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Abstract

This note deals with the combined field, current, etc., in the
microscopic and macroscopic formulations. The combined field equa-—
tion, continuity equation, and the Gauss's law for the combined field are
derived in macroscopic and microscopic formulations. Boundary condi-
tions between two different media for the combined field are derived.

- Integral equations in the scalar and dyadic formulations are derived for
- the combined field. Poynting's theorem and the reciprocity theorem for

the combined field are derived along with the matrix representation of
the combined field.




CHAPTER 1

INTRODUCTION

In the ana1y81s of electromagnetic radiation and scattering prob-
lems, in general, electric and magnetic field quantities are calculated in
a dependent manner where either % or ﬁ is first calculated and the re-
maining quantity is obtained by Maxwell's equations. Because of the in-
herent difficulties involved in taking the derivative on a computer, a more
compact formulation is necessary. The present report which is one in a
series of reports to be written will examine the feasibility of the com-

bined field formulation.

The combined field vector in its present formulation was first in-
troduced by Bateman,1 and was effectively used by Itoh.2 Ta13 has de-
rived some useful relationships using the combined field. However, in
recent years there appears to be little if any work done on the theory and
applications of the combined fieid. Baum4 has derived some energy and
reciprocity theorems along with some concepts of SEM5 for the combined
fields. It has been shown6 that the combined fleld forms a useful tool in
obtammg a generallzed Babinet's principle. In this report the combined
field is studied from the applications point of view. Integral formula-
tions, boundary conditions, Poynting's i/ector, and reciprocity principle
are studied for the combined field. In future reports some applications
of the combined field are proposed to be studied With the intention of test-

ing the general utility of the combined field formulation.

In this report, chapter 2 deals with the traditional form of Max-
well's equations, vector and scalar potentials. The combined field, cur-
rent, charge, vector, and scalar potentials are defined. The combined
field equation for the Faraday-Maxwell-Ampere law, combined continuity
equation, and Gauss's law for thé combined field are derived and are ex-

pressed in the microscopic and macroscopic formulations.




In chapter 3, boundary conditions between two different media are
obtained for the normal and tangential components of the cdombined field.
These boundary conditions are shown to be much simpler than the tradi-
tional boundary conditions. An integral equation for the surface current
density is obtained in the combined field formulation. The combined
dyadic Green's function is defined and is shown to satisfy both first orc;?r
and second order differential equations. A combined dyadic operator ﬁci

is defined.

In chapter 4, Poynting's theorem and the reciprocity theorem for
the combined field are derived. The combined field, current, etc., are

also expressed in the matrix notation.




CHAPTER 2
MAXWELL'S EQUATIONS FOR THE COMBINED FIELDS
AND SOME INTEGRAL REPRESENTATIONS
2.1 Maxwell's E;_quations, Vector, Scalar Potentials, and Boundary

Conditions

Maxwell's equations for the case where electric and magnetic cur-

rents, charges are present are given by

~ ~

\% X% ='—su?1 - 'Tm | (2.1)
VX%=3€%+} (2.2)
v.%:v'. (u%[)z'ﬁm (2.3)
v-%;v-(e%)='5 | (2.4)

where tilde ~ denotes Laplace transformed quantities. If € and 4 are
assumed to be the material constants, in terms of the scalar and vector

potentials, we can write

~ ~

E =-Vg-sA -1vxZ& (2.5)
. € m
F-luoxZ-vi -s& (2. 6)
u m m ,

‘with the Lorentz gauge relations

v.KE+=23=0 - (2.17)

(e]

v . A +—%—¢ =0 | | (2.8)

(¢]




The wave equations for the fields are

[V X VX + 72]% = -su} -V X }m R (2.9)

[V X VX + 72]1?% = V X } —‘se}m (2.10)
where

Y = —(S; ~ propagation constant . (2.11)

c = LI wave velocity (2.12)

Vi<

Z = ‘/% ~ wave impedance | (2. 13)
Helmholz equations for the potentials are

Iy | | (2.14)

v? - yzjﬁm - -e}m (2. 15)

v2 - 427 = - —1—3 | (2.186)

v - R s -2 . @

Consider two regions of different constitutiire relationships separated by

a surface SO as shown in fig. 1.




Figure 1. Boundary between two regions

The boundary conditions for the electric and magnetic fields are given by

n X [H:2 - I--Ilj = JS (2.18)
n X [E2 - E1] = -Jm | (2.19)
s . :
—> . — _ - - ~ v v ’ .2
n * (D, Dl) . (2.20)
n - (Bz - Bl) =P (2.21)
S
The radiation condition is given by
| E . E |
lim r|V X (~) + ve X (~) =0 Re(s) >0 (2.22)
= r =
r—w L H H ;
The continuity equations are given by
V.eJ=-sp (2.23)
VeJd =-sp (2.24)
m




2.2 DMaxwell's Equations for the Combined Fields, Combined Vector,
and Scalar Potentials and Polarization
In the 1iterature3 combinéd fields, potentials, etc., have always
been defined with the free space as the reference. We will make no ex-
ception and define them the same way. It is clear that this definition can
very simply be extended to uniform ma‘cérial media. We define the com-

bined field, current, etc., as

— E — + . X — -

Fq E + qiz H (2.25)

> U3 13 | . |

Kq =J +q > Jm (2.26)
(o]

S =3 +q=—7? - (2.27)
(o] : .

Eq - K + qiZ A (2.28)

~ _ ~ i . ~ ‘ .

<i>q ¢ ql»Zorbm (2.29)

where the separation index q = £1. The ambiguity sign + associated
with the separation index is used to construct the fields, currents, etc.,

Y X o~
from the combined field, current, etc. In (2.25)-(2.29) Fq’ Kq,v Qq,

~
e

C, Zq are defined as combined field, combined current de‘ns:i.ty, com -~
bined charge density, combined vector potential, and combined scalar
potential, respectively. ZO is the wave impedance in free space given
by Z_ = \/;707—5; where p_ and €  are the permeability and the permit-
tivity, respectively, of free space. Multiplying (2.2) by inO and adding
to (2.1) we obtain ‘

~

[VX - qiy]‘fq = qizofiq (2. 30)




which is the Maxwell's equation for the combined field. Similarly from
(2.3) and (2.4),
= 1~
Ve«F = Py Q (2. 31)
which is the divergence equation for the combined field and from (2. 23)
and (2. 24)

Q | | (2. 32)

From (2.9), (2.10) the combined field is related to the combined

potentials by

F = -V§ + [-s + gicVX]C (2.33)
q ¢q [ q ] q
and the Lorentz gauge is given by
v.eC_C +2F =0 (2.34)
a2 7q
The combined field wave equation is given by
(2. 35)

-~ o~
V X VX + 7 I - giZ VX]E
[V X VX + v ]Fq sk, - @iz ><]Kq

and the Helmholtz equation for the combined potentials is given by

2 23 > - ’ |
ve - C = -uK . (2. 36)
[ vIc, oq ;
[V2 - 72]'5 = —-—1—5 (2.37)

q € d

The radiation condition for the combined field is given by




lim r[V X F + yé’r XF1=0 (Re(s)> 0) (2. 38)
=00 9 9 : ”

==
T
—

S ~ surface of the
scatterer

»

Figure 2. Coordinate picture for the scatterer

If the region of interest is a simple material medium, we can de-

fine
— - _ — + . - E — + e .
sB = s(u uo)H suoH Jm suoH (2.39)
sf))=s(€-(—t)I:3’+s€]—§Eg—])-ks':’iﬁ> (2.40)
o) o) o

Since the polarization vectors are associated with the properties of the

matter, from (2.1) and (2.40) we obtain

VX§= -suﬁ- (:f ,+3> ) (2.41a)
o) m o m.,
p imp

or alternately




v - - - - - . ’
X E SNOH Jm (2.41b)

where the term associated with the magnetic polarization combined with
; 3 ; .
the magnetic impressed current Jmimp can be considered as the effec-

tive or total magnetic current. Similarly from (2.2) and (2. 39)

VXH-=s€eBE+(J +7 (2.42)
o imp

where (}p + }imp) is taken as the total electri';: current. This gormula—
tion is different from that followed by Stratton and Van Bladel. How-
ever, for our purposes this is more suitable than the conventional formu-
lation. It must be noted that in the present formulation there exists a
possibility for magnetic materials to be associated with magnetic charge
density Fm This, however, should come as no surprise to us because
of our familiarity in handling magnetic currents and charges. The prob-
lem of obtaining the boundary conditions for the combined field will be

delegated to another section.

2.3 Some Integral Representation of Maxwell's Combined Field k
Equation
In the preceding discussions we have been concerned with the mac-
roscopic equation. In terms of the problems associated with obtaining
the boundary conditions, microscopic equations are more convenient.

For convenience we will rewrite (2. 30), (2.31), and (2. 32) here.

[VX - qiy]%"q - qi,zoik’q | (2.43)

This can be called the Faraday-Maxwell-Ampere law for the combined

field. The equation of continuity for the combined current is given by

v K = -sQ | (2.44)

-10-




These two equations constitute the independent equations of the combined

O field. These encompass the traditional four equations generally used as
the independent equations given by (2. 1), (2.2), (2.23), and (2.24). The

Gauss' law for the combined field is given by

1~ ‘ )
v . }{ = €o Qq . (2.45)

This', however, is a dependen’c equation and can easily be derived from

the independent equations (2.43) and (2. 44).

Consider a regular region of volume V bounded by a surface S as
shown in fig. 2. Since the region is assumed to be regular, we can draw
a unit outward pointing normal n to the closed surface S at every point
on S. This restriction is not an essential consideration in our develop-
ment but does make the development simpler. Upon integration of
(2.43), (2.44), and (2.45) throughout the volume V and'expressing as a
O volume integral over V,

S v x Fav - e fff Fav+ oz fff % av 2.48)
e q voooa 9% q

i

./J v %qdv - _/]f 5qu, (2.47)
V .
fv’/’/v : %qu %[\[f qav (2. 48)

Applying the vector Stokes theorem

fff(v X é)dV = ﬂ(ﬁ'x a’)ds i (2.49)
v s » |

O to (2.46) we obtain

i

n

-11-




ﬂ(ﬁ'x F )dS = qiyfffi%’ dv + qiz fffﬁ v (2.50)
Similarly applying Gauss's theorem
fffv + Gav = ﬂé" + ndS (2.51)
\% S
to (2.47) and (2.48) gives
_@E - nds -fff@ av (2.52)
s 4 vo o4 ,

ﬂ%q : 'El-ffféqdv |  (2.53)
oV ‘

g
From the Stokes theorem, (2.46) can be written as

h

ndS

1]

_¢E . af = i‘yﬂ% . ndS + 1zﬂ§? . nds (2.54)
Z7q " T T A q 1 q

2 S S

where Cs is a closed contour and S is the surface bounded by Cs as

shown in fig. 3.

S

C
8

IFigure 3. Surface with contour boundary
‘ for Stokes' theorem
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Different authors have different views on which of (2.50), (2.54) is
easier to work with in obtaining the boundary conditions. No preference

will be indicated here becaﬁse of the equally simple formulations of
(2.50) and (2.54),

-13-




CHAPTER 3

BOUNDARY CONDITIONS AND INTEGRAL EQUATION
FOR THE COMBINED FIELD

3.1 Boundary Conditions

It is clear that in electromagnetic problems uniqueness of solutions
is solely based on defining the boundary conditions in a consistent man-
ner. This uniqueness problem obviously applies to the combined field as
well simply because the combined field is a unique linear combination of
the electric and magnetic fields. As a consequence, a unique solution of
the combined field wave eqﬁation (2. 35) is completely dependent upon de-
fining the boundary conditions on %q in a self-consistent manner. The
boundary condition at infinity for the combined field is already given by
(2., 38).

Consider a regular region bounded by a closed surface S as shown
in fig. 1. The surface SO separates the region into two sub regions as
shown in fig. 1. It is assumed that region 1 differs from 2 in the consti-
tutive relationships. Hencé from (2.50) we obtain

—.: - 3 = i K 3.
n X [bz I*1 ] qlzoKS ( ‘ 1)
q q q

where qu is the combined surface current. This relationship expresses
the boundary condition for the tangential components of the combined field.

Similarly for the normal component from (2.53)

— — : _ 1 ~ . .
n - [F --Fl ] = ?—QS . (3.2)
q o q

where 6sq is the surface charge density. If the first region is perfectly

conducting and region 2 is free space

-14 -




nX[F +F ]=0 3.3
[F, + F_] (3.3)
n X [F -F ]=2qz J | |
n X | q _q] 2qi on (3.4)
ne[F =F ]=0 (3.5
[ q -q] (3.5)
rT-[;‘Je?F']:—z—’ | - (3.6)

3.2 Integral Equation for the Combined Field

If we consider a volume V bounded by a closed surface S which

~
—

contains scatterers with closed surfaces Sl». LRI Sn and sources J,

'x ~ ~

Jm’ Py P (not contained within the S’j) we can write the electric and
9

magnetic fields at a point P € Si as

E =-flee T8 +7 xvd& - Lo Jlav
P v o) o) m o 60 le)

+f [-su G (axH)+@OXE)XV'E +m- B)V'S [dS' (3.7)
¢ O O O o}
S et |

where V' operates on the primed coordinates, and on Sj rT is a unit out-
ward pointing normal (outward with respect to the Sj (not as a boundary
of V).

¢

~

FEP:- s€e G J -Ixvg - 2o lav
V O Om [0) ‘I—‘»O (o]

=)

+/ [se mMXE)G +(axHXVE +(n- HV'E |dS  (3.8)
: (6] (o] O (0]
S +~-+Sn .

-15-




~ — N _1 e .
G (50 - o S (3.9)
r-r'l

where r is thé field point while r ‘represents the source point. It is

- clear that (3.8) may be obtained from (3. 7) by using the duality of Max-
well's equations. A similar equation can be obtained for the combined

| Eeld ?q;:'y starting from (2. 35) and following the same procedure as for
EP and H_P. However, a simpler method is to use (3.7), (3.8) in con-

junction with (2.25)-(2.27). Combining (3. 7) with (3.8) we obtain

rd ~ > . > - ., ~ P, . m\g, >
= - + + - IXV'G - |—+ —}vr \Ys
FPq /[SGO(;.LOJ qlzoeoJ ) (J_ q1ZOJ>><V G0 (EO Gz “0> Go]d

L~ ~ ~ ~

| - ~ - —‘->— (7 = + — — . > ~
+j; . [ vsGonX(uOH q170€0]1,) {nX(E+q12‘OH)}VXVGO

—

+ne (B« qizoﬁ)v'ﬁolds' (3.10)

Using (2.25)-(2,27) this can be rewritten as

Dl

~:1 > ~ 1 ~
- 1 - —— V
Pq f[ oCoy = aiZ K XV &3 0]

ivG (aXF ) + (axF ) x v & + (o7 )0 ]ds'
+./; +eeedS [ql'YGO(nX‘Fq) (nX q) X o} <n q) "o
| " ” (3.11)

The surfaces Sl’ «sss S represent the surfaces of the scatterers, Iff
n ‘
we consider a source free region containing a single scattering surfacce
: ~
S as in figure 2 with the incident field ["incq’
~
-y

) P 3 g T‘ ' Yel _’.7 e '
PP =P flql'yG n><1) (nXJ,q)xvc,o+(n ‘q)V(’o]dS

P &S (3.12)

-16-
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Using Maue's integrals’ J we can write (3. 12) as

F(r)=TE (D)+T [ '(”}"’x"’ "’“’) & +(n. F v I '
q(r) mc() qu F) ( XFq XV'G (n Fq)vao,ds

(3.13)
where
1 rés v | |
T = N (3.14)
2 r € S (Sis regular) , ,
If S is not regular, for res
...1 . .
Q
T = (1 - -4—7;) (3.15)

where € is the exterior solid angle subtended at r. Ifr ¢ S, 2 =0;
r € S for S regular or on the smooth portion of S, € = 27 and is some
other value for a non regular region giiren by

n-e

ds2 = r

dsS , (3.16)
r

where n is a unit outward pointing normal to S, gr is a unit vector in
the 1—: direction. To calculate the current on a scatterer, one would im-
pose appropriate boundary conditions for the scatterer in (3.13). Taking

the cross product of (3.13) with r—{,

ol

= Tn X

Qe

n X .
inc
g

+ THXL[qivEO(Hx%q) +(ﬁ’><1~?;l)>fv'?‘ ( s )vr?‘;()]ds' (3.17)

If the scatterer is assumed to be perfectly conducting, we can rewrite

(3.1) and (3.2) as

-17-




n X q Az J_ (3.18)
neFrP s—p = «——V . J . (3.19)
€ s e 2
a € 's  se s
and
n X Fq-. = qleKs | : | I (3.20)
inc q.
inc
where
T e ~ .
aiz K_ 5 quo[Jinc+ Q57 ] z q1Zo(n><Hlnc) ( 5 ) (3.21)
%0 o inc

qleJs = 2q120Ks
qinc
e 2 —— P
+2/-7Z G (n><J )+qiz (n><J )XV'G +-—<n><V'G ) ast
S* O O S O S (@] eO O
(3.22a)
or
qleJS = 2<:1120KS
qinc

+2 -/s' ‘[—72 Eo({{x}s) +qizo(ﬁ'><}s) XV'_ao - V;;js (Efx v@o)]ds'

(3.22b)

-18-




which can be called the combined field integral equation (CFIE). Using
the definition (3.21), it is easy to obtain the conventional electric and

magnetlc field integral equatlons from (3.22a) or (3.22b).

3.3 Dyadic Green's Function Formulation

~ - =
The scalar Green's function Go(r,r'I s) is defined as the solution

to
2 2~ > . — — :
[V™ - v ]-Go(r,r‘, s) = =6(r - r') (3.23)
with the radiation condition
. 9 ~ ‘ |
lim r[—a-;- + 'y](xo(r,r', s) =0 Re(s) >0 : (3.24)
>0 : o : '

The Green's function is given by

Go(r,r‘ ,ys) = — (3.25)
47r|1" - r'l

The dyadic Green's function G (r,r';s) is the solution of

[V X VX + 7216 (r,7' 5 8) = T6(r - 1) (3.26)
with the radiation condition

lim r[VX + 7¢_XIG (r,r'}s) = 0 (Re(s) > 0) (3.27)

r—w B

i

given by

-19-




Oy e

- - :: 1 ~
O(r,‘r‘ s 8) = [I - ;—5 VV]GO(I‘, r', s)

(3.28)

The component form of (3.28) is given in SSN 179

Following the nota-
tion used in SSN 179, we can write the electric and magnetic fields as

%()=-su<G ,J> <VG'§<}>

(3.29)
and

HD = -se <G 1T > <387

N 7> (3. 30)
Combining (3.29) and (3. 30) we can write
> :" Lo > .3 _gi ~ X = :
P suO[<GO PR > - 398 Kq> (3. 31)
or using the relationship
VG X vxé’o- (3. 32)
we can rewrite (3. 31) as
E = aig, =+ ] -
iy S“o<l(’o >V X (,O] ; VKq> (3.33)
(3.33) can also be rewritten as
F = -qiz <[q1'yG + V X G ] s Kq> (3. 34)

We now define combm'%d dyadic Green's functlons of first and second
kinds represented by G(l) (2)

2 22 s | O
q q |

-20-




GO £ qivG_ + V X Go (3. 35)
q
and
a® g _digyg (3. 36)
"o o % o} *
q ‘
Hence we can write
P - oqiz <& S > (3.37)
0 Oq 2 q 3
or
[ <E~’:(2) R > (3. 38)
o ’ g
‘ q
and
(2 i (1 1 >(1 |
Gé):-%(}g):aﬁ(}g) (3. 39)
q q q

; B3
From (3. 35), (3.36), (3.37), and (3. 38) we note that G(
3

oq is a generali-
= =
zation of G, and GOq is a gen’gralizationof Gy, as defined by C. T.
Tai. 10 1t is easy to show that G(();) is a solution of
(1) .
[VX - ql’y]GO (3.40)
q
with the boundary condition

-921-




lim r|V X E}’f)” +

ve. X 6(1)] -0  (Re(s) > 0) (3.41)
100 q ’Y Oq | ‘ .

The combined dyadic Green's function of the second kind also satisfies
(3.40) with the definition (3. 39). Unlike the dyadic Green's function for

a vector wave equation, the combined dyadic Green's function satisfies a

first order differential equation. Taking the curl of both sides of (3.40),

we obtain
[VXVX+ 7w ]GO = ~[givé(r - r') + Vé(r - r')X]I (3.42)
q T ; ’ :
or
[v X x + v16) - —[é(r - o) - Lve - r')x]l (3.43)
q
Hence the combined dyadi 's [ i ’ ind %(2) i |
\ yadic Green's function of the second kind xoq is a

solution of a second order differential equation (3.43) with the radiation
condition

>(2)

@) 'ré'r" X G ] =0 (Re(s) > 0) (3.44)

o

lim r[v x G
(e}

=

Since the combined dyadic Green's functions of the first and second
kinds differ by only a constant multiple factor, each of them is a solution
of a first order differential equation along with a second order differen-
tié.l equation with the radiation condition imposed. Although the dyadic
delta function used on the right-hand side of (3.40) is the traditional
dyadic delta function, the driving function on the right-hand side of
(3.43) involves the derivative of a delta function. There is a distinct
similarity between the combined dyadic Green's functions as delined by

(3. 35) and (3. 36) and the electric and magnetic dyadic Green's functions O

-22-




O

defined by C. T. Tai.'?

with in future reports.

A more detailed version of this will be dealt

Returning to the first order dlfferentlal equation (3. 40), the oper-

ator VX can be denoted by D * , where D is given in rectangular coordi-

nates by
1
0 -
0z
R
D = Py 0
.2 2
| 9y 9x

write

where %q is defined as the combined operator. Using the combined
_ - >

— —

[V X -qiv] = [D - qiv1] -

~
—
-

=D .
q,

dyadic operator Dq’ we can write (3.40) as

and

D * G (r,r',s) = -Is(r
q o
q
- — "b — ®
D «+|ID <G (r,r',s)
-q q Oq

i

Using the operator notation, we can also write (3.42) as

-23=

(3.45)

It is clear that D is an antisymmetfic dyadic operator. Hence we can

(3.46)

(3.47)

(3.48)




[V X VX + %,'21521) - D

q q

e o}

where 5(1 is given by_

[ i .8 2]
qiy FY 3y
> | 3 9 - .
D =| & o _ 8 - :
q pye qiy 5 | g =1 (3.50)
.2 2 —qi
T3y ox 4 ]
and
1 0 0
T=1|o0 1 0 (3.51)
This work should be considered as preliminary for the theory and

applications of the combined dyadic Green's function formulation. In fu-

ture reports, this work is proposed to be extended.
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CHAPTER 4
SOME THEOREMS AND CONCEPT‘S
CONCERNING THE COMBINED FIELD

In this chapter we shall develop the combined Poynting'vs’theorem

and the combined reciprocity theorem.

4.1 Poynting's Theorem for the Combined Field

Consider a regular region bounded by a closed surface S as showﬁ

below.

Figure 4. Source volume

. x
The volume V is assumed to contain a combined source Kq. We define

the combined Poynting's vector ' as

~
-

Y

(s) = F (s) X F (=8) = § (-5) (4.1)

] 1
q q q - -q

wn

The combined Poynting's vector as defined above contains terms which
are generally not included in the traditional definition of the Poyntihg's
vector. Taking the divergence of both sides of (4. 1) and using a well

known vector identity we obtain

~ ~

V.S =F(s): VXF(s)-F(s) - VXI (-5) (4.2)
q q q q q

-25-




Substituting (2.43) into (4.2)

V.8 =2givF (s)+ F(-8) - qiZ [F (s) + K (-8) - F (-5) « B (s) 4.3
q "M q BZolF q q g1 e

Integrating both sides over a volume V and using the divergence theorem

we obtain.

{ﬁ'& . nds - zqiyj\;ff[%qm : %q(-g)]dv

-az, [[f F o) B (-9)- F () -
qi of([f[ g8) " Kyl-s) - F (=8) Kq(s)]d\(/ |
‘ , 4.4

where we interpret the first term on the right side (4.4) as representing
the total rate of change of combined energy while the second term as the
total combined energy input. These are clearly new definitions which

may have to be refined in later work.

4.2 Combined Reciprocity Theorem

Here we will only be concerned with developing a simple reciproc—

ity theorem. The reader is referred to a note by C. E. Baum4 for a

. . P X(a) >%(b)
more detailed version. Consider two combined sources Kq and K

I~ =%
which produce combined fields Ff]a) and F;b) in a linear matter. The

combined Maxwell's equations for these cases can be written as

_>a) . =(a) |
[VX - q17]Fq = qlzqu (4.5)
and
=) . =b)
[VX - ql'y]Fq = q1Zqu (4.6)

Using these two equations, we can write
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o . [§<a> N i;(b)] " iz [—I;(b) G R CV L) &
q q q

o g9 q q
Integratlng (4.7) over all space and using the dlvergence theorem and the

radiation condition we obtam

ff 7 ~'("”dv j;[ Fa) | gy o (4. 8)

This is the reciprocity principle for the combined field. The recipro-
city principle as defined above is much more general than the conven-
tional reciprocity principle. From (4.7) for the case of a source free

medium, we obtain

ﬂ[”’a) (b)] RdS =0 (4.9)

where the integration is over a closed surface whose interior or the
boundary does not contain any sources. This is the combined recipro-
city principle for the source free medium, This again is a much more

general reciprocity compare‘d to the Lorentz reciprocity principle.

Noting that

(%;a) Y %;b)) NECIE ) qizo(g(w « F®)

i ino@(a) X E®) - 2(F@ L FO) o
we can write
. [(%(a) N ’fi(b)) § (%(b) y ?i‘a))]
e |FO ) FO T e
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~ Using (4.5), (4.6), and (4.7) and 1ntegratmg (4 11) over a closed space

we have . ) ‘ Q
ﬁ [(I;(a)xi;(b)) (i:(a)x'F*(b))] el
q q- -q q

S

- iz fff[ (b) (a) (_12 (a;)) (F;m_K;b)JrF(z) <z>)]dv

(4.,12)
If we consider a source free medium, we can rewrite (4.12) as
| ﬂ[(ﬁ(a) X F(b)) - ( 7y F'(b))] ndS = 0 (4.13)
S q q -q -q

This is simply the Lorentz reciprocity principle expressed in terms of
the coinbined field. Letting the surface S recede to infinity and impos-

ing the radiation condition, : : O
o ey
fff ( »(b) *fz) . i’(_k;)) . fus (4.14)

This is the reaction concept of Rumsey in terms of the combined field.
There are several other reaction concepts, etc., which can be deyrived
using the combined field. However, we have considered here only those

that serve our immediate purpose.

4.3 Matrix Representation of the Combined Field

Considering the combined field at a point P, from (2.25) it is
given by ; Q
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I' =B + qiz H
q qi OH (4.15)
Similarly
F = E " i r_l ‘:lb (
-q ql,/OH (4.16)

Combining (4.15) and (4. 16), we can write it in the matrix notation as

-

B 1 i o)

al q
_ - _ (4.17)
F . s —> . »

-q 1 qi ZoH

= S N B e
E 5 5 .Bq
~ = . ~ (4- 18)
Fl . 4w ' |
z H -3 5| | -q

This equation gives us a simple procedure to calculate E and H if

F
o~ ; ,_V’q
and F_q are known. Similarly for the vector and scalar potentials Cq
and ?ﬁq we obtain
¢ 1 qi A
q
- = - (4.19)
| -q 1 at OAm
or
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or

1 1103
2 2 Cq
_— = ~ (4.20)
A g 4z
ZoAm 2 2 c-q
3 1 i 3
¢q q ¢ |
= (4.21)
oo L1 -a]]Zz@
.or
~ 1 1 ~
= (4.22)
~ _ gl gl ~
Zo¢rn 2 ¢-q
Similarly for the combined current and charge densities we obtain
K 1 i i
q q
N _ (4.23)
- . 1 —>
K-q 1 -gi = Jm
. © J
C 3T 1 =
J 5 ) Kq
= - (4.24)
Ly g g
z Im | > 2| |Fq

Q)

O




or

2 N

O

Ol

-q

-31~

- (4.25)

(4.26)




10.

REFERENCES
H. Bateman, Electrical and Optlcal Wave-Motion, Dover Pubhca-
tions, Inc., 1955 :
M. Itoh, The Unified Electromagnetic Equation and‘Its‘ Properties
in Curvilinear Coordinate Systems, Rev. Matemat. Fis., Teor.,

Tucuman, Argentina, 1959, pp. 85-100.

C. T. Tai, Dyadic Green's Functions in Electromagnetic Theory,
Intext Publishers, 1970,

Carl E. Baum, Mathematics Note 33, Electromagnetic Reciprocity

and Energy Theorems for Free Space Including Sources Generalized

to Numerous Theorems, to Combined Fields, and to Complex Fre-
quency Domain, December 1973,

Carl E. Baum, Sensor and Simulation Note 179, Singularity Expan-
sion of Electromagnetic Fields and Potentials Radiated from An-
tennas or Scattered from Objects in Free Space, May 1973.

Carl E. Baum and Bharadwaja K. Singaraju, Interaction Note 217,
Generalization of Babinet's Principle in Terms of the Combined ,
Field to Include Impedance Loaded Aperture Antennas and Scatter-
ers, September 1974,

J. A, Stratton, Electromagnetic Theory, McGraw-Hill, 1941.

J. Van Bladel, Electromagnetic Fields, McGraw-Hill, 1964.

A. J. Poggio and E. K. Miller, Computer Techniques in Electro-
magnetics, R. Mittra, editor, Pergamon Press, 1973.

C. T. Tai, Mathematics Note 28, Eigen-l}unction Expansion of
Dyadic Green's Functions, July 1973.

-32-






