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ABSTRACT
A differential equation is derived for the trajectories

in the Laplace domain of the singularities of a linear operator
with respect to a varying parameter.
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In the singularity expansion method recently proposed for

representing solution to electromagnetic scattering problems
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], it is necessary to find the singularities of an operator
s Which is the inverse of an operator}i, with respect to
Laplace transform variable s. The operator Z appears in a

ar equation of the form
Lr=¢g (1)
L (x, x'; a, s) f(x'; a, s) = g(xy a, s), (1b)

e in (1b) the spatial variables, as well as the transform
able and a parameter a, are exhibited explicitly. In the

tromagnetic case, the operator-x/is usually an integro-

differential operator and f is the induced current on the
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terer while g is the incident field. According to the
ularity expansion method, the scatterer is completely
acterized once one knows all the so-called natural reson-
frequencies Sy and corresponding modal currents fn which
sfy the homogeneous equation

Lt =0, (2)

eafrlis the operator«f evaluated at complex frequency

Sy e Also needed are the homogeneous solutions hn of the
int problem, defined below.

In the following, we derive a differential equation for
s-plane trajectory of a singularity having a as its

pendent variable., The equation 1s non-linear and must be

solved numerically. We derive the required differential

equation by first noting that by the alternative theoren,

there must exist a non-trivial solution hn to the homogeneous

adjo

int problem

nn (3)
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where7W is the operator7ﬁ'evaluated at s= Sh and 77 is adjoint

to)f i.e.,
éf> - é;m g> (4)

for a suitable inner product. Because of (2), we must have

</jn fn’ hn> =0 . (5)

Taking the total differential of both sides of (5) with
respect to the variable a yields

0
ds_ . '5'é—<£n Y
- 0
da =X f ,n
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where we have assumed that the singularity in question is a
simple pole of ', Observing that

af 3f
¢ n _(2n \ -
<In 2y (o > P ) = 0
/
and ahn
-fn L 3a / 0 » a=a,s,

where we have used (2) - (4), one finally obtains the desired
differential equation,

af :>
ds, aa fns By

da df

n
asn f.n’ hn :>

(7)



In a numerical procedure, (7) is used in conjunction with (2)

and
vari

(3) so that fn ahd hn are up-dated as the parameter a is
ed. An initial value of 51 for some value of a is also

required.

We apply the method to a simple example of a loop antenna

where the chosen parameter a is the wire radius. Wu [4] has

obtained an approximate solution of an integral equation for the

induced current for complex frequencies s=jkc, where k is the

wave

number. The integral equation for the loop current I(¢)

takes the form [4]

and
and
is t

Zr1eny] = B, (o) (8a)
" m
L _ In
where = : d¢'M(¢-0)
i o jf (8b)
-

n and b are the characteristic impedance of the mediunm
the large radius of the loop, respectively. The angle ¢
he polar angle of points on the loop with the polar axis

located at the loop center. Wu expands the current, the

kern

from

curn

el, and the incident field in Fourier series
I(¢', s) = 3 I (s) e‘jm¢' s (9a)
m.—.._co m
*® -3 _ ! .
Mo=4") = = a_(s)e”Im(em¢') (9b)
m=-w
inc - > -Jjmo
E, (¢, s) m=Em E¢m(S)e s (9¢)

which one readily obtains the Fourier coefficients of the
ent,

CE, _(s)
_ 2b ¢ (10)
Im(S) = -J—; 5;%57—




An approximate analytical expression for am(s) is given by Wu.
Each of the functions am(s) has a distinct set of zeros, i.e.,
at S=8 n»

a(s_)=0, n=1,2, ..., (11)

from which we conclude that the corresponding modal currents

are of the form e~Jmé!, Using the inner product definition [5]
2T
<f, >=/ f(¢)g(9)de , (12)
o)

the operator77 which is adjoint to L is easily found to be

i

™= i / d¢' M (¢'-¢) (13)
=
and, with this operator, at the natural resonances Smn 2 Eq. (3)
has homogeneous solutions of the form etJmé', Hence, at a

resonant frequency s_ ., using (8b) and the homogeneous solutions

m
in (7) yields

sa
dsmn da
= - . (14)
da aam
asmn

In this example, (14) could have been directly obtained by find-
ing the total derivative of (11), but in the more general case
where the modal currents are also functions of the parameter a,
(7) does not reduce to such a simple form and (2) and (3) must
be used in the solution procedure. In the more general case,
the method simultaneously provides the changing solutions of (2)
and (3).




For m=2, the principal conjugate pair of natural frequencies

for modes of the form efj2¢' is sb/c = % j2.0, the approximation

becoming exact for an infinitely thin loop. The table permits a
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arison of singularities obtained from a numerical search for

roots of (11) using Muller's method [6] and the correspond-

values obtained from the Runge-Kutta solution of the differ-

a1l equation (14) using the value obtained from the root-
ing procedure for Q=22n§%9 = 20.0 as the starting value.

e results were obtalined with step sizes of unity in the para-
r Q.

Since all differential equation solving methods are subject
umulative error, it may be necessary in some cases to deter-
more accurate starting values from time to time by the

1 root-finding methods.

We also point out that the technique outlined here is

icable to any linear distributed parameter system where it
esired to study the system poles as a function of some sys-
parameter.




Q = 22n—5~
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method for root-finding and by the Runge-Kutta

Table 1.
Comparison of natural frequencies found by Muller's

numerical solution of the differential equation (14).

2mb

snb

Real

.0688838
.Q743130
.0806636
.0881895
.0972457
.1083436
1222442
.1401245
.1638809
.1966971
.2440118

Imaginary

.037518
.039852
.ob2475
.0l45432
.0L48778
.052563
.056820
.061508
.066364
.070L466
.070842
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= Muller's Method

s b

—%—, Runge-Kutta

Real

.0688838
.0743129
.0806636
.0881895
.0972457
.1083436
.1222443
.1401245
.1638809
.1966971
.2440110

Imaginary
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.037518
.039853
042475
.0l45432
.048778
.052564
.056821
.061508
.066364
.070L466
.070842
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