Mathem:: . s Notes

Not. 1

12 January 1976

On Delta Functions, PartI:
A Review of Various Representations
and Properties of Dirac Delta Functions

D. V. Giri
Air Force Weapons Laboratory

Abstract

The Dirac delta func:tionl is widely used in pure and applied sci-
ences, often as a mathematical representation for an idealized source
function. A rigorous mathematical framework was provided by the
theory of distributions2, 3 for many operations that have long been per-
formed on delta functions. This note, however, aims to put together the
various representations and the properties of delta functions to serve the
needs of a routine user who is not concerned with the rigor of the theory
of distributions. Although much of the material in this note is drawn
from the cited references, it is considered useful to compile the vast
amount of information on this subject which is scattered in the literature.
The subject of multidimensional delta functions is also briefly considered
and will be dealt with in detail in an accompanying note.
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1. Intrb duction

The Dirac delta function §(x) introduced in Quantum mechanics by
Diracl in 1930 has existed in some form or another since much earlier
times. The early indications of delta or impulse functions may be traced
back to the works of Cauchy4 and Poisson5 in the early part of the last
century (1815-1816). The delta functions arose when Cauchy and Poisspn
derived the Fourier ihtegral theorem independently of not only each other
but also of Fourier himself, Later Hermite6 referred to the works of
Cauchy and ‘Poisson and made use of the impulse function. Kir-choff7 was
also acquainted with the impulse function in his formulation of Huygen's
principle in the wave theory of light. The "heat source' of Lord Kelvin®
is also relatable to the impulse function. It should be pointed out that the
impulse function considered.by all of the above consisted of a limiting
form of certain types of sequence functions. Heavisideg, towards the end
of the last century, introduced an infinite series type of representation
for the impulse function. In this context, the words impulse and delta
will be used interchangeably. The name "delta" is for notational reasons

i

and to justify "impulse, "' one might quote Heaviside:

"The function ....... spots a single value of the arbitrary
function in virtue of its impulsiveness. "

This quotation has reference to an integral or sifting property of the delta

function to be introduced in later sections. For an excellent account of

the history of the delta function, the interested reader is referred to

Vander Pol and Bremmer. 1

Sys-tematically. the delta function 6(x) was introduced by Dirac1 in
1930 as a mathematical convenience. It evolved out of a need to mathe-

matically represent the ''state" of a dynamic variable in Quantum mechan-

ics., When first introduced, it was called an "improper function" because

it did not conform to the usual mathematical definition of a function which

is required to have a definite value for each point in its domain. The




theory of distributions or generalized functions aims to extend the defihi-
tion of a function so that concepts like §(x) can be put on a firm mathe-
-matical footing. So, strictly one should call §(x) a delta distribution but
the name delta function has now become a part of long tradition‘. Further-
more, for practical use of delta functions and their derivatives, what is
important is their properties. Herein lies the justification for practical
applicationv of delta functions, as long as we ensure that no inconsistencies

follow from their use.

The importance of delta functions in physical problems cannot be
overemphasized., Delta functmns often arise as idealized source funec- -
tions, e.g., physics, fhnd -flow, electromagnetm and acoustic problems.
As an intermediate step in determining the system response for a given
input condition, we often desire its response for idealized input sources.
The mathematical representation of such idealized sources are typically
spatial or temporal delta functions. It should be pointed out that such
representations, albeit unphysical, are mathematically convenient. Theq-;
retically, any input condition can be made up of an aggregate of delta func-
tions and hence the importance of knowing the system respbnse for a delta
function input, commonly referred to as the Green's function. A know-
ledge of the Green's function is then used in determining the system
response for an actual input condition. This will be illustrated in the

following example

2
(ii - 72) f(x) = g(x) . ‘ (1.1)
dx ‘

This equation could be a mathematical model for any physical phe-
nomenon; e,g., 1) motion of a damped/an undamped harmonic oscillator,
or ii) f(x) and g(x) could be proportional, respectively, to the magnetic
vector potential and the incident electric field on the surface of a thin
cylindrical conductor with ¥ being the propagation constant. In either

case, the homogeneous solution is readily written down as

-4-
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f(x) = A sinh (vx) + B cosh (vx) ' (1.2)

In determining the parﬁcular integral, we may first find the delta func-

tion response by solving

9 ,
d 2\ . :
—_— - 7 )£ (%) = 5(x) (1,3)
(dx2 ) 5 ' '
to.be‘
f(x) =1[- e'""xl'/(zv)] | | (1.4)

Using fé(x) s the complete solution of equation 1.1 can now be written

down as
| 1 % -'YIx-x'l
f(x) = A sinh (vx) + B cosh (vx) - 3 f gxh e 7 bodx! (1.5)
0

Thus, the delta function response or the Green's function for the differ-
ential operator in equation 1.1 is seen useful in constructing the total

solution.

We shall conclude this section by noting the importance of the
valuable impulse function, and in section II consider several represen-

tations and properties of the 1-dimensional delta function.




II. Definition and Examples of §(x)

It is nearly impossible to give a precise definition of the delta func-

tion that will satisfy both pure and applied mathematicians alike, For the
- purposes of this note outlined in the abstract, we will be content with the

traditional definition available in applied mathematics and/or electromag-
netic theory text booksll"15 wherein the delta function is often described
as the limiting form of a sequence of functions which has certain assigned

properties, Typically, the 1-dimensional delta function 6(x) is defined by

-l | | |
§(x) = ef‘l) 5 (x) , (2.1)

- and the three basic properties that the delta function is required to pos-

sess are
Property 1 8(x) = 0 at x = 0
Property 2 6(x) = at x =0 ‘ (2.2)
. .
Property 3 f 6(x) dx =1
: -0 .

The difficulties in definition and usage are avoided by postponing the limit
taking process until after whatever mathematical operation(s) is(are) to
be performed on §(x). For example, in checking for property 3, the

limit taking process will be done after the integration is performed.

A, Sequence function representations

We shall consider fouyr illustrative examples of sequence functions

which in the limit tend to a i-dimensional delta function, as given by

v) = lim .= 2.3
6(x) e_.oée,i(X)’l 1,2,3,4 (2.3)

where



@

[1/(2¢) ; |x| <] [, .
5, 1(x) = , 5 2(x) e
’ 0; |x|>c¢ ’ Te +x
- : > _ ' (2.4)
 _ |1 sin(x/e) ’ Lol w(x2/e2
66, S(X) = -7?6— —T}‘.27-€_)——_ | and 66, 4(X) = \/—:?—; e

These éequence functions are plotted in figure 2, 1 as a function of x with
€ as the parameter. It is seen that in all four cases the functions become
increasingly peaked in the immediate vicinity of the origin and tend to
vanish everywhere else. In table 2.1 we also ensure that the sequence
functions in the limit (or the delta functions) enclose a unit area. The
sequence functions considered here are by no means exhaustive, since
one can easily make up a large number of examples ensuring that the
three basic properties are satisfied. Several shapes of sequence func-
tions suggest themselves like triangles, inverted parabolas which become
increasingly peaked and are suitably normalized to enclose uhit areas.

In fact Lebesgue16 recognized that there exist numerous sequence func-

tions 6e(X) .  For instance,

K(x/€)
2¢€ {«3 K(s) ds

6€(x) = for x>0 (2.5)

K(x/€)
2¢ fo K(s) ds
-00

ae(x) for x <0 (2.86)

Equation 2.6 is implied in equation 2.5 if K(x) is an even function of x.
The conditions that are required to be satisfied by K(x) are that the
integrals in the denominators of equations 2.5 and 2. 6 be absolutely con-
vergent and that K(0) # 0. For every choice of K(x) that meets these
requirements, one can get a sequence function or limiting form represevn-

tation for a 1-dimensional delta function, like




- .

(&)
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Table 2.1

Illustration of the Basic Properties of Four Possible Sequence Functions
Which Tend in the Limit to a 1-Dimensional Delta Function

The Three Basic Properties

. .2 3
Example of the No. 1 No No
Sequence Function : 0
a _ 6(x = 0) =0 8(x = 0) = o f 8(x) dx =1
-00
€, 1<X) l | .
1/(2¢) , |x|<e lim _ lim | 1 lim 1
- IE-*O[O] =0 6—*0['2‘?] = w g_.of—z?dx =1
0 » lxl > € =€
66. 2(X) ! 1 e : ) ; . -
im |- | = im - im - Xy
1 € €—>0 [w xz] 0 E_,O,[;-g] = 00 €0 [; tan _]()f = 1
T D)
" 62 + X
be. 5(x) | in /) 1 1
1i — .Sﬁ__}{_.f_ = llm — = 1 -
. 1 sin(x/e) €=~0 [7r X ] 0 €—~0 [1(6] e% [','r' ”] 1
3 (x/€) |
< ' 00
2,2 €0 2 lim 1 - €~ €
o1 exTle” Jre+ XL, ) €—>0[\/_‘ ] VTE .
JT € =0 4 ~lim | 2 T(1/2)e )
T . €~ \/?G 5 =




Ki(xl€)

6(x) = Hm 5 () = lim

. (2.7)
€~0 €1 €0 Zejo'wKi(s)ds

The four examples of 6€(x) that we considered earlier are all special
cases of Lebesgue's definition. . However, by no means are the Sequence
functions limited to those given by Lebesgue's definition. The last two
examples (i = 5, 6) in table 2, 2 illustrate this statementlo. Several

possible generating [Ki(x)] and sequence [‘Se i(X)J functions that may be

»

used in equation 2, 7 to represent a 1-dimensional delta function are listed

'in table 2. 2. From table 2,2 it is also seen that the two cases i = 3,4

can each lead to an inﬁnite number of representations for §(x).

B. Summation representations

As was pointed out in section I, Heaviside9 in 1893 was probably
the first one to provide an infinite series representation for the delta

function of the type

n=1

0
s(u - v) =% > sin (nzu) sin (nz") (2.8)

for real u and v such that lul, lvl <L but =0,

-

It is, of course, no surprise that this series is divergent, otherwise §(x)
would be a bona fide function which it is not. We shall now outline a
general scheme to generate numerous series or summation representa-

tions for &(x).

It is seen that the sequence function representation of the earlier
section may be usefully extended to yield summation representations,
The procedure will consist of finding the Fourier series for the sequence

functions §¢ i(x) and then considering the limit of this series as € -~ 0,

-10-




Table 2. 2

Examples of Generatiny and Sequence Functions

Generating Function

K.(x)
1

Sequence Function

6 i(x)

u(x+1) - u(x-1)

1/(x2 + 1)

1 .
KBLX) =_{ cos (xs)(1 - s)™ ds

For example:
n=0- (sinx)/x

n=1- (1--cosx)/:«:2

- sin(x/€)/(mx)

- 2 s‘mz(x/2e) /(wxz)

- 2[(x/€) - sin(x/e€)] /[7T€(X/€?3].

n=2—--2(1+smx>/x2
x
K4(x)~ = exp(-lx my

m m>0

For example:

1 - exp(-lxl)

m =

2
m =2 - exp(-x")
ete.

6, 4(x) = exp('-lx/elm) [[2eT(1/m)]
» m ]

~ exp(-] x/e]) / (2¢)
- exp(-leéz)/(\/?‘E),

Not Applicable

sinhe
27(coshe€ - cosx)

fulx+7) - u(x- )}

Not Applicable

2
_1__[ 1-(1-¢) ]
2 p
ULl - 2(1-€) cosx+(1—€)2

fu(x+m) - u(x-m)}

-11-




To illustrate the procedure, let us define the Fourier series of f(x),

valid for -7 < x < 7 as

a 0
f(x) = -2—0 nz; a cos (nx) + b sin (nx)] (2.9)

where the Fourier coefficients are given by

T

a = ;lr- f f(x) cos (nx) dx
. _‘n’ .
(2.10)
1 |
b =~ f f(x) sin (nx) dx
noorJ

and consider an example f(x) = 8 1(x) given by equation 2.4. Since

& 1(x) is an even function of x, all b 's are zero and
1 [ | ‘
a == f 6€’ 1(x) cos (nx) dx
L
15
=—f =—cos(nx)dx ; if € < 7
T 2¢€
e
= —l—sm (ne) ; with a = 1 ) (2,11)
nwe ' o) T T
Therefore,

o0
1 1
1(x) =37 + nE=1 ¢ sin (ne) cos (nx)

»

and using equation 2.1, we get




© .
6(x) = zi + -} Z cos (nx) for lx, ST (2.12a)

4 n=1
o0 l 1 o0
Z:Oo 6(x - 2n7) = o7 + p nzl cos (nx) for all x (2.12b)

By a suitable change 61‘ the variable x, itis poésible' to obtain Heéviside's
formula of equation 2, 8, Although the series representing 6(x) is neces-
sarily divergent, it should not be concluded that the series is useless.
Quite often the series representation of the types given by equations 2. 8
‘and 2.12 are useful when delta functions appear under the integral sign.

We shall formally write down the general series representations for §(x)

using the results of table 2.2 and the fact §(x) = 6( - x) as,

6(x) = Fourier Series(F.S.) of [lim 6 .(x)]
€0 €,1
= Um (g5 6 5 (%]
€—+0 €,1
or |
a ; 0
= lim |[_©O»1
5(x) €0 [ 5 + Z an, i(6) cos (nx)] for lxl s (2.132)
n=1
or
& ' o, i
Z §(x - 2mm) = €h_fn [—— + Z (e) cos (nx)J for all x
m=-% (2. 13b)
In equation 2,13, the Fourier coefficients a i(E) are given by
1 7 |
a .(e) == fé .(X) cos (nx) dx (2.14)
n, i L €,1

Since a large number of 8, i(x)‘s are possible from table 2.2, equations

2.13 and 2. 14 can theoretically lead to numerous series representations

-13-




for §(x). We conclude this section by giving another example of series

représenta’tion
1 ~~  im(¢-4" '
86 -90 =52 D, e G ofor [-ms(-¢) sl (3150
m =-c
or
© ' & (e .
D s6-d-zmm = 33 QMO gy s
m ==-c0 : m=-0

which usually appears in problems withvcylindrical geometries.

C. Differential and integral representations

It is observed that if we integrate &(x) between the limits -« and

X, we get a unit step function

- X 0 if x<0
u(x) =/6(§)d§ = { .5 if x=0
-0 1 if x>0

Consequently, we have a differential representation,

6(x) = ad§ u(x) | | - (2.16)
We shall now proceed to express 6§(x) as an integral. One way17 of

solving certain types of integral equations arising in physical problems

involving finite regions is by the Eigenmode Expansion Method (EEM).

For instance, if the integral equation is in scalar quantities and over a

finite one-dimensional region, the resulting set of orthogonal functions

is discreet. Their orthonormal (orthogonalﬂand normalized) property can

be expressed by

-14-




b o ' gl if m=n
/fm(x) gn(x) dx = 6m‘n = | - (2.47)

‘ _ lO if ma=n
a s
where

6 - is the Kroneker delta
m,n -

m and n assume integer values, and

a and b are such that the integration is over a finite range,

Depending on problem symmetries and the nature of the operators from

“which they are derived, the orthonormal fﬁnctions f(x) and g(x) may

have a special relationship. But continuous systems of orthonormal func-

-tions do exist in problems involving infinite or semi-infinite regions

(for example, either a or b =:w), in which case the analog of equation

2,17 will consist of the Dirac delta in place of the Kroneker delta,

b .
}[ f£,(x) g, (x) dx = &(v - v | m (2.18)

If both sides of equation 2,18 are integrated w.r.t. v'

Equation 2,19 resembles equation 2,17 more closely than equation 2,18
and expresses the orthonormal condition for the case of continuous sys-
tem of orthogonal functions. The delta in equation 2,19 is a logical ex-
tension of the Kroneker delta from integers to real number domain,

Examples of the delta function expressed in terms of orthonormal func-

. 15
tions are

-15-




Example i:

: | 21 © ik(z-z")
6(z - z") = 5 f e d

(2. 20a)
0

In Laplace form

4 O+ico .
6(z - z') = ~1—— f e¥(z-2" d

2ri .
0-i0

Since the integrand in above has no poles 0 can be chosen to be =,

and
hence
8(z - z") = ZL f REEIN (2. 20b)
Tjco
Example ij:
. o | . |
é(p-p") =_0/‘ (ko) Jm(kp) Jm(kp') dk (2,21)

where Jm is the Besse] function of first kind and order m .

Equations 2, 204 and 2. 21, which provxde integral representations
for the delta function, usually arise along with 5(¢-¢') of equation 2,15

in physical problems with cylindrical geometries. Equation 2.20a, some-

tives. This procedure consists of finding the Foumer Transform (F, T,)
of the sequence functions 6 (x) and then taking the limit ag €~0, Let

us define an F, T, pair as

F(w) = f e "% £1x) dx
oo
| (2. 22)
(>.0] .
1
f(X) = -2? :{; e F(w) dw

-16- - B




and consider an example in f(x) = 6. ,(x) of equation 2.4, therefore

»

, . ; . |
‘ - € -iwx-,
F.T. of 66, 2(X) = / —5 5 (® dx

lw(€ +x)

exp (- |wle)

This integral has been performed using equation 3. 723. 2. 18 So &(x) can
now be expressed as
= lim = lim €
50 = 10 8¢, 2@ = G [ 2 2]
| ~ r(e” + x7)
= lim : "1 ’lwlel
e F.T. " e
- lim | L f”eiux lule g
€~0 |27 © v
L =00
or
o o0
- 3 1 1w .
5(x) = [%f e du ]; [2—f ™ ] -[f elWeTX dw] (2. 23)
-0 100 =00

Formally differentiating equation 2.23 n times w.r.t. x, _

% iwx \
276 (x) =f we'™® du

00
o0 B 2 .(.d ..
276'1(x) = f (iw)? ™ du
=0
. . > v (2.24)
27"6(n)(x) = (iw)n eiwx dw
-0

i
|—
,..'.
8
2
o
(1)
-2
v
=}
N




where once again the derivatives of §(x) can be represented by using

sequence functions as

: n - n
8 = L g = [ im 5 (x)
n n
dx

dx €—-0 "¢,i

.1. [dn n=0'1’2 ® e o 000

= M- 5 .(x)} ; : . (2. 25)
€ den €1 i =1,2,3 coees

For example, using 66 4(x) of equation 2.4, a doublet is represented by

[ 22 | <
6l(x) =. EILHB [_ —_‘?:gi{__ e X /77 } . (2. 26)
, e V' '

Returning to the integral representation of &(x) itself, if we find

the F. T. of the sequence functions of table 2. 2 to be 66 i(w), then

’

. £0 L
. 1 3¢ .
sx) = lim [2_7; f s () duJ » (2.27)
: %0 ’

Equation 2, 27 provides a formula to derive integral representations for
6(x). In conclusion, it is observed that because of the evenness of 6(x),
the F. T, in this section can be replaced by Fourier cosine transform,

e.g.,

s = | L [ ewx g ] o[ " cos (ux) d (2. 28)
6(x) = o e w| = 3= [ cos (wx) du .
. 200 20 .

D. Properties of delta functions

The practical usefulness of delta functions lies in their properties,

some of which we will list below without giving proofs:

-18-




'6(a:£) = §(-ax) = —-l-—é(x)

-19-

, a
a ‘
‘6(ax-b)=6(b-a.x)=_—-l—6(x-9) . a=0
| la| a
If (ad - be) = 0, 12
A _ 1
<‘3(:au)c1 + bxz) <S(cx1 + dxz) = | : é(xl) 6(x2)
ad - be
f(x) 6(x) = £(0) 6(x)
Example i: . x6(x) = 0
Or, in gener-al20
160 5™ = < k n! (k), .\ (n-k)
x) & (x) = Z(-l) m—)—'f (0) ¢ (x)
=) ! !
forn=1,
f(x) 6'(x) = £(0) 6'(x) - £1(0) &(x)
Example i: x6'(x) =- 6(x)
Example ii: xzé'(x) = 0
xé(m)(x) =-m6(m-1)(x) s ‘m =20
Fr'om21 -
(- Dn’(-nTI}'-in_)—‘ 6(.m-n)(x) ;. m = n
xna(m)(x)‘
0 ; m<n




10,

11,

12,

13.

14,

15,

5(X2 - az) = 6(x - a) + §(x + a)

o ;,.a>0

0 . '
89 - 00 =52 S O gy <.

n=-w

Calling (¢ - ¢") = x

0 o0

Z 6(x - 2mm) = 2—175 Z einx

m ==00 n=-00

which can be simplified to yield,

o0

Z é(x - 2mm) = —21- f: cos (nx)

IN =~00 n=1

ﬁlH

Differentiating once w.r.t. x

m=-o

o0 : 0
E 6" (x - 2m -71; nz; sin (nx)

or, in general for k =0,1,2,3 ++«-- in (13) and (14),

o0 . k+1
Z 6(2k+1) - 2mr) = (-1)

2k+1 .
- Z n sin (nx)

m =-c0 n=1

0 5 k

2m
mz-cw

2 2

velx] 1 @

§(x) = = = :
2 2 .2

x| = %_a_a; sgn(x)

In 3-dimensional space, 21

-20-
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Z (Zk)(x - 2m7w) = ko, (1) Z 0%k cos (nx)
4 n=1




16.

17,

18,

19.

-1 2(1)_ 1_2 1
é(r) --Z;v T —-Z—W-V

\ 2 1
x“+y2+zz

In n-dimensional space, 21

' | -1 2 1
Srp) = S m-2) VH(l )

e
-1 2 1
=55V
Q (n-2) /& _2\1/2
R
i=1 !
“where
Q=
n
Ty < Position vector in n-D space
X o
[6(5'- a)d€ = ulx-a) =<¢.5
-Q0 Lo 1 ;
or,

6(x - a) =-§§u(x-a)

y'(x) ax

K |
{5[y(x)]}(k) = > L ( . a) 5(x - x.)

i !
i !y (Xi)l
with y(x.l) =0 and‘y'(x.l) #0, and k =

For example, k =0

6({x - x.)
i

6[y(x)] = Z

T [y
i
(Also see the following section.)

-21-

i
W

» 1,2

Hyper sufface area of a sphere of unit radius in n-D space




20, B(r-T) =14(F -7

where the 1.h.s. is the dyadic delta function and ? is an identity | O
(or unit) dyad. :6: appears, e.g., in the characteristic e'quation |
L {equation 3.5 of reference 17} for the eigenvalues, when one uses
‘ é. dyadic Eigenmode EXpansion Method (EEM) for solving certain

types of integral eqdations.

We shall now define and use a functional notation,
Q0
<), ge> = [ 100 g ax (2. 29)
=00

21, 6x), d(x)> = <px), 5(x)>= 6(0)
22. <olx-x), 66> <o), dx+x P> = dx )
23, <o'x-x), $x> =-.¢'(x0)' | | ’ O

20, <M ), 96> = (-1* oWk )

25, oly(l, (> = 3 —

i |y'(xi) | i

where

y(xi) =0 and x’i's are in the range of integration,

26. <s(x - a), (x=-b>>= s(a-b) =6b - a)

217. <xn, 5(x - a)> = gh

: 2 . .
We conclude this list by stating that although §7(x) is undefined, the con-

.20
volution of two delta functions™ " is given by, _ O




0
f 6( N - xl) §(x - X - xz) dx

-0

28. 6(}; - 31) ® §(x - xz)

8[x - (x1 + xz)]

In the above partial list of the properties of delta functions and
their derivatives, we have included the delta function of a function of x.

This forms the subject for the following section.
E. Delta function of a function of x
Using property 21 of the pfevious section,

00

[ s s at = 600 | - (2. 30)

=0

Treating the variable t as a function, t = f(x) and hence dt = f'(x) dx,

which gives

0

_[ 6[£(x)] o[f(x)] £'(x) dx = ¢(0)
-c0 ' :
Calling o[E(x)] £'(x) = Y(x)
) ‘ZI(XO)
f s[f(x)] w(x) dx = (2.31)
% ' (x )'
o)
with f(x ) =0
_ | o
If xi"s are simple foOts of f(x) and, further, if f'(xi) =0,
0 (x,)
f 8[f(x)] ¥(x) dx = Z - (2, 32)
2o i |f'(xi)|




or,

bl

: 6(x - Xi) . . |
- 6[f(x)] = —_— (2.33)
‘ i If'(x.)l
i
The restrictions are f(‘{ ) =0 and f'(x, ) #0. Asan €Xample, let yg
consider f(x) = gip x for which X, =i ,f‘(\: )I | cos xif = Icos(iﬂ)f =
yielding
flsinx] = 37 i (2.34)
i=0, 1' 2 DU
Just like 6'(x), we can consider the derivative(s) of equation 2.33
!
tll} = sgx)) f'(x) (2, 35)

or, in genera]

L X-x (2. 36)
i [f'(xi)[' fi(x) ax’ i

folecon® . Z—i~.( L -3-) 5(x - x)

with - f(xi) =0 and f’(xi) =0,




O

A,

The surface delta functlon 6 (rs

sion of the earlier descmptwn of &(x - X ).

The Subscript s indicates the surfa
Y have dimensions of length, then 6

This may be Seen in the following mte

2-di

ﬁs(; -rs ) dS =¢_,

S

where 6...

.S is a type of a Kroneker delta,

more recogmz able form

X9
f dx

*

/

I

J2

dy 6S(x -x

]
So

dxmensional or the surface delta function -

o ¥ - y)=6(x-x)6(y y)

S

Cé nature of the functlon and,

1

o

O,Y‘yo)=6

where the Kroneker delta on the r.h.s

a, b, c

[ R Y

14

»

b < g

b > ¢

a<bc<e

Ts, ) will be defined as an exten-

(3.1)

1fxand

has the dunensxon of inverse area,

gral property

' rsoes

. rSO¢S

5
1 ¥ Xy Yy, ' Yy

is given by

(3.2)

Writing out equation 3, 2 ip

(3. 3)

(3.4)




(0} co‘ur‘se, in addition to the integral properfy of equation 3, 3, the sur-
face delta function vanishes everywtlicre except at one point in the 2-
dimensional x,y space as given by |
o [evérywher‘e except at

" lx=x_and y=y
$rg - rg | 6s(x-xo,y-yo) = © ° (3.5a)

w0 , atx=xo'andy=yo

O
Y}
.
"
"

The surface delta function is related to the linear or 1-dimensional delta

functions according as,

és(x - X . Y- yo) = §(x - xo) sy - yo) - (3. 5b)

B. 3-dimensional or the volume delta function

In order to describe the 3-dimensional or the volume delta function,
let us define a general curvilinear coordinate system (u, v, w) in which an

elemental volume is given by22
dVv = J(x, y,z;u, v, w) du dv dw (3.6)

where the Jacobian J of the coordinate transformation from a Cartesian

frame (x, y, z) to (u, v, w) is evaluated using

0% 2% ox
EX av ow
. - |9y 9y 9y
J(X, YD z;4, v, W) = -5'&' -8-\7 W (3. 7)
oz i 9z
du ov aw

The singular points of the coordinate system are given by the zeros of the

Jacobian determinant. The Jacobian will be used in relating a 3-

dimensional delta function to its 1-dimensional counterparts. For instance,
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6V(r' - ro)

s(u-u ,ve-v ,w-w)
v o o o

. 6v(r - ro) dx dy dz = s(u - uo) 6(v = vo)-é(w - wo) du dv dw

Using equation 3.6

' GV(; - ?0) = T& T, zl;u, ) §(u - uo) §(v - vo)aa(w - wo) (3.8)
For example,
i) Cartvesi'an coordinates:
elemental volume = dx dy dz

1

n

J(X, ¥, 2;X, ¥, 2)

J,ha's no zeros and therefore

6v(x-xo, Y=Y, z-zo)‘ = 6(X-XO) é(y-yo) 6(2-20) ‘ (3.9)
ii) Cylindrical coordinates:
elemental volume = p 8p 3¢ dz

J(x,y, 20, 9, z) = p
Points on the z axis for which p =0, and ¢ is ignorable are

singular for this coordinate system. Therefore, using,

-

s r-r) = (1/p)elp-p)s(6-0) 5(z-2z )

6(p) 6(z - zo) ) ,
= ® 5 6(p) 6(z-z0) (3.10)

27 2
[

iii) - Spherical coordinates:

2
elemental volumme = r~ sing 9r 5¢ 89

J(x,y,z;r, 9,0) r‘2 sin 6




Points on the axes for which 6 =0 or «,

and ¢ ig ignorable
are singular angd therefore

6§ (r-F) T S 5(r-p o) 8(6-6) 5(0-6 )
v ° r sing ° °
. . 27
‘= é(r-ro) 5(9-90)/[0[ 2 sing qu
—ﬁ-\a(r-r)a(e-e) (3.11)
27r” sing

O-1x0

, (3.12)

0"1‘100»
=[ 13/ (_.-r‘o) ] ; iI{.—:}T
(27i) i

For example, in Cartesian coordinates,

avdf-?o) = a(x-xo> 6(y-yo) 5(z

- zo)

1 0 0 0

’=_._§f ff e!®* (r-To) dkc, dk_ dic
(27) x vy
(>0} ‘0 o0 |
ik, (x-x.) 1 iky(y-y,) 1 iky(z-z,)
— X o} _ _ y o7 a1 il z o
=/ ol a1 o

(3.13a)

<
]



O

Since the integrands in equation 3. 13b have no poles, the o in the limits

of integration can be set = 0 without any loss of generality, also

k=k1 +k71 +k7T | © (3.14a)
X x Yy zZ 2z ,
—>= — + — + —_
r xlx yly z 1z (3.14b)
— = — + — —
r xolx y01y+ Zolz - (3.14¢)
Y= ik =71 +971 ++47 (3. 14d)
X'x vy z 2

We conclude this sectlon by statmg that in an n-dimensional space,
6(r ) may be represented using the V2 Operator acting on (1/e™" 2 .
The general relation and an example for 3- dlmensmnal space are found in

properties 17 and 16 listed in section II, D.
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IV. Integral Transforms of Delta Functions

We define an integral transform pair as, 23

b |
F(p) = af £0x) K, (x, p) | (4. 1a)
. d ‘ ' '
f(x) = cf Fe) Ky(xpldp (4. 1b)

where F(p) is said to be the integral transform of f(x), and f(x) the
iny'ei'se integral transform of vF(p). Kl(x,‘p) is the kernel of the trans-
form and Kz(x, p) of the inverse transform. Examples of integral
transforms are Laplace, Fourier, Hankel and Mellin transforms which

we shall consider individually,

~A. Laplace transform

i) One sided Laplace transform:

a =0 b = o Kl(x, p) “px

e

Cc = g-iw d

1}

o +ico Kz(x, p) eP* /(2mi)

o is so chosen that all the singularities of F(p) lie to the

left of the integration path in complex p plane.

ii) Two sided Laplace transform:

e-px

a = -w b = - Kl(x. p)

..

¢ = o-iw d = o+iw ) Kz(x, p)

i

eP* /(271

The choice of o is like in the one sided L'aplace.




Fourier Sine and Cosine transform -

sin

a=0  b=ow Kl(‘x, p) = cos fpx)
. , sin )

c =0 d = w. 'Kz(x, p) = (2/m) cos (PX)"
Fourier (exponential) transform

a=-0 b=w Kl(x. p) = exp(sipx)

c = - d = o K,(x, p) = exp(=ipx)/(2m)
Hankel transform

a=0 b = w Kl(x, p) = .xJn(px)

c =0 d = © Kz(x, p) = pJn(px)

where Jn(px) is the Bessel function of first kind and order n.’

Mellin transform

x(p-l)

1}

a =0 b = o Kl(x,p)

[¢]
"

o-i0 d = o-ie  Ky(x,p) = x P/(2m)

It is, of course, noted that the integral transform F(p) of a function f(x)

does not always exist since appropriate restrictions on f(x) have to be

satisfied. We shall now set f(x) = §(x - xo) and obtain its.integral trans-

forms

D

D

. For ease of notation, let us call

OSLT(p) = One Sided Laplace Transform of &(x - xo)

TSLT(p) = Two Sided Laplace Transform of §(x - xo)

DFST(p) = Fourier Sine Transform of 6&(x - xo)

D

FCT

(p) = Fourier Cosine Transform of &(x - xo)
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5(x - x )
Drr®) = Meliin 7 -
MrP €lin Transform of §(x xo)
The seven transforms listed above are glven by
0 X <90
® = [ 60 - ) oopx ° (4.2)
OSLT - .
0 e P L 5y
o
o0 . . %
TSLT(p) = f 5(x - xo) e P dx = ¢7P¥o 5 all X (4, 3)
=00
. ) X <90
DFST(p) = '0f 6(x - xo) Sin (px) dx = . | (4, 4)
sin (pxo.) X, >0
0 X <
DFCT(p) =_0/. 6(x - xo) Cos (px) dx = { : ° ' (4.5)
cos (pxo) X, >0
% F Fi
DFT(p) —f 6(x-x)e lpxdx = e 'PXo ; all x (4,86)
~00 0-
0 xo <0
DHTN(p) ~.0/ 6(x - xo) XJ (px) dx = .y (4. 7)
Xo PXq xo >0
0 1 ‘0 X <90
Dpgp(p) =fa<x:- x ) xP gy - pe1 ° (4. 8)
0 ' lx X >0
o o
The two-sided or bilatera] Laplace trang
0 o
as




0

F(p) = pf f(x) e P¥ dx (4.9a)
=00 : i
and
. O+ico. ~ ' '
f(x) = 53- f o) px 4 (4. 9b)
i . p ‘ .
G-iwo . .

If one uses the above definition rather tha.n the more standard form of

IV, A, u) the bilateral transform of 6(x - X ) is given by
D \r mip) = p e P¥o |  (4.10)

In all cases so far, a and b, which are the limits of integration in equa-
tion 4. 1a, cover either an infinite or a semi-infinite range. This is not
always essential. Finite integral transforms can also be definedzs; for
example a =0, b =7 for finite Fourier sine or cosine transform and
a=0, b =1 for finite Hankel transform. In such cases, the inversion
formula given by equation 4. 1b becomes an infinite sum rather than an
mtegral; We shall not however determine the finite integral transforms
of 6(x - xo) since they do not differ significantly from the ones that have

already been calculated,




V. Summary

The motivation for this work lies in the author's belief that a vast
amount of information on this subject appears available but scattered in
~ the literature. The delta function is given either a passing attention in

several text books or a detailed and rigorous attention from a generalized

functions framework in more recent (since say 1950) books. " Both of these

do not fill the needs of an engineer or a routine user of the delta function
who may not be interested in the rigor of the generalized function theory.
Keeping such users, of which the author is one, in mind, this note tries
to put together, in a systematic way, a lot of known information in this
area. After a brief introduction including a historical outline in section I,
section II considers various representations and properties of the
1-dimensional delta function., In section III, larger dimensional spaces
are considered with examples of Cértesian, cylindrical and spherical
coordinate systems. Surface delta functions which could be useful in 2-
dimensional problems, for exampleM, are also described, J".n physical
problems, the equations in which delta functions appear are usually
transformed by using suitable integral transform(s) as necessary. With

this in view, section IV deals with the integral transforms of §(x - xo) .

It is believed that the topic of multidimensional delta functions, in-
cluding that of delta function of a complex variable, deserves a more
detailed study. This will form the subject for Part II of this report to be
published at a later date.
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