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ABSTRACT

This note describes a technique for determining the coefficients for
a vector wave function expansion of the form:
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The case where K is a solution to Maxwell's equations is handled specif-
ically., The difficulty associated with the orthogonality relations for L,
M, and N is circumvented using the orthogonality relations for the vector
spherical harmonics.

Both the vector and scalar coefficients are determined for certain
types of dyadic and vector expansions. The coefficients for the expansion
of the dyadic delta function are also given. :




[. INTRODUCTION

The study of System Generated Electromagnetic Pulse (SGEMP)
problems frequently requires solutions of Maxwell's equations in regions
here there is a distributed current density. Typical solution techniques
determine the solutions of the vector wave equation as an’eigenfunction
expansion in solutions to the homogeneous wave equation. In scattering
problems the electric field typically has zero divergence and therefore re-
quires only solenoidal vector functions for its expansion. In static prob-
lems there are no radiated fields so only irrotational vector wave functions
are required. In many SGEMP problems both types of solutions exist. It
ay therefore be desirable to be able to expand a general solution to Max-
ell's equations in terms of the complete set of solenoidal and irrotational
vector wave functions.

The Vector wave functions normally used in finding solutions to the
omogeneous vector wave equation are the L, M, and N sets of. functions
efs. 2,5,6). The difficulty in determining the unknown coefficients of
ch an expansion is that while the three sets of vector wave functions

an a solution space of interest the sets are not completely orthogonal
ef, 6/418).

" It will be shown that this problem of nonorthogonality may be cir-
vented by expressing the vector wave functions in terms of the vector
herical harmonics and using their orthogonality relations to develop a
t of simultaneous linear equations for the expansion coefficients.

In this note the properties of the vector wave functions in spherical
ordinates are first discussed. Included in this area are discussions of
the vector spherical harmonics and their orthogonality properties and the
orthogonality properties of the vector wave functions. In Chapter II the
wave functions described above are used to expand an arbitrary vector in
a restricted solution space of Maxwell's equations. The coefficients are
determined as integral transforms of the radial part of the vector being
anded. The first section of Chapter IV contains a generalization of the
vector expansion techniques for use in expanding dyads. Chapter IV is
concluded with an expansion of the dyadic delta function as an example.
For completeness Chapter V contains a well-known expansion of a scalar
function in solutions to the scalar wave equation. The results of the
scalar and vector techniques developed in this note are compared by ex-
panding the divergence of an arbitrary vector using both techniques.




II. THE VECTOR WAVE FUNCTIONS

The Vector Spherical Harmonics

| Three sets of vector spherical harmonics are useful in expressing
the vector wave functions. These functions may be defined in terms of the
scalar spherical harmonics in the following way (Ref. 2/Appendix B).
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(Vg is the gradient operator on the surface of a sphere.)

The vector spherical harmonics defined in equations (1), (2), and (3)
have some useful orthogonality properties (Ref. 2/Appendix B). The writ-
ing of the orthogonality relations may be simplified considerably by using
the following notation, which has been previously established (Ref. 3/Ap-
pendix A).
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The Radial Functions

A set of radial functions which is useful for expansions of this type
is the set of modified spherical Bessel functions denoted by f (yr). This
set of functions can be related to the spherical Bessel functlons (Ref., 2/
Appendix B) (j, (kr) and h( )(kr)) in the following way.

‘ffl”wr) =i (yr) = i (kr) = 1% (-ivr)
ey =k r) = 4" (2’<k ) = 0Py
where
Yr = -Sc£ = ikr

The functions f(Z) (yr) are requlred for mathematical generality for
any series expansmn. However, in practice the outgoing wave portion of
a solution to Maxwell's equations can frequently be determined from a
scattering term. The integrals required for determining coefficients for

' the outgoing wave portion are difficult and complex. The expansion set

will therefore be restricted to functions which can be expressed by usmg
only the f( (vr) solutions. l

The modified spherical Bessel functions can be expressed as a finite
series of elementary functions (Ref. 2/Appendix B).
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Three sets of vector wave functions may be defined (Ref. 5), These
\ree sets of functions may be formed from solutions to the scalar wave
quation
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Since only restricted solutions of Maxwell's equations are being con-

idered, the superscript £ will henceforth be restricted to 1 and will be

uppressed. ‘ o

The first of the vector wave functions has vanishing curl but non-

anishing divergence and is used in expressing the longitudinal part of a

ector. The curl free vector functions are
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The other two vector wave functions have vanishing divergence but
on-vanishing curl. These sets of functions may be used to expand the

ransverse part of a vector. The divergence free vector functions are
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where the vector spherical harmonics in equations (12), (13), and (14) are

defined in equations (1), (2), and (3).

' The vector wave functions are all solutions of:
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Due to the ide‘ntity
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Using these relations it may be shown that
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Drthogonality Relations

The vector wave functions have some interesting orthogonality prop-

rties. The writing of these equations can be greatly s1mp11f1ed using the
1otation defined in equation (4).

5 0

Two orthogonality relations are given by’
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The most interesting relation and the one which makes expansions
difficult in these wave functions is: ' ‘
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Equation (22) prevents the set E T/I and N from being mutually
orthogonal but does not prevent its use as a set used for expansion of some
vectors.
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Additional orthogonality relations exist for E, M, and ﬁ, but they
will not be used in this note.




III. EXPANSION OF A VECTOR
IN THE VECTOR WAVE FUNCTIONS

Consider a vector function K(r). This vector may be expanded in
the vector wave functions with certain restrictions to assure emstence
of the expansion coefficients. R(r) will be a function of r, 6,4, If ris
held constant, the function remaining may be expanded in the vector
spherical harmonics if the 6, ¢ function is L2, The expansion is complete
in these functions. The remaining coefficients in r can be expanded only.
if the integral J:)°° -f(r)in("}*r)rzdr exists. < is restricted to be to the right
of a contour from v - iw to Yy + i where v, is an arbitrary real con-
stant. The radius variable r is real and positive. Therefore for some
Yo this integral will converge if f(r) is Fourier transformable. Actually
the integral will converge somewhat faster than the Fourier transform
because of the 1/r® behavior of the in(yr) functions., With these restric-
tions K(r) may be expanded as '

1‘25-17;;[ dvz }: Z[A JNE (1T
7,0 ; '
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Equation (23) may be expressed in terms of P, Q, and R using equations
(12), (13), and (14) as
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where o is an index set consisting of m, n, and o.
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nd may be solved immediately by integration.

)

has meaning only for r > 0.
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Scalar multlplymg equation (24) by Pay, Qa" and Ray, respectlvely,
nd integrating over 6 and ¢ provides the following relations.
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The first two equé.tions above form a set of linear simultaneous

quations for Ag(v) and By (Y). Equation (27) is a single equation in Cq(7)
We would like to maintain

the analogy that r represents the radial coordinate and as such is real and
Carrying out the required multiplication by

1(7'r)r2 and integration over r results in the following set of equations.
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Performing the required integration in equation (28) and interchang-
ing v' and v yields

n+1

c = 4(- ) in('yr)rz (29)

or C,(v) may be written as:
o0

n+1 . 2

C, (v) = 4(- 1) j; ra(r)ln('yr)r

Note that the: functlon coefficient Cy(v) is an integral transform of the
radial portion of K, i.e., 74(r).

Solution of equations (25) and (26) for Ay(y) and By () is a bit more
complicated since the r dependence must be eliminated before the linear
equations are solved. Equations (25) and (26) may be written as:

'Yo+ioo .
_ 1 . nn + 1).
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o

The modified spherical Bessel functions in equations (30) and (31)
may be expanded using the following recursion relations (Ref. 1, p. 444)
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Substitution of equations (32) and (33) into equations (30) and (31)
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Multiplying equation (37) by n and subtracting equation (37) from equation
(36) yields:
. ’Yo+ioo
T - dy[(2n + l)Aa('y) - n(2n + 1)Ba('y)]1n+1(7r)
v =i
o
= (@n+ Dp_(x) - n@n + Do (r) 4 (38)

Multiplying equatlon (37) by (n + 1), addmg equatlons (36) and (37), and
d1v1d1ng by (2n + 1) yields:
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Multiplying equation (38) by in+1 (V' r)r2, equation (39) by ir'1 1(y! r)r2,

te=grat10n, etc., yields:

0
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integrating them both over r from 0 to «, carrying out the requlred v in-

®




Since the elements of equations (40) and (41) are now functions only .

of v, this set of equations may be solved for Ay(y) and By(v).

and

A () - nB_ (1) = aly) | (42)

A+ (n+ 1B (v) = By | | . (43)

The solutions for this set of equations are:

8,0 = gl s e+ nB] | (44),
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 Expanding equétions (44) and (45) using the definitions of «(y) and

B(y) yields:
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. These equations may be greatly simplified using the recursion rela-

tions in equations (32) and (33) and the definitions in equations (25), (26),
and (27)
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required to derive the expansion coefficients.
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Where equation (29) has been included for convenience.
coefficients given above contain all the unkrown information needed in the
2xpansion for K(r) given in equation (23). There is, however, some addi-
ion symmetry information contained in the above three equations.

(46)

(47)

(29)

The three sets of

Equations (29), (46), and (47) may be written in matrix form. The
first column vector is made up of the expansion coefficients. The next
vector is a row vector which is made up of a set of integral operators.
The matrix which transforms the integral operators into the sets of ex-
pansion coefficients consists of the kernals of the various r transforms
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The parallel matrix formulation of the L, M, and N functions in the
P, Q, and R spherical harmonics has similar transformation matrix. In
this case the spherical harmonics themselves form the constant matrix,
with no integration implied. Post multiplication is used and the transfor-
mation matrix is the transpose of the transformation matrix given above. '
The matrix formulation of the L, M, and N functions is given below.

© The methodology for evaluating the above coefficients for a specific

vector is straightforward, but for clarity, an expansion of the dyadic delta
- function is given in Chapter IV,

(;l(vr) D RV 0\

i
r n
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M R
a a

\0 0 in('yy
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IV. EXPANSION OF THE DYADIC DELTA FUNCTION

Lxtension of the Wave Function Expansion to Dyads

el

Equation (23) and the derlvatlon steps leading to the coefficients

iven in equations (29), (46), and (47) may be easily generalized to include
he expansion of dyads. Consider the expansion of an arbitrary dyadic
unction in three dimensions. The dyadic function has the same general
estrictions as the vector expanded above. In spherical coordinates the
xXpansion can be given as:

® 5 hochag

- ' ‘Yo+ioo _ ‘ ‘
— _ 1 - _b.‘.
K(r) = 27ri/ . dy Z Z Z anc('y,r)Aan(:V)
Y =ico m=-n e
o) o=
o
+ Nnmc(v,r)Bnma(v) + Mnma(w,r)Cnmo(v) (48)

The vector products above are outer or dyadic products. The dy-
dic 'expansion coefficients analogous to the vector expansion coefficients |
re given in equations (49), (50), and (51). The products forming the co-
fficients in the example are anterior dyadic products. An analogous case
nay be developed using a posterior outer product. For this case the vec-
or products in equation (48) must be commuted. Also, the bracket prod-
cts of the form

<Q, i K>

nust be commuted. The coefflclents for the anterior outer product case
ollow.

e <t 0 W E

- N
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i (yr)r’ (49)
n ' i

+ n e , ‘ ‘ (50)

C (‘Y) = 4(- 1)n+1f dr __a in(‘)/r)rz« ; (51)

: ' These coefficients complete the expansion for a dyad in the function
space of interest. They may now be applied specifically to the dyadic
delta function. .

Expansion of the Dyadic Delta Function

The dyadic delta function T6(r - r') has the followirig form

1 0 0
T6(r-r') = |o 1 ol s -1" (52)
0 0 1

-19-




"his function is useful as a driving function for use in obtaining a dyadic

LBl g0 WS

[as

he appropriate homogeneous differential equation. An expansion of equa-

tion (52) in eigenfunctions of
2 2= =
(7 YA =0 | | (53)

s given in the form of equation (48) in equatlon (53). Note that the f_:n(y;)
unctions are not solutions of [V X V X + v ]A 0. These two differen-
ial equations are not equivalent in the source region. Note that the an-
erior and posterior forms of equation (53) lead to the same expansmn be-
ause of the symmetry of the dyadic delta function.
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pary ‘ — —n' . — ' — e '
+ N mo('x,r)Bnmo(v,r ) + Mnmc(v,r)cnmg(v,r )

‘Yo+ioo
=5—=| = 4L (nr)A (xr) + M _(v,r')B (v,r)
Y —lco o
o ,
—— d' — —
+ Na(v,r )Ca(v,r) (54)

The coefficients are then derived from equétions (49), (50), and (51)

. . B e, ¢)
A () = 4(-1)7i' (yr") —
o n .
<P, : P>
n Q(6',¢" .
+ 4nn + 1)(-1) a i (vr ) (55)

T <&ie>"
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rireen's function for various vector differential equations. The mose use-
ul form of the dyadic delta function is as an expansion of eigenfunctions of

O
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v <a o>
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R>n

The normalization products are defined specifically in equations (8)
and (9). Knowledge of the coefficients given in equations (55), (56), and
(57) completes the expansion of the dyadic delta function.

This expansmn is also an example of how the technique developed in
this note may be used to calculate the coefﬁclents of any vector or dyad
in the space of solutions to the vector Helmholtz equation or vector wave
equat1on.

-21-




V. SCALAR FUNCTIONS

Introduction

Completeness of this discussion of the expansion of vectors and
lyads in terms of the vector wave functions requires a discussion of the
arallel expansion of scalar functions in terms of the scalar wave func-
ions. If the scalar function that is being used in the expansion is repre-
ented as the divergence of a vector then the expansion may be used to
heck the coefficients of the vector expansions developed earlier in this
10te.,

SN 0 n 9 0

=

xpansion of a Scalar Function

A scalar function Ky, (r, 6, ¢) may be expanded in an orthogonality
expansion using solutions of the scalar Helmholtz equation as the expan-
ion set. Let " '

n

K (1) = 5= | ) .Dy (v,7) , | (58)
- (

s

vhere the q;a(.'yF)‘are solutions of
% - Py () = 0

and may be written as

p,0T) = i ()Y (6, 6)

Equation (58) may be written as

70+ioo
- _ 1 . 7
K, (r) = 5= . d’YZDaln('yr)Xa(O,w
'Yo-loo a
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- 1. )
‘KL(r) = ———[ dvg Daln(vr)Ya(G, ¢)

2ri v -ic
o ‘

The unknoWn coefficients, D,, may be determined in a straightfor-
ward manner by using the orthogonality relations of the Y,(8, ¢).

<Y ’KL> | 1 Yoﬂoo
> - 271'1/ -ioo

d'rDaln(‘Yr)

Multiplying both sides by inp(Y' r)r2, integrating over r, and carrying
out the requ1red v integration ylelds

i (yr)r? | (59)
n

]?a : 4(-1)“”[ Zi I; ;

. Let the scalar function KL(r) represent the divergence of a vector
K(r). Substituting this definition into equation (59) yields

n+l [ <Yoz’v' K> 2" o
D = 4(-1) i (vyr)r : (60)
a- <Y ,Y > n
Jo o’ T«
for the expansion
Y +ico
. - — _ —1-

VoK) =5 ~dv) Dy, (61)

Y -ico a

The Equivalent Vector Expansion

The expansion described in equations (60) and (61) may also be found
by expanding the vector K(r) as in Chapter III and taking the divergence of
the expansion.

-23-




‘yo+ioo
K(r) = =— ‘ d—yZAaLa(vr) + B N_(yr) + C M_(yr) (23)
TYO'IOO o3

[he appropriate coefficients are given in equations (29), (46), and (47).
Taking the divergence of equation (23) yields

—

b

Y +ico
o

. d’yZAaV * L) (62)
"{o-loo o '

since V* My = V * Ny = 0. The divergence operator may be commuted
with the integral and sum operators since ¥ is independent of the coordi-
nates and the series is convergent by assumption.

Equation (62) may be reduced using the relations:

— — _ 1 Py - -
v o La(r) ='7V Vq;a(r) = ‘fq;a(r)
Therefore:
+i
N 'yo ico -
v . K( r) = P . d‘YZ’YAaq;a(‘Yr) (63)
'yo—mo o ‘

Comparing equations (61) and (63) demonstrates that the two are expan-
ions of the same function in terms of the same set of orthogonal functions.
he coefficients must be the same, Therefore we would like to show

Da = '}'Aa (64)

quation (64) may be proved by substituting equations (46) and (60) into
quation (64) and then reducing the resulting expressions to an identity.
his may be accomplished if the normal component of the product q;K('Yr)
s restricted to vanish at infinity. This is a less stringent restriction on

-24-




O

Iz("y;) than the restrictions required to assure convergence of the trans-
forms in equations (29), (46), and (47). If these coefficients do not exist
then the comparison is meaningless. - ‘ ‘

Compamson of the Techmques

Substltutmg equatlons (46) and (60) into equation (64) yields

i (’yr)r2
n

>
ot o ST

P K
= 4(-1)nf dr{i! (’Yr) < _>‘
o <P Pa> ‘

<—Qa : I2> ‘iﬁ(”) 2

+ nn + 1) —= yr | - (85)

Qi > "

Dividing through by the various normalization constants yieids.

foodr<Ya,V . f{.>in('yr)r2 = -'onodr<§a ;‘f{.>in('yr)
) )

i ('yr)

+ QK> = — (66)

Observing that the parts of the right side of equation (66) look sus-
picously like L, (yr) functions and combining the two integration notations
allows equation (66) to be written as '

fq,av . Kav = -f Vg, + KAV (67)
' v
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The two sides of this equation now differ only by a term of the form

fv« (pK)dV = fq,ﬁwr)- fids | ‘ ~ (68)
\% /S | ‘

The integral over the boundary described on the right side of equa-
on (68) has been restricted to vanish as S is extended to infinity. There-
bre the equivalence of the coefficients in equation (64) is established. ‘
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Vi. RECOMMENDATIONS

The expansion of the dyadic delta function and the expansion tech-

" nique itself provide useful information for formulating a general dyadic

Green's function in spherical coordinates. Additional work is needed to
determine the completeness and uniqueness properties of expansion tech-

' niques for dyadic Green's functions near a distributed source density.
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