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ABSTRACT
A description'of the subroutine CAUCHY, the program for
finding zeros of an analytic function f(z) within a contour in
the z-plane, is given. Examp}es of types of functions for
which this program is most advantageous as well as types of

functions which show its weaknesses, are given.
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I: Introduction

N

The purpose of this report is to describe in detail the sub-
routine CAUCHY and its subprograms. This routine is used to find
the zeros of an arbitrary function f(z) within a contour c in the

complex z-plane.

The method used has been docum.ented.l It relies on calculating
integrals of the form

. , M K
1 Nf£'(z) . N_z N
Sy =z §Z Tz dZ-X 24 i (1)
i=1 j=1

where z; are the zeros and v, are the poles of f within e¢. Thus

if there are no poles, So gives the number of zeros, Sl the sum

of the gzeros, 82 the sum of their squares, etc.



This method becomes numerically practical when ¢ contains a
spall number of zeros. Thus some knowledge of f is desirable, and
in principle, if sufficiently small integration steps are taken so
that the function is sufficiently smooth, the answer mﬁy be obtained
to arbitrary accuracy. Since the method does not rely on iteration,
it will work even when ﬁell-known iteration methods will not.

The problem is then to Perform the integral with suitable
accuracy. One straight-forward method is found in the programs
ISQNK1 and LSQNK2 from the Massachusetts Institute of Technology
Information Processing Center.2 The method used by these programs
is to integrate (1) by parts, and then use a Simpson's rule integra-
tion to perform the numerical integration around c¢. The program is
most useful when'large numbers of points of ¢ may be calculated
and when a large number of roots may exist ( M < 4 for this pro-
gram). An automatic increasing or decreasing of step size along ¢
is included in the program.

i In many cases of numericael interest, it is costly to compute
the function, and one would like to locate one or two zeros with
fair accuracy with a minimum number of points. The presence of
nearby poles or zeros in f introduces poles on the integrand of
equation 1 and may make normel integration procedures impractical
because of the large number bf contour points required. It is
these cases for which the subroutine CAUCHY is designed.

In the next section, we will discuss the method. In the
third section, we describe the subroutines. The fourth section

gives some sample results, and the fifth a listing of the sub-

routine and its subprograms




II. METHOD
Suppose we are given three values of a function f at three

points z 3" We can form a best-fit binomial

2
fapprox-az +bz+e (2)
by detemining a, b, and ¢. Now we may factor fa. rox
fa.pprox = (z - z.)(z - z,) (3)
where
2 - _ b i\/gz -4 g c
1,2 28,
Then
4
fa.pprox = (z - Z2) + (2 - 21)
and
fl
approx -1 + 1 (%)
) approx %~ %3 2 -2

So we may perform our integral over the segment of the contour ¢ over

which (2) is valid; the integrals-are of ‘the form
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However, (2) is not a godd approximetion to f if f has nearhy
singularities. A much better approximation obtains if fj ié known at
Five points zj:

2
5 (6)

+ +
Gty C5Z

f =
approx

Cy + csz + c6z
We may factor both numerator and denominator

( Z'an) ( Z'an) 03

fapprox =(z—zdl)(z.zdej Eg (7
So
fl
approx _ i .1 1 o1 (8)
fapprox  ZZm1 I 2Zg iy

Thus in calculating the integral (5), one adds the contributions from
the roots of the numerator and subtracts those of the denominator.

We must first solve for the C;- We can make the numerical
computation mpie accurate by transforming to a coordinate system
where the center point of the five Zj’ Zys is zero; thus we know our

function at five points f_2, f_l, fo, fl, and f2. We can then write
(6) as

2 2
e, + e, zy * C5Z5 = (e + cgzy * c6zj) fj (9)

We note that (B) is a set of five linear equations for the six e,

We may write the c, as follows. We first note that at z, = 0,

ey = chfo (10)

Using this, we may write the other numerator coefficients s and ¢

3

in terms of the denominator coefficients:




o, o a1 (Fafy) - (2yf -2 0) . 4
2 2y -z 6 R 5 (11)
! [zl 23 '
[ e 2]
22y bLz_J ( -1 o) z) (fl fo) Cy
f. - -
L _mht gt .+ -t [fl-f _l-fo] o ()
3 21 =24 Zy =~ Z_5 5 z;p =z Lz Z_y y (12

If we put ¢1» Gy, and cs in (9)and divide by Z 5

J J J
Al eg + Bl =Y g (3 =+2) (13)
where
R z, (f; - f -
A g T -ty (g fy-2,1)) . "
Z, - 2 Z. - 2 Tt (14)
17 %1 1° %
g AmhEaty) o mEa () 2 (1)
zl - Z-l Zl - Z-i J J
£ -f z z
J__Jd o 1 [ 1 -1
od = - = (¢ -f)--—-f-f]
Zj zl-z_l Z-l -1 o z4 ( 1 o)
zZ, - -
__J [fl Lo _ f1 fo] (16)
2172t % Za

AV =8 = ¢! =0 for j=0, +1. We now solve (13 for c5 and cg:

° ¢? B
®s = D1 | ¢ B2 (17
°6 =&t | A2 2 (18)

where

DET = A° B2 . g2 p~2 (19)

If we now set ¢ 4 = DET, we have a unique solution for the cj.
Problems do arise if DET = O. This will happen when f is of the

form

O

O



o +a .z
o 1
f=0_=x (20)
+ .
ao Blz .
We examine three special cases:

1) @ =By =0. In this case, A9 =89 = ¢I = 0. pe simplest

solution is ch =1, 05 =cg = 0.

2) By = 0. In this case, ad o o 0 # BY. Again the simplest
solution is to set ¢y = 1, 05 =cg = 0.

3) @ #0 # Bl' In this case we are free to choose Cg = 03
then from (13), Ajc5 = Cjcu, and since the determinant is zero (A'2, C°2)
equals (A2, 02) within a constant factor so we can set cg + c? and
ch = A2. One could, of course, set c5 and °6 to any numbers not equal
to O; this would amount to mltiplying numerator_and denominator by the

same factor, provided the overall Polynominal remained of degree K 2.

Once the coefficients sy have been obtained, the roots z

nl’ %n2’
Zq1 and zd2 are easily obtained. The integral is then performed from
Z_ + ZO ZO + Zl
Zg to Zy where z, = 5 and zy + 5 . If Zo is not a corner

point, that is, if Aez/Az = 0, then the integral is performed in one
%tep: z, to 2y If A2z/Az # 0, it is Performed in two steps, z, to Zs
and Z, to Zp - The integrals are performed in the transformed coordinate

system (z3 = 0), the same one that the eeefficients are found in.




III. DESCRIPTION OF THE SUBROUTINE

A. CAUCHY
The main subroutine begins by initializing IND (D = double
precision), where N is defined in equation (1). The initialization
is necessary, since the subroutine which rerforms the integral adds
incrementally to IND.

Setting C(1) = 10%° signals COEF- that it is the first time that
COEF has been called for a given contour (see description of COEF).

The arrey ZSC(I) is set equal to |aZ.|. If any ZSC(I) equals zero,
an error message is printed out and a return initiated.

A check is made to see if the contour contains at least five points.
If not, an error message is printed out and a return initiated.

The DO 160 loop.is now started; this ultimately performs the incre-
mental integral for each Z(I). Each set of five Zy = ZD(J) and
fj =FD(J), 1 < J £5 are then set up, with special provisions at the
"beginning" and "ending" of the contour. For these five ZD(J) and FD(J),
the coefficients e, = CD(L), 1 < L < 6, are calculated (see equation (6))
in subroutine COEF. The roots ZRN(1l) and ZRN(2) of the numerator, and
ZRD(1) and ZRD(2) of the denominator, are calculated in ROOT2.

A check is then made to see if Azza/AZ3 == 0; if so, the point ZD(3) is
not a "corner point", and the integral is performed from [ZD(2)+ZD(3)]/2=z1
to [2ZD(3)+zD(4)]/2=Z2. 1If ZD(3) is a corner point, the integral is done
in two steps: from Z1 to ZD(3), and from ZD(3) to Z2. '

The integrals IN = IND, O < N < 2 are divided by 2mi and then a return

is made to the calling program.
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B. COEF

Given the function F(I) at Z(I), 1 < I <5, this subroutine cal-
culates the cy=0(J), 1=Js= 6 as defined in (6).

A check is first made to see if C(1) = 10%. If so, it is the first
call of COEF for a given contour, and all five |£;] = (I), 15155
are calculated; if not, the FM(I) are set equal to the M(I+1), 1 <I <k,
and FM(5) is calculated from F(5).

From the FM(I), a scale factor is formed by finding the largest
FM(I). If Max (FM(I)) =0, F(I) =0, 1 <I <5, and the scale factor
is not needed; otherwise the scale factor SCF = 1/max(FM(I)).

All FM(J) are now multiplied by SCF. Then the second largest FM(I),
TSCFM is found. If it is O, then the largest F(I) = F(J) is a singular
point, and the points of the contour have to be redefined. Hence an
error message and stop are provided. If two or more FM(I) are equal to
the maximum FM(I), or if the TSCFM # O, the program proceeds. Note
that the presence of two singular points at two contour points (within
f{ve consecutive points) would cause the program to fail without any

error message.

The program now proceeds to calculate the Aj, Bj, Cj defined in
equations (14), (15), and (16) (A2 = AN2, etc.). From these, c(4),
C(5), and C(6) are calculated. We now test to see if C(4) = DET = o.
Since we have used the scaled FF(I) to calculate C(L4), we define "O"

as a small number to take care of roundoff errors in subtraction. It

|C(4)| = "0", then we have a function of the type shown in equation (20).



We then set C(5) = C2 and C(4) = A2 as discussed in case 3). 1In
addition IC(B)I = 0, we have either case 2) or case 1), and in either
case, the denominator is a constant, set equal to 1. The numerator co-

efficient C(1), C(2), C(3) are then calculated, and the return is made
to CAUCHY.

C. ROOT2

This program calculates the roots ZR(1) and ZR(2) of f = A%z2 + B¥Z + C.
Roots at infinity are set to 1 27. The subroutine then calculates
Z(1) = = B+ JB% - hxA%C and 2(2) = - B - % - bwaxc. Ir T, = |2(1)] =0 ana
T, = IZ(2)] = O special cases must be treated. In that case, if
A = 0, then f = constant, and the two roots are at "infinity"; a return
is made. If C = 0 also (which could not happen in CAUCHY, but might
arise in some other use of ROOT2), an error stop and message are in-
stituted. If A = O when T, = T220, then both roots ZR(1) = ZR(2) = 0.
If noﬁe of the special cases occurs, we determine the larger of
Tl and T2. The larger Z(1,2) is then used to calculate ZR(1) = 2C/z(1,2).
A check is made to see whether the second root is at "infinity",
corresponding to A = 0. If it is, a return occurs, if not the second

root is calculated: ZR(2) + z(1,2)/2A.

D. INCIN
Incin increments the IO’ Il and 12 integrals by forming
IR
Iy = I, * FND 'jz AIoj’ (21.1)
J=1
IR
I, =1, + FID ..Zl ALy (21.2)

i0




and
IR B
I, =1, + 7D - ) M, (21.3)
j:
where
72
- dz
Mos = S Tz - Z.) (22.1)
Z1 J
AT a §2 z dz
15~ (z -2)) (22.2)
zZ1 J
and
22 22 dz
TR (22.3)
71 J

Z1, Z2, FND, Iff, I1, I2 and IR are arguments of INCIN. The zs's are ob-

tained from

Zj = ZC + ZR(J) (23)
where ZC and ZR(J) are additional arguments of the subroutine.

Starting with equations (22), AIlJ can be expressed as

z2
[(z-2)) +2.]
AIlj - g (zJ- Z.J.)J
pAR

z2 Zj
= g dz [l + (2:237 ]
Z1

(22 - z1) + Z5 AL,

2.1
DZ + Zg BI ( )

and

11



2 (P - z§) + z§]

N = da
Alej g i (z - ZJ)

2 2

J
Z.
=S dz[z+z,+-—9__._]
J Z ~2,
) Z

1

]

1, 2 2
5 (2= 2)7) + 24 (2, - 2))

2
+ Z°5 I..
J 4 0J

2
DZ'ZB+ZJ 'DZ-+'ZJ. AIOj

= . + .
DZ ZB Zj A I_'Lj

where

and

1
Zg =5 (Z) + 12

2):

So the only difficulty is the evaluation of AIO. If

z=%DZ‘ x+zB

is substituted into equation (2.1) it is seen that

1 ;
ax
AL, . =
0j S Q(Z. )
-] X - —__J_i{‘B__
DZ

or 1
dx
AIo, x-a-=-1b
J -1

12

(24.2)

(25.1)

(25.2)

(26)

(27)



where

2 (21-25)

a+ib-= o

and

a and b are real.

This can then be expressed as
1

AL . = dx (x - a +1ib)

0J

K1 (x-a.)2 + e

1
—;‘- on [(x-a)2+ b2:|

-3 &z[fl'al + b +1ib

1+a)

and 1
I I =b dx A
m A Ins = x-a)=#2

p.

-1
Now make the substitution
X=a+ |b| tan ¢

with

tan ¢ ;= - e

b J

l-a

tan cpl = 'bl ,v

and -
lo] = 3 ’
into equation (30).

It is now seen that

b
Im AIOj |b| S
P

(o1 - 9-1) -

3"0‘

(28)

1 .
1 os dx
-1+ 1b_§ (x-2)%+6% (29)

1

el

-1

(30)

(31)

(32)

(33)

13



Since-1 < 1 it follows from equation (31) and (32) that

O=¢ -9, =m
hence

| m A Iojl <7,

Starting agein with equation (26) it follows that
1 ;
R ge—
1%z (2572p)

jl

B) :

2
1- A (AJ -ZB)

=”"(_ 2 . ) )

-
=gn (X - A (zj-z

2

= p,n( vz (25°%g)-1 )
2 Z.-Z.) +1
DZ “j °B

with the branch specified by equation (34).

If
i 224~ Zg)
,___JL_____I <1
DZ
define 2(Z.—Z )
R=—3d B
DZ
and then
1-R °
A lgy=tn (l+R ) +ol-1),
and
1-R .
A IOj = WZ(E:ﬁ - in .

(34)

(35)

(36)

(37).

It makes no difference which branch of g{-1) is used here since

the imsginary part of A IOj is adjusted to satisfy equation (34) by

adding or subtracting 2m i to the final result.

14
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If 2 (24 - Zp)

1= 7

then R is defined as
DZ

R = §(ZT_:_257_ | (38)

J
and

L
b Ips = oxn(?:-‘i)
- (355) (39)

This is the same as equation (37) without the - i 7 term.
(.-
The progrem sets R according to the value of I—B%—EEI to either
the R.H.S. of equation (36) or(38) and A IOJ. to - im or 0. Then in

either case the fortran statement

1l - R)
= + —
A IOj ; A IOj CDLOG (l TR

produces A IOj' If R is less than .1l an expansion of the wz(%}i—g is
used otherwise a fortran supplied subrouting computes the value. The
imaginary part of A Ioj is adjusted to sé.tisfy equation (34) by adding
or subtracting 2 mi. Then AIlj and AIBj are coﬁputed from equations (24)

and the integrals are incremented.

15



IV. SAMPLE RESULTS

In Table 1, we show results for various functions when inte-

. grated around a Square in the complex Z-plane
- 2 < Re, Im(z) <2

While the function does not provide an exhaustive examination, it
does illustrate several important points
1) There is a dramatic change in the winding mumber (10)
a8 a zero or pole crosses a contour. In all examples,
this zero or pole was chosen to lie halfway between two
grid points by choosing an appropriate y. "
2) The error in any two runs should decrease ag ( 42] Run B) H
AZ| Run A/ °
for the larger eérrors, this is borne out in practice.
3) Even a crude mmber of points, with zeros (or poles) right

on the contour yield an interpretable I0.

In Table 1, the first column shows the function calculated.
Results are listed for three different AZ. Below the calculated

result is the correct result for comparison.

16
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Table 1A

O

laz] =1
£(z) 10 11 12
1-2 1.000040.00001  1.000040.00001  1.000+0.000i
1401 1401 1+01
sin (z/k) 1.000140.00001  -0.000040.00001  -0.000+0.0001
1+01 0401 0+01
sin (z/4) -0.0002-0.00004  -1.0003+0.0000i  -1.005+0.0001
z -1 0401 1401 -1+01
sin[ﬂllﬁggliij -0.0571+0.00481  0.8695+0.48141 2.468+1.8921
7 T 0+01 .99+.51 2.710+1.991

Sin[z-2.01-iz]
z -1

sl

z -1

sin (z/U4)

z - 1.99 - iy

sin (z/4)

zZ -2-01"iy

sin (z/4)
(z - 1)(z +1)

sin (z/4
z -1

-0.8860-C.06081
-1+01

-1.0020+0.00001
-1+01

-0.0329+0.00411
0+01

1.0332-0.00371
1401

-1.0009+0.00001
-1+01

-1.0002+0.00001
-1+01i

-0.7420-0.06591
-1+01

-1.0026-0.0000i
-1+0i

-2.0586-0.50811
-1.99-.51

0.0675+0.00911
0+0i

0.0000-0.00001
0+01i

-1.9992+0.00004
-2401

-0.457-0.005i
-1+01

-1.004+0.0001
-1+01

-3.850-2.0411
-3.71-1.99i

0.124+0.0521
0+01

-1.985+0.0001
-2+01

-1.979-0.0001
-2+01

17




Table 1B

[£] .5
f(z) 10 I1 2
l1-2z 1.000+0.0001 1.0000+0.00001 1.000-+0. 0004
1+0i l1+o0i 1+o0i
sin(z /4) 1.0000+0.00001 =0.0000+0.0000i  -0.0000+0.000
1+0i 0 + 0i 0+ o0i
5&2&%[&1 -0.0000+0.000i  ~1.0000+0.0000i  =1.000+0.000i
0+ 0i -1 +0i -1 +0i
=T -00052+0. 00101 0.9793+0.2508i  2.875 + 0.994i
0+ o0i .99 + .251  2.898 + 0.995i
sir{z -20 Ol‘lﬁ]
—) -0.9941-0.00121  -0.9878-0.0011i -0.976+0.001i
-1 +0i -1 +0i -1 +0i
il
— 71 ~1.001+0.00001 -1.0002-0.0000i  =-1.000-0.000
-1 +0i -1 +0i -1+ 01i
§%§95é§%& -0.0011+0.0031 ~1.9923-0.2498i  -3.903-09951i
0 +o0i -1.99 - 0.251 -3.898-0.9951
sin(z /b 24 . .
. = . 2 e 3 + .
250117 1.0012-0.00031 0.0025-0.0093i  0.005+0.000i
1+o0i 0+ 0i 0+ 0i
(Zsin Z+i -1.0002-0.00004 ~ 0.0000-0.00001  -1.999-0.0001
-1+o01i 0+ 0i 2 +0
_sin(z/b) ~1.0001+0.0000i ~ =2.0001-0.0000i  -1.998-0.000i
(z-1)

-1l+0i

-2 + 01

- 2 +01i




~ Table 1C

IAzl .25
f(z) I0 I1 I°
l-2z 1+ 0i 1+ 0i 1l + 0i
1+ 01 1+ 0i 1+0i
sin(z /) 1+o0i 0+ 0i 0+ 0i
1+ 01 . o0+o0i 0+ 0i
sin(z/4) 0+ 0i -1 + 0i -1 +0i .
z-1 0+ 0i -1+ oi -1+ o0i
. [z=1.99-1 ]
81n[ I -0.0003+0.0001i 0.9894+0.1251i 2.943+0.4983
z-1 0+ 0i .99 + .125% 2.944+0.4981

. [2=2.01-i
81n[ N ] 0.9996-0.0001i  =0.9993-0.0001i =-0.999-0.000i
zZ - 1 :

-1+ 0i -1+ 01 -1 + 0i
Z=3 . : . .
si T -1+ 0i -1 + 0i -1 + 0i
Z - 1 -1 + 0i -1+ 0i -1 + 0i
___sin(z/4) 0.0000+0.00001  =1.99901-0.1250i -3.945-0.4981
z-1.33-1y 0 + 0i 1.99-0.251 -3.94k4-0.4981
sin(z/4) 1+ 0i 0 + 0i 0+ 01
z-2.01-1y 1+0i , Q.+ 0i 0+ 0i
sin(z/4) 1+0i 0+ 0i 0+ 0i
(z-1)(z+1) 1+o0i . o+o0i 0+ 0i
sin(z/4) -1 + 01 -2 + 0i -2 + 0i
(z-l)2 -1 + 0i -2 + 0i -2 + 0i

19
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V. PROGRAM LISTING.
SUBROUTINE CAUCHY(IMAX,Z,F,10,11,12) |
CAUCHY CALCULATES THE INTEGRALS 128 INTC(DCLN(F))/DZ) /24P In1,

LJARINT(Z*D(LN(F))/DZ)/2#P1el, AND 125 INT(Zwe2eD(LN(F))/D2)20P 0]

WHERE F IS DEFINED AT IMAX POINTS ON TME CONTOUR 1., 1IN COEF

THE CURVE IS FIRSY FIT TO A FORM tA-xn-aoe£x¢c)/(ncx.uao[-x¢r),
THE ROOTS OF THE NUMERATOR AND DENOMINATOR ARE OBTAINED (ROOTR),
AND THEN THE INTEGRAL 18 PERFORMED (INCIN)

COMPLEXw16 zocs:.FD(S),co(s).zRN(a).zRoch.zx.za.xuo.xao.xao
COMPLEX#8 Z(401),F(108),10,11,12
REAL®4 28C(10})

100%(2,00,0,00)

10 (2,002,0,00)

I120s(2,002,0,D0)

COCs)m(1,045,02,00)

DO 110 Im2,IMAX

T8C(I)sCABB(Z(1)=2(Iwy))

IF(28C(3).NE,2,) GO TO 110

WRITE (§,50Q1)

FORMAT (19W ERROR IN Z=CONTOUR)

RETURN :

CONTINUVE

IPCIMAXL,GE,S) GO TO 120

WRITE (1,502)

FORMAY (f12M IMAX,LT,%)

RETURN

IMAXMioIMAX®Y

DO §68 Imi,IMAXMY

DO §30 Jny,S

Jisle3e)

IF(JJEQe=1) JIsIMAXeR

IFCJILEG,0) JJsIMAXet

IF(JJ BT, IMAX) JJm2

20¢J)a2(¢JJ)

FOCJIeP(JJ)

CALL COEF(2D,FD,CD)

CALL ROOT2(COC1),CD(2),CD(3),2ZRN)

CALL ROOT2(CD(4),CD(S),CD(6),2ZRD)

IPeley

IMsley

IP(IM,EQ,Q) IMSIMAX®Y

IF(CABS(ZCIP)I¢Z(IMI@R,wZ(I)), LT 2ZSCCIP)n1,Ema) GO TO {40

TEm(2(2)*ZCIM) )0, S

2282(1)

CALL INCIN(Z8,22,20(3),ZRN,2,10D,130,120,1,.00)

g:gg(§?c1~(zi,ze.zucs:.zao.a,:oo,x:o.xzo.-t.oa)
]

Z2s(Z(IP)e2(2)) 0,5

GO TO 159

Z1s(Z(1)+Z(IM))D,S

125 (Z(IP)+2(1))*0,5

CALL INCIN(21,22,20(3),2RN,2,100,14D,120,1,00)

CALL INCINCZ1,22,Z0(3),2R0,2,100,I40,1I20,1,0Q)

CONTINUVE

108100/ (0,D0,6,28318%3D0)

"118310/(0,00,6,283185300)

12s12D/(0,00,6,283$853D0)
RETURN
END 21
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SUBROUTINE INCIN(24,22,2C,2R,IR,12,11,12,FND)

IMPLICIT COMPLEXWw16 (AwH,0e2)

INCIN ADDS THE INCREMENTAL INTEGRALS FROM 23 Y0 Z2 YO0 TwE
INTEGRALS I8, I, AND 12, .

I=8UBeN # I#8UB=N + FND # SUM OVER J,Jsi,IR OF INT(J), WHERE
INT(J) = INTEGRAL FROM 21 TO Z2 OF (DZs(Z#*N)/(Z=ZC=2R(J))
REAL*8 AR,PI,TWOPI,FND,TESY .
COMPLEXe16 10,I1,12,2R(Y)

DATA PI/!.1“1592653589790010TWUPI/G.EB!!l53ﬂ717956001
01sZ3=121

I8s,3500n(22¢174)

00 50 Jsy, IR

2J8IR(J)+IC

IRBug D0 (2J=28B)

RaZ2RB/02Z

ARSCDABS(R)

IFCAR,GT,.1,02) GO YO 3@

DIwDCMPLX(@,D0,=P])

GO TO @0

RaDZ2/1RB

ARs] ,D@/AR

0Is(3,D00,0,00)

IF(AR,GT,0,100) GO TO 30

IF(AR,LT,1,0=25) GO 1O S@

RSaRwR
Dlﬂblﬂﬂt(2.0@*(-666666666666666705*(.“DO*(0265714255714235700

i 0(-2222222222222222000.18!018181!!61618D0wR8)tRSJ*RSJ*ﬂS)tﬂsi

TESTsDIMAG(DI)

IF(TEST, LT oPI) DI=DI+DCMPLX(Q.D@,TWOPI)
GO 70 40

DIsDI«COLOG((1,00=R)/(1,00¢R))
TESTSDIMAG(DI)

IFP(TEST GT.PL) DIsDI=DCMPLX(2,D0,TWOPI)
IF(TEST,LY,»PI) DIsDI«DCMPLX(Q,DQ,TWOPI)
I0sI@eFNDeD}

DIsDZeZJD}

I1sJieFNDuD]

I2n]R¢FNOn(DZnIBeZJeD])

CONTINUVE

RETURN

END

22
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SUSROUTINE ROQT2(C,8,4,IR)
PINDS ROOTS OF Aelaw2eBeZeC

COMPLEXw16 A,B,C,IR(2),2(2),RAD
REAL®4 T1,72,TOVFP,

INPINITY = {,D27

IR(1)s(1,027,0,00)
IR(2)=(4,027,0,00)
RADSCDSQRY(BaB=ygnAnC)
Z(1)ueBeRAD
21(2) neB=RAD
T4aCDABS(Z(1))
T2=CDABS(2(2))
IF(TieTR,NE,0,) GO TO 30
IF(CDABS(A’ NE,Q2.) GO YO 20
If!CDABSCC).NEQU.) 60 Y0 10
WRITE (S4,%01)
FORMAT (* ERROR 8YOP = A s B s C = 0°)
sTOP
RETURN
2R(4)=(2,D8,0,00)
IR(2)e(2,00,0,00)
RETURN
1s}
IF(T2,6T,T1) 1Is2
ZR(S)itc*C)IZCIJ
TOVFLSCDABS (L . D=272Z(1))=CDABS(A®A)
IP(TOVFL,G67,0,) RETURN
ZR(I)'Z(!)/(‘*‘)
RETURN
END

23
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SUBROUTINE COEF(Z,F,C)

PROGRAM TO FIND COEFFICIENTS FOR THE FUNCTiON
Fa(CCL)9C(2)nZ+C(3)aZwe)/(CC4)PC(SIWZeC(6)020n?)
GIVEN THE FUNCTIONAF AT FIVE POINTS Z, .

IMPLICIT COMPLEXw16 (A=H,Oe2)
DIMENSION Z(S5),F(S),C(6),FPF(S)
REAL®8 ZERD/1,0-108/,8CF,FM(5),TSCF(5),TSCFM

DETERMINE SCALE FACTOR (SCF) FOR F SO F 1S OF DRDER ONE

IFCCOABS(C(1)) NE,COABS((1,015,8,00))) GO TO 20
DO 10 I#4,8

FMCI)SCDABS(PF(I))

G0 70 4@

DO 30 Is1,4

FM(T)eFM(I®Y)

FM(5)=CDABS(F (%)) |
SCFaDMAXY(FMCL),FM(2),FMC3) ,FMC4) , FHES))
IF(SCF,NE,D,D2) SCFai,00/SCF

DETERMINE IF FUNCTION 18 SINGULAR (TSCFMEQ), IF ITSCF.GT.i,
FUNCTION IS CONSTANT AT TWO OR MORE POINTS,

ITSCFs0

DO S0 1=§,S

TSCF(I)sSCPaFM(I)
IF(DABS(TSCF(I)»1,00),6GT,ZERD) GO TO 50
ITSCFsITSCFed

Jsl

CONTINUE

IF(ITSCF,GE,2) GO TO 70

TSCFMaQ,00

DO &0 Is=4,S

IF(1,EQ.J) GO TO o602
IF(TSCF(I).GT,TSCFM) TSCFMsTSCF(1)
CONTINUE

IF(TSCFM,GT,ZERO) GO YO 70

WRITE (S1,5Q1) (F(CI),I=4,5)

FORMAT (* ERROR STOP = SINGULAR FUNCTIONS’,/1P10EL2,4)
$TOP ‘

00 80 Is¢,5

FF(I)nSCFuF (1)

IN28Z(1)=2(3)
IN1sZ(2)=2(3)
2182 (4)~2(3)
22a2(5)»2(3)

GNa2s (FF(§)=FF(3))/2IN2
GNis(FF(2)=FF(3))/IN¢
Gin(FF(4)=FF(3))/1}
G2s (FF(S)=FF(3))/22

24



SO0

90

ZOENOMNY .00/ (Zi=ZNY)

FIMIoFF (4)»FF(2)

"IF18Z3wFF (4) ' .

ZFIMtlZFSHZN!*FF(33

GiMinGi=GNY

RAT® (ZN2wZ31)#ZDENOM
AN2SRATRF {Mi=FF (1) +FF (4)
BN2aRATHZFIML=ZN2WFF (1) +2F1
CN2aGN2=G1eRATHG MY

RATS (22=21)#ZDENOM
A2SRAT#FLIMIwFF (5)+FF (4)
BamRATWZFIM1Z20FP (S)¢2F1
C20G2G1=RATHGIM]

C(4)mA2uBN2eAN2uB2
C(S)sCawBN2mCN2nB2

-c(a)-Azuch-Ana-ca

TEST FOR cASES NHERE DENUH!NAYOR GOEFFIC!ENTS VANISH.

IF(CDABSCC(“JJ GT ZEROD) GO TO 92
C(4)mA2
c(s)sCc2

€c(6)s(2,D0,0,00)

x!thABSIC(SJJ.LE ZERQ) C(4)=(4,D0,0,00)
C(3)'ZDENDHi(GIM!QC(“)*F!H!*CKSJ*ZFIMI*C(GJJ
c¢2)--21*c(!J+G:~cta)orrt43-(c(53¢21~0t633
CCLI)mPF(3)wC(4)

RETURN o

END
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