns to the
calling program. If the ratio condition is not met, the number of points
taken around the contour is increased in steps of 160 ar.ound the contour

until the ratio condition is met or until the number of points around the
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contour reaches KDMX*80. In the event the ratio condition could not be
met, the last computation of the locations of the zeros, function values at
these locations, etc. is printed along with a message indicating that the
ratio condition could not be met.

If more than three zeros in a contour are detected by SEEK, the con-
tour is subdivided into smaller contours according to the formula NC = 2(%—9 + 1)
where N0 is the number of zeros detected in a contour and Nc is the integer
part rounded off to the lower integer. For instance, if No is 4, the original
contour is divided into 4 equal contours and the procedure described earlier
is used to find the zeros in these smaller contours. If one or more of these
smaller contours contain more than 3 zeros, a message is printed giving
the coordinates of the contour, number of zeros detected and that the con-
tour cannot be broken up any further.

The header card of SEEK reads as follows:
SUBROUTINE SEEK (CFCTS, CSM, CSMI, RATIO)

CFCTS: Complex function whose zeros are to be found.

CSM: Complex coordinates of the upper left corner of the contour.
CSMI: Complex coordinates of the lower right corner of the
contour.

RATIO: Ratio condition which is to be satisfied.
PI=7~3.14159265
CSA: Array in which the locations of the zeros found are stored.

FUN: Array in which the magnitude of the function values at the
zero locations is stored.

AVE: Array in which the average value of magnitude of the
function around the contour is stored.

RAT: Array in which the ratio of the magnitude of the function
at the zero location to the average value of the magnitude
of the function around the contour is stored.

NOZ: Total number of zeros found.

ARG: Array, used to store the argument of the function evaluated
at the proper points around the contour.
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C: Array, used to store the integrals.

CF: Array, used to store the complex function values evaluated
at proper points around the contour,

CS: Array in which the coordinates of the points around the
contour are stored.

TMAG: Array, used to store the magnitude of the function at
proper points around the contour.

X, W: Arrays, used to store data for Gaussian Quadrature.

Although subroutine SEEK can be used independently, it is primarily
designed to be used with subroutine CONTOUR. Subroutine CONTOUR
gives SEEK the capability of dividing a scan area into small contours as
SEARCH is capable of doing. A.lthough SEEK does not store common
points between the cohtours, it has the capability of meeting certain cri-
eria set by the user; in addition, if more than 3 zeros are found in a
contour, SEEK has the capability of breaking the small contour into still
smaller contours. The header card of subroutine CONTOUR reads as

SUBROUTINE CONTOUR (CSL, CSF, NR, NI, RATIO)

CSL, CSF, NR and NI are described in section A, while RATIO was
described earlier in this section. This subroutine also summarizes the
results found by SEEK.

Listings of CONTOUR and SEEK are provided in the appendix while

numerical results are discussed in section V.

D. Function subroutine ANGLER

Subroutines SEARCH, HOMEIN and SEEK use ANGLER to calculate
the angle in a continuous sense between 0 and 27. This routine takes the
real and imaginary parts of a complex function and returns the angle in
radians between 0 and 27, A listing of this subroutine is provided in the

appendix.
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V. Numerical Examples

In this section we will discuss two classes of examples: one concern-

ing the roots of a polynomial and the other involves the natural frequencies

of a thin wire.

A, Roots of a polynomial

A twentieth order polynomial f(s) as given by (5. 1) is chosen for this

numerical example

f(s) = (s=(=+5+j1:0))(s-(-+4+j1+4))(s-(-+ 1+j2* 6))
(s-(-+5+j2+ 7)) (s-(-1+ 3+j1-8))(s-(-1- 1+j3* 95))
(s-(-2+4+j* 1))(s-(-2+5+j+ 2))(s~(-2+ 6+j+ 3))
(s=(-221+j2+ 1))(s-(-2+ 1+j2+ 1))(s~(~2+ 2+j4+ 2))
(s~(~2¢ T+j4+ 8))(s-(-3+ 3+j1+ 6))(s-(-3+ 7+j3- 8))
(s-(-4+25+j+ 35))(s-(-4+ 3+j2+ 3))(s-(-4+ 75+j2+ 75))
(s=(-4+3+j4+5))(s-(-4+ 95+j4- 95)) (5.1)

For purposes of numerical evaluation the scan area is taken as shown in
figure 5.1. Smaller contours are drawn in the scan area as shown and the
location of the roots are as marked. Notice that the root location at
s = -+5+jl. is on the side of the contour and some of the others are within
.05 from the sides of the contour. Subroutine SEARCH along with HOMEIN
option and SEEK with ratio condition of 10_10 were used to evaluate the
locations. Results presented in table 5.1 were obtained using 48 points
around the contour (12 point Gauss quadrature per side) while tables 5.2
and 5. 3 were obtained by using 80 and 160 points respectively around the
contour for SEARCH.

In order to introduce large oscillations in f(s), it has been multiplied

A .
by an entire function of the form e S. Define F(s) as

F(s) = ™ f(s) (5.2)




ﬁ Im(s)

(2)

-Re(s)

Figure 5.1. Scan area showing the subdi'Visjons along with the
Root locations are shown by

locations of the roots.

dots with their order indicated in parenthesis.
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No. |{Exact Location Location Found by SEARCH Location Found by HOMEIN Location Found by SEEK

1 -.5+j1.0 -.500000007857+j. 986119248895 -, £000000001969+j1. 000000001890 -.499999999974+j. 999940196864

2 -.4+j1.4 -,4000000040506+j1.41388789989 -.4000000004101+j1.400000002860 ~, 39999999998499+j1. 40005980458

3 -.1+j2.6 -.100020243996+j2, 600119280976 -.1000000006140+j2. 600000004191 -.100000000177+j2. 600000000164

4 - 5+j2. 7 -.500002274223+j2, 700005852813 -.5000000006153+j2. 700000003527 -.4999999999737+j2. 699999999517

5 -1.3+j1.8 -1.300000112328+j1.800000616575 -1.300000000537+j1. 800000004345 -1.300000000065+j1. 80000000817

6 -1.1+j3.95 -1.0099886484113+j3.950192243346 | -1.100000000680+j3.9500000052 34 -1.099999999991+j3. 949999999897

7 -2.4+j.1 -2,316482193266+j.2454476633878 -2.399558032358+j. 1000411584392 ~2.4000000001776+j.09999999944050

8 -2,5+7.2 Did Not Find This Zero Did Not Find This Zero -2.500000000835+j. 1999999999511

9 -2.6+j.3 -2.683392729839+j, 3545761221847 -2.5999957344 74+j. 2999942711363 -2.599999999090+j. 3000000009063
10 -2.1+j2.1 | -2.099574882516+j2. 099568616821 Could Not Improve The Location -2.0999847643629+j2. 100006355441
11 -2.14j2.1 -2.100421589660+j2. 100427826144 Could Not Improve The Location -2.100015235495+j2. 099993644031
12 -2,2+j4.2 -2.200000234552+j4.200000230275 -2.200000000726+j4.200000007857 -2.199999999981+j4. 19999999967
13 -2.7+j4.8 -2.699999903485+j4. 800000608303 -2.700000000727+j4. 800000005178 -2.6999999999513+j4. 799999999618
14 -3.3+j1.6 -3.300000001492+j1. 600000026712 -3. 3000000006 30+j1. 600000005847 -3. 3000000001 36+j1. 600000000114
15 -3.7+j3.8 -3.699999904416+j3. 800000618768 -3, 7000000‘00638+j3. 800000005827 -3.699999999891+j3. 7999999999185
16 -4;25+j. 35 -4.250000094067+j3. 500000344994 -4.250000000821+j3. 500000049303 -4.2500000000601+j3. 5000000025688
17 -4, 3+j2.3 -4.300000049898+j2. 300000018840 -4.300000000809+j2. 300000005851 ~4,299999999989+j2. 3000000000050
18 -4.75+j2.75 | -4.750000017428+j2. 750000049225 -4.750000000628+j2. 750000004923 -4.750000000010+j2. 750000000028
19 -4,3+j4.5 -4,299999350548+j4.49999901608 -4,300000000760+j4.500000003920 -4.,2999999998560+j4.499999999526
20 -4,95+j4.95 | -4.949935650793+j4.949935981450 -4,950000000892+j4., 950000004 387 -4,950000000063+j4. 949999999957

Table 5.1. Locations of zeros found by SEARCH using 48 points around the contour, using HOMEIN and those
found by SEEK using ratio condition of 10-10 for the case of A = 0,
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Exact ’Location

Location Found by SEARCH

Location Found by HOMEIN

Location Found by SEEK

-.5+j1.0

-,499999999978+j, 9915429543772

-, $000000002160+j1. 000000001901

-.499999999974+j. 999940196864

- 4+j1.4

-, 399999999858+j1.40845704707

-.4000000003864+j1. 400000002842

-. 39999999998499+71,40005980458

-.1+j2. 6

-. 099999460754 7+j2. 59999711055

-. 1000000006136+j2. 600000004191

-.100000000177+j2. 6000000001 64

-, 5+j2. 7

-,499999965471+j2. 69999991563

-. $000000006153+j2. 70000003527

-.4999999999737+j2, 699999999517

-1, 3+j1.8

-1.300000000224+j1, 800000001297

Could Not Improve The Location

-1, 300000000065+j1. 800000000817

-1.1+j3.95

-1,099994306796+j3. 949991721801

-1.100000000679+j3. 950000005238

-1.099999999991+j3. 949999999897

-2.4+j.1

-2.400002657901+j. 09999921087853

-2.400000019429+j, 1000000068627

~-2.4000000001776+j.09999999944050

-2, 5+j. 2

-2,500000421022+j, 2000002722860

~-2.499999979075+j2, 000000095665

-2.500000000835+j. 1999999999511

~2,6+j. 3

-2,599999894778+j, 2999999449622

-2.600000003289+j. 2999999946891

-2.599999999090+j. 3000000009063

10

-2.1+j2.1

-2,099979082275+j2. 100017330964

Could Not Improve The Location

-2,0999847643629+j2, 100006355441

11

-2.1+j2. 1

-2.100020826266+j2, 099982577274

Could Not Improve The Location

-2.100015235495+j2. 099993644031

12

-2, 2+4.2

-2,199999999859+j4. 199999999541

Could Not Improve The Location

-2.199999999981+j4. 19999999967

13

~2,7+j4.8

-2, 699999999731+j4. 800000000088

Could Not Improve The Location

-2.6999999999513+j4. 799999999618

14

-3,3+j1.6

-3. 300000000099+j1. 600000000273

Could Not Improve The Location

-3. 3000000001 36+j1. 600000000114

15

-3, 7+j3. 8

-3.699999999708+3j3, 800000000347

Could Not Improve The Location

-3. 699999999891+j3. 799999999185

16

-4,25+j. 35

-4,250000000019+j3. 500000003153

Could Not Improve The Location

-4.2500000000601+j3. 5000000025688

17

-4,3+j2,3

-4.299999999972+j2, 30000000000

Could Not Inprove The Location

-4.299999899989+j2. 3000000000050

18

-4,75+j2. 75

-4, 749999999997+j2, 750000000013

Conld Not Improve The Location

-4.750000000010+j2. 750000000028

19

-4, 3+j4.5

-4, 300000006598+j4. 500000009150

-4, 300000000760+j4. 500000003920

-4.2999999998560+3j4.499999999526

20

-4, 95+i4, 95

-4.949999071288+j4. 949999068539

e :
-4.950000000892+j4. 950000004 389

-4.950000000063+j4. 949999999957

Table 5.2. Locations of zeros found by SEARCH using 80 points around the contour, using HOMEIN and
those found by SEEK using ratio condition of 10~10 for the case of A = 0,
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No. | Exact Location Location Found by SEARCH i..ocation Found by HOMEIN Location Found by SEEK

1 -.5+j1.0 -.4999999999831+j. 9957207925762 -.5000000002284+j1. 000000001913 -.499999999974+j. 999940196864

2 -k. 4+j1.4 -.3999999998648+j1.404279208886 -.4000000003662+j1. 400000002826 -. 399999999984 99+j1.40005980458

3 -.1+j2. 6 -.9999999974780+j2. 60000000096 Cou’d Not Improve The Location -, 1000000001 77+j2. 600000000164

4 -.5+j2. 7 -.4999999996735+j2. 699999999703 Could Not Improve The Location -.4999999999737+j2. 699999999517

5 -1, 3+j1.8 -1, 300000000064+j1. 800000000881 Could Not Improve The Location -1.300000000065+j1. 800000000817

6 -1.1+j3.95 -1.099999992661+j3. 950000002239 -1, 100000000679+j3. 9500000052 38 -1.099999999991+73. 949999999897

7 -2.4+j.1 -2.400000000125+§.09999999895124 | Could Not Improve The Location -2.4000000001776+j. 09999999944050

8 -2.5+j.2 -2, 500000000751+j. 2000000000769 Could Not Improve The Location -2, 500000000835+j, 1999999999511

9 -2.6+j.3 -2.599999999125+j. 3000000008287 Could Not Improve The Location -2.599999999090+j. 3000000009063
10 -2.1+j2. 1 -2.099984656873+j2. 100009408153 Could Not Improve The Location -2.0999847643629+j2. 100006355441
11 -2, 1+j2.1 -2.100015342891+j2, 099990591262 Could Not Improve The Location -2.199915235495+j2, 099993644031
12 -2.2+j4.2 -2.199999999960+j4. 199999999649 Co;ﬂd Not Improve The Location -2. 199999999981+j4. 19999999967
13 -2, 7+j4. 8 -2.69990999999256+74, 799999999665 | Could Not Improve The Location -2. 699999999951 3+j4. 799999999618
14 -3. 3+j1. 6 -3.300000000116+j1. 600000000291 Could Not Improve The Location -3. 3000000001 36+j1. 600000000114
15 -3.7+j3. 8 -3.699999999877+j3. 799999999928 Could Not Improve The Location -3.699999999891+j3. 7999999999185
16 -4,25+j. 35 -4.250000000050+33. 500000003322 Could Not Improve The Location -4.2500000000601+j3. 5000000025688
17 -4, 3+j2.3 -4,299999999985+j2. 300000000001 Could Not Improve The Location -4.299999999989+j2. 3000000000050
18 -4, 75+j2,75 | -4.750000000028+j2. 750000000034 Could Not Improve The Location -4, 750000000010+j2. 750000000028
19 -4, 3+j4.5 -4,299999999833+j4.499999999352 Could Not Improve The Location -4.2999999998560+j4. 499999999526
20 -4.95+j4.95 | -4,949999999952+j4. 950000000213 Could Not Improve The Location -4.950000000063+j4. 949999999957

Table 5. 3. Locations of zeros found by SEARCH using 160 points around the contour, using HOMEIN and

O

those found by SEEK using ratio condition of 10-10 for the case of A = 0.

*
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where f(s) is given by (5.1). Exponential real constant A was varied from
0 to 70 and roots of F(s) were again evaluated. No appreciable change in
the locations of the zeros evaluated is found. Tables 5.4 through 5.6 con-
tain the results for A = 70 using SEARCH with HOMEIN option and SEEK
with ratio condition of 10—10. As can be seen, large variations in phase
and magnitude do not affect the results of SEARCH, HOMEIN or SEEK.

For numerical evaluation A could not be increased beyond 70 because of the
underflow condition problem encountered in the computer,

As can be seen from the tables, no significant changes in root loca-
tions have been observed even when large oscillations were introduced in
the function. Although the results presented here used single precision,
using extended precision the results would be far superior. In general, for
polnynomial roots, good results were obtained if the order of Gaussian

quadrature formula was of the order of the polynomial.

B. Natural frequencies of a thin wire

In this section, we consider for illustrative purposes, the problem of
determining the natural frequencies of a straight thin wire whose diameter
to length ratio (d/L) is .01. A more detailed discussion of the formulation
of this problem may be found in Giri, Singaraju and Baum. 14 The Hallén
form of the integral equation of a straight thin wire, in the absence of the

incident field is given by
LN ~
f z')K(z - z')dz' = Asinh(yz) + Bcosh (yz) (5. 3)
0

where the tilde signifies a two-sided Laplace form and the kernel function

is given by

- 1 2 e—’yR
K(z - z') = Zr_a;_/‘ TR add¢’ . (5.4)
0 .
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No. | Exact Location Location Found by SEARCH Location Found by HOMEIN Location Found by SEﬁK
1 -.5+j1.0 -, 500000007857+j. 986119248895 -.5838888881969+j1.000000001890 -.4999999999779+j. 999760783781
2 -.4+j1.4 -.400000004050+j1,41388078998 -.400000000101+j1.400000002860 -, 3999999998428+j1. 4002392176680
3 -.1+j2.6 -, 10002024 3996+3j2. 60011928097 -, 1000000006140+j2, 600000004191 -. 1000000001833+j2. 600000600091
4 -, 5+j2.7 -, 50000227422 3+j2. 70000585281 | ~ 50()0000006153+j2. 700000003527 ~. 4999999997101+j2. 6999999999559
5 -1.3+j1.8 -1.30000011232+j1. 80000061657 -1, 300000000537+j1. 800000004 345 -1.3000000000464+j1. 800000000853
6 -1.1+§3. 95 ~1,09988648411+j3. 950192243346 -1.100000000680+j3, 9500000052 34 -1.1000000002575+j3. 949999999838
7 -2.4+j.1 -2, 3164‘82193266+j.2454476633879 -2.399558032358+j. 1000411584 39 -2.400000000113+j. 09999999946671
8 -2.5+7.2 Did Not Find This Zero Did Not Find This Zero -2,500000001099+j. 1999999999152
9 -2.6+j.3 -2,683392729838+j. 3545761221846 -2.509995734474+j2. 999942711363 -2,5999999989483+j. 3000000008994
10 -2, 1;&-j2. 1 -2,099574882526+j2. 099568616810 Could Not Improve This Location -2, 099984711179+jé. 100007309278
il -2.1+j2.1 -2.100421589649+j2. 100427826155 Could Not Improve This Location -2,1000152885500+j2. 099992690080
12 -2.2+j4.2 -2, 20000034552+j4. 200000230275 -2.200000000726+j4. 200000007857 -2.199999999982+j4. 199999999676
13 -2, 7+j4.8 ~2,69999993485+j4. 800000608303 -2.700000000727+j4, 800000005178 -2.6999999999453+j4. 799999999630
14 - =3.3+j1.6 -3.300000001492+j1, 600000026712 -3. 300000000630+j1. 600000005847 -3. 300000000116+j1., 600000000113
15 -3.7+i3. 8 -3.699999904416+j3, 800000618768 -3. 7000000006 38+j3. 800000005827 ~3.699999999898+j3. 7999999999154
16 -4,25+j. 35 -4,250000094067+j3. 500000344994 -4.250000000821+j3, 500000049303 ~-4.250000000060+j3. 560000002568
17 -4.3+j2.3 -4, 300000049898+j2. 300000018841 -4, 300000000809+j2. 300000005851 -4,2999999999802+j2. 300000000021
18 -4,75+j2,75 | -4,750000017428+j2. 750000049225 -4, 760000000628+j2, 750000004923 -4, 750000000015 3+j2. 7500000000385
19 -4,3+j4.5 -4,299999350548+j4,499999016018 -4.300000000760+j4. 500000003920 -4,2999999998067+j4, 499999999645
20 -4,95+i4,95 | -4,949935650793+j4. 949935981450 Could Not Find This Zero* -4, 9500000227758+j4. 9500000227286

*This zero could not be found because of underflow condition.

Table 5.4. Locations of zeros found by SEARCH using 48 points around the contour, using HOMEIN and

O

those found by SEEK using ratio condition

O

of 10~10 for the case of A = 70,

O




6€

()

()

Exact Location

Location Found by SEARCH

Nr )
Location Found by HOMEIN

Location Found by SE\Ef

-.5+j1.0

- 4'999999999781+j. 9915429543772

~-.5000000002160+j1, 1000000001901

-.4999999999779+j. 999760783781

“e 4+j1.4

-, 3999999998582+j1, 408457047079

-,4000000003684+j1,400000002842

-.3999999998428+j1.4002392176680

-.1+j2.6

-.09999946077944+j2. 599997110515

-. 10000000061 36+j2. 600000004191

-.1000000001833+j2. 600000000091

- 5+j2, 7

-.4999999654467+j2. 699999915671

-. 5000000006153+j2. 700000003527

-.4999999997101+j2. 699999999559

-1, 3+j1.8

-1, 300000000224+j1. 800000001297

Could Not Improve The Location

-1.3000000000464+j1, 800000000853

-1,1+j3.95

-1.099994306796+j3. 949991721801

-1.1000000006792+j3. 950000005238

-1.1000000002575+j3. 9499999998 38

-2.4+4j.1

-2.400002657801+j, 09999921102107

Could Not Improve The Location

-2.400000000113+j.09999999946671

-2.5+j.2

-2.500000421222+j, 2000002718615

Could Not Improve The Location

-2.500000001099+j, 1999999999152

-2,6+3. 3

-2,599999894678+7. 2999999452441

Could Not Improve The Location

-2.5999999989483+j. 3000000008994

10

-2.,1+j2. 1

-2,099979445188+j2. 100017297542

Could Not Improve The Location

-2.099984711179+j2. 100007309278

11

-2,1+j2, 1

-2,100020463353+j2, 099982610696

Could Not Improve The Location

-2.1000152885500+j2. 099992630080

12

-2,2+j4.2

~2,199999999856+j4. 199999999516

Could Not Improve The Location

-2.199999999982+j4. 199999999676

13

-2, T+j4. 8

-2.699999999733+j4. 800000000113

Could Not Improve The Location

-2.6999999999453+j4. 799999999630

14

-3.3+j1. 6

-3, 300000000099+j1, 600000000273

Could Not Improve The Location

-3. 300000000116+j1. 600000000113

15

-3, 7+i3.8

-3.699999999708+j3. 8000000003153

Could Not Improve The Location

-3.699999999898+j3. 7999999999154

16

-4.25+j, 35

~-4,250000000020+j3, 500000003153

Could Not Improve The Location

-4.250000000060+j3, 500000002568

17

-4, 3+j2. 3

-4,299999999972+j2. 299999999969

Could Not Improve The Location

-4.2999999999802+j2. 300000000021

18

-4, 75+j2, 75

-4.7499999999976+j2. 750000000044

Could Not Improve The Location

-4, 7500000000153+j2. 7500000000385

19

-4, 3+j4.5

-4, 300000006602+j4. 500000009125

-4.300000000760+j4. 500000003920

-4.2999999998067+j4.499999999645

20

. ~4,949999071284+j4. 949999068564

Could Not Find This Zero

-4, 900000227758+j4. 9500000227286

-4,95+j4. 95

>%This zero could not be found because of underflow condition.

Table 5.5. Location of zeros found by SEARCH using 80 points around the contour, using HOMEIN and

those found by SEEK using ratio condition of 10-10

for the case of A = 70.




ot

Exact Location

Location Found by HOMEIN

Location Found by SEEK

No. Location Found by SEARCH

1 -.5+j1.0 ~,4999999999831+j, 9957207925762 -.5000000002284+j1., 00000000191 ~.4999999999779+j. 999760783781

2 -.4+j1.4 ~. 3999999998648+j1.404279208886 -.4000000003662+j1.400000002826 -+ 3999999998428+j1. 4002392176680

3 -, 1+j2. 6 -. 09999999974 775+j2, 600000000096 | Could Not Improve The Location -.1000000001833+j2, 600000000091

4 -, 5+j2,7 -.4999999996735+j2. 699999999703 Could Not Improve The Location -.499999999710+j2. 699999999559

5 -1,3+j1.8 -1. 300000000064+j1., 800000000881 Could Not Improve The Location ~1. 30000000004 64+j1. 800000000853

6 ~-1.1+j3.95 ~1,.099999992661+13, 9500000022 39 -1.1000000006793+j3. 9500000052 38 ~1.1000000002575+j3. 949999999838

7 -2.4+j.1 -2,400000000121+j. 09999999895116 Could Not Improve The Location -2.400000000113+j.09999999946671

8 -2,5+7,2 -2, 50000000075 7+j. 2000000000769 Could Not Improve The Location ~2.500000001099+j. 1999999999152

9 ~2.6+j. 3 -2, 599999999122+j. 3000000008288 Could Not Improve The Location -2, 5999999989483+j. 3000000008994
10 -2.1+j2.1 -2,099984658372+j2. 100009407219 Could Not Improve The Location -2.099984711179+j2. 100007309278
11 -2.1+j2.1 -2.100015341392+j2. 099990592195 Could Not Improve The Location -2.1000152885500+j2. 099992690080
12 ~2,2+j4.2 -2.199999999959+j4. 199999999650 Could Not. Improve The Location -2.199999999982+3j4. 199999999676
13 -2,7+j4.8 -2.699999999925+j4. 799999999665 Could Not ImproVe The Location -2.6999999999453+j4. 7999999996 30
14 -3.3+j1.6 -3.300000000116+j1, 600000000291 Could Not Improve The Location -3. 300000000116+j1. 600000000113
15 -3.7+j3.8 -3, 699999999877+j3. 799999999928 Could Not Improve The Location -3.699999999898+j3, 7999999999154
16 -4, 254j. 35 -4,25000000050+j. 3500000003322 Could Not Improve The Location -4.250000000060+j3. 500000002568
17 -4, 3+j2, 3 ~-4,299999999985+j2. 300000000001 Could Not Improve The Location -4.2999999999802+j2. 300000000021
18 -4,.75+§2.75 | -4,750000000027+j2, 750000000034 Could Not Improve The Location -4.7500000000153+j2. 7500000000385
19 -4, 3+j4.5 -4.299999999833+j4.499999999352 Could Not Improve The Location -4, 29999999980674-‘]'4. 499999999645
20 -4.95+4,95 | -4,949999999952+j4. 950000000213 Could Not Find The Zero* -4.9500000227758+j4. 9500000227286

>P‘This zero could not be found because of underflow condition,

Table 5.6, Locations of zeros found by SEARCH usin
those found by SEEK using ratio condition o

g 180 points around the contour, using HOMEIN and
=10 for the case of A =170,

O




and

v = s/c = complex propagation constant

s = complex frequency = Sn + isi

c = speed of light in free space (5.5)
R = [(z - 2% + 4a% sin®(¢1/2) /2

Figure 5.2 shows the geometry of the problem as well as the zoning of the

wire structure, which is useful in matricizing (5. 3) to get
z - [¢ (z)] 5.6
,[ Psq][p] [P ; ( !

Z |z I]l=1|f (z) (5.7)
o, ][]

In above equation, Zo is the characteristic impedance of free space and

or

[ZNp ]is the normalized Hallen-system matrix whose elements are given
’

by

z +(A/2) 27 -yR

= 1 q 1 e p 1 8

ZN = '2"7?5 dz -m— ad¢ (5. )
P.q z ~(A/2) 0 p

where Rp is given by (5.5) with z replaced by z_p, [I_p] is the unknown
column matrix made up of currents at the centers of each of the (n+1) zones

in the thin wire and fp

fp(z) = ZOA sinh ('yzp) + ZoB cosh ('yzp) (56.9)

Imposing the end conditions I(z=0) = I. = 0, I(z=L) = I = 0 and

1 (n+1)

rearranging (5. 7) we have,

A e
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Last cell of
width=A/2 "

qth source cell of
width=4A

pth observation
cell of width=A

First cell of
width=A/2

rl

zn+1=m=L

(zn+1-A/2)

(z +A/2)
q

=(q-1
zq (g-1)A

(z -A/2)
q

z +A[2

p

z =(p-1)A
P p

(z -A/2)
P

Figure 5.2. Geometry of the problem showing the zoriing
of the thin wire
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where [Zi\l ]is a (n+1) x (n+1) matrix given by replacing the first and

last columns of [ZN ]via
pPsq

Z! = - ginh (yz )
Np.1 P
(5.11)

VA = - cosh(yz )
Np, (n+1) p

The natural frequencies [saL/ (me)] are given by the zeros of the determin-
ant of the Zi\l matrix, i.e.,

det Z! (s ) =0 | (5.12)
[ N ](n+1), (n+1)

We choose a sufficient number of cells so that the cell width A
satisfies the conditions I’yAl << 1 and (A/a) > 10. For the singular diagonal
element, however, the exponential in (5. 8) may be approximated by the first
two terms of its series expansion. Under such an approximation, the matrix

elements are given by

2
-vYA _ 2 4a .29
4 or © \ﬁlp ql x) +—Az sin” 5
1
P-4 -1 0 16#2‘/(|p-q| -x)2+449-'2—sin2%-
A
(5.13)
with p=1,2,...,n,(n+1) '
q:2’3,.a.,n v
and the diagonal element
27 2
_ (@), 1 AT 5_) .2£) _yA
Zi\l (8) = 27 T / 1n(4a+\/(4a * sin 2 deé* 4
pPsP . 4w 0

b3




The matrix Zi\l is now completely specified by (5.11), (5.13) and (5. 14).

The double integral of (5.13) and the integral in (5.14) are all performed
using a 12-point Gaussian Quadrature routine for complex (or real) inte-
grands. For a prescribed frequency, the matrix elements are found and
then the determinant, which serves as the complex function CFCTS(CS) used
in conjunction with the subroutines CONTOUR and SEEK in the determination
of the natural frequencies ]L— E?;]. The natural frequencies are known to
occur in layers and as conjugate pairs in the left half plane. The rectangu-
lar (or square) contours used in determining the natural frequencies are

described in table 5.7 where

g L
[ f;r: ] = nth natural frequency on the £th layer in the normalized
complex frequency plane

CSF = coordinates of the lower right corner of the rectangular/
square contour

CSL = coordinates of the upper left corner of the rectangular/
square contour

NR, NI

number of major divisions along the real and imaginary
axes, respectively

The contours are uniquely specified by indicating CSF, CSL, NR and NI.
S¢,n

The results ] of the computations done on the CDC-7600 system,

are found in table 5.8 and plotted in figure 5.3. In table 5.8, we also list

for purposes of comparison, the natural frequencies on the layers 1 and 2

computed and tabulated by Tesche. 15 A good agreement is seen between

the two and the minor discrepancies may be attributed to the ways of com-

puting the system matrix and also the accuracies of the numerical zero-

searching procedures. In this context, we point out that a 12-point sampling

of the function on each side of the rectangular/square contour was employed.
Furthermore, as we move away from the origin into the left half plane,

the elements of Z a defined by (5. 6) grow without limit and consequently

L4
the average value of the magnitude of the function (i.e., the determinant)

4y




The two Computer
indices of : times in
natural Contour Parameters octal
frequency CSF CSL NR | NI seconds
n=1, 2 .5 +3.5 .5+ §2.5 1|1 173"

“ln-3 4 .5+j2.5 | -.5+3j4.5 1 |1 420"

[

:? n=5...,8 |.5+3j4.5 -.5 + j8.5 1 2 350
n=9, 10 .5+ j8.5 -.5+3j10.5 1 1 513
n=1 -1 -j.5 -3+3j.5 1 1 80

~|n=2,3 -2 +j1 -4+ 33 1 1 120

~ : .

(]

§> n=4 -2 + 33 -4 + j4 1 1 150
n=>5...,10|-2+ij4 -4 + j10 1 3 890

e e e ma- m

N ERS! -3 -3j.5 -5+ 3.5 1 1 130

&~ . .

«

Hln=5,...,0 |-4+j4 -6 + §10 1 | 3 1049

Note: Computer times are total job times on the CDC-7600 system
except for the starred (*) numbers which are on the CDC-6600
system., ' '

Table 5.7. The contour descriptions and the computing times incurred in
evaluating the natural frequencies of the thin wire (d/L = 0.01).
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(-. 260+j9. 752)

n Layer 1 Layer 2 ‘Layer 3

1 | --0828+j.9251 -=2,1687+j. 340x107 11 | -4, 0993+j. 394x10"
(-. 082+j. 926) (2. 174+j0. 0) R

o | --1212+j1.9117 -2.500+j1. 3329 -4.5142+j1.4979
(-.120+j1.897) (-2.506+j1.347)

g | -+1491+j2.8835 -2, 7342+j2.4680 -4.8285+j2. 7472
(-.147+j2.874) (-2.725+j2.477)

4 | --1713+j3.8741 -2.9146+j3.5334 -5.0693+j3. 8894
(-.169+j3, 854) (-2.890+j3.544)

5 | - 1909+j4. 8536 -3.0454+j4, 5757 ~ -5.2851+j5. 0070
(-.188+j4,835) (-3.025+j4. 581)

6 | --2080+j5.8453 -3.1640+j5.6097 -5.4647+j6. 0811
(-.205+j5.817) (-.3139+j5.603)

7 | --2240+j6.8286 -3.2659+j6. 6221 -5.6277+j7. 1478
(-.220+j6.800)

g | --2383+j7.8212 -3. 3562+j7. 6405 -5.772+j8. 1901
(-.234+j7.783)

o | --2522+j8.8068 -3.4376+j8. 6466 -5,9045+j9. 2351
(-.247+j8.767)

10 | --2648+j9.8001 -3.5108+j9. 6555

Table 5.8. Pole locations [ :c

s L

] in the complex frequency plane for the

thin wire of d/L = .01, determined by the contour integration
method. The numbers in parenthesis in this table are repro-

duced for comparison from Tesche. 15

L6

O




O

10

10

J SiL
mC

29
”/

x even (antisymmetric)

I que—
oy

* odd (symmetrid)

o (0,0)

=]

sqoLL
Figure 5.3. Plot of pole locations [ pvs

] in the normalized complex

frequency plane for the thin wire of d/L = .01, found by
contour integration method
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also grows. However by virtue of normalizing every element of Z with O
L 4

the characteristic impedance of free space Zo’ we have essentially a factor

+1
of Z(()n ) removed from the matrix according to
det. z_ | = 20" [4et. 2 | (5.15)
Psq o N
Psq

where the symbol det. stands for the determinant. It is once again empha-

sized that in order to meet the following restrictions on the zone width

|ya| << 1

(5.186)
(Ala) > 10

everywhere in the normalized complex s, i.e., (sL/zc) plane, the number
of zones were chosen according to

n = L/A = 10 x integer part of IsL/ﬂcl at the center of the (5.17)

rectangular contour O
Since n depends on the frequency and increases with it, a contour which is
located away from the origin has a larger factor re<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>