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Abstract
In this note, the method for performing an exact
surface integration for the E-field integral equations is
outlined, and a comparison with the often used thin-wire
approximation is made. It is found that for pulse type
basis functions, the thin-wire kernel is valid for cell
sizes greater than about eight wire radii, with an overall

error in the kernel less than one percent.




In the numerical determination of the current flowing

on thin-wire antennas and scatterers, a form of the E-field
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integral equation is often use

d(l). For a straight wire of

length L -and radius a, the Pocklington form of the equa-

tion is
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and the Hallén form of the equation is
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ere the distance R between source and observation points
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these equations, J(6',z') is the axial current density flow-

given by R = *J(z—z')z + 4a“sin as shown in Figure 1.
1g on the wire, and A and B are constants of integration
ich are found by fequiring that the total current at the
re endé be zero. Note that the effects of end-cap currents
ve been neglected in these equations.

In the usual manner, thekcurrent density is assumed

be indépendent of the 6' coordinate of the wire, and

lated to the total current at 2z' by
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Figure 1. Geometry of the problem.




J(',z'") = I(z')/2na (3)

This is due to the assumption that the wire is thin compared
to a wavelength. Both of these integral equations thus have

an integral of the form
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to be evaluated.

The solution of Egs. (1) or (2) is usually achieved
by using the method of moments(z) to form a matrix equation
which is then inverted numerically. One type of basis
funétion for expanding the unknown current’is the pulse
function, which is non-zero only within a small zone or cell
on the antenna. For adequate representation of the current,
it is required that there be many such cells pei wavelength.
If delta functions are used as the testing functions, a

typical integral that must be evaluated is
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where zj is the source point and z; ~is the observation

point. The value 6=0 has been chosen without loss of




generality, and A is the size of the source cell. This
double integral must then be eva;uated for all z; and zj
on the wire to form the matrix representation of'Eq, (1)
or (2).

For z; outside the range of the z' integration
of Eq. (5), the integrals are easily carried out numerically.
For z, = zj , however, thefintegrand is singular at 6' = 0
and cannot be evaluated numerically. Let the integral of

this singular integrand be T. Then, with a slight change

of variables, and omitting I(z'), T becdmes
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which is the singular integral to be evaluated.
One way of evaluating Eq. (6) is to use the thin-

wire approximation which is
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This may be integrated numerically, or, as done by Harrlngton( ),

approximated by
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T = f%.gn(é) - l&é : (8) <:)

for kA << 1 and A >> a.

To accurately treat the integration in Egq. (6), one r
can integrate the singularity analYtically. Interchanging
the integral signs in Eq. (6) gives
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where R 1is now defined as R = ‘k2+4azsin2% .
Expanding the term e“JkR as 1l-jkR+-.. and retaining
only the first two terms, yields for kA << 1, <:)
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The negative term of the integrand is easily inte-

grated and by using 200.01 of Dwight(3), the integral over

z may be performed on the 1/R term, yielding




The second term of the integrand in the above relaﬁion is
singular and must be integrated analytically. Using 865.41 of

Dwight, Eg. (11) then becomes
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This last integral is non-singular and easily determined by
machine integration. the that this result is valid for
any size zone A compared with’ a , as long as kA 5> 1.
As A/a becomes 1ar9e, the value of (12) becomes close
to the approximate value of Eq. (8). |

In comparing Egs. (8) and (12), it is seen that the
imaginary values of the integrals are identical due to the
consequence of aseuming kA small. The real parts are
different and'the percent difference of the thin-wire value
relative to the exact value is shown in Figure 2 as a function
of A/a.

As seen from this figure, the deviation between the
two methods is under 1 percent for A 2 8a. As A becomes
smaller, there may be appreciable error in the kernel and
at high frequencies where A 1is necessarily small to ade-
quately sample the current, the numerical fesults of the

entire problem may be in question(4).
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Figure 2. Percent error of thin-wire integration

relative to the exact value, as a function

of the cell size

A/a.
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