MATHEMATICS NOTES
. NOTE 26

BRUT

A System of Subroutines for the Generation of Contours

July, 1972

Terry L. Brown
The Dikewood Corporation

Abstract

Subroutine BRUT is a multi-purpose code that finds and plots any number
of specified contours in a given domain defined by a two-dimensional
array. Plots can be produced on microfilm or Calcomp.

I INTRODUCTION

In many instances in the investigation of EMP simulation and phe-
nomenology contour graphs have been and continue to be used to condense
much information into one graph. This has been demonstrated in the
theoretical studies of the TORUSY 2, ARES® % ALECS and ATLAS®
simulators as well as high altitude phenomenology. 6 Contour plots have
been made of such quantities as fields in time and space, error deviation,
uniformity, defraction and field and potential mappings. The field and
magnetic potential or stream function mapping might prove to be
especially interesting if an approach is taken as described in SSN 1487
as opposed to that in SSN 21, 8 For example, by defining a complex

potential function

w(¢) = u(x, y) + iv(x, y)

{ =x+iy (1)
and allowing a complex mode function to be defined as
— Rrad =9 : .
go(x, y) + 1ho(x, y) wi() (2)

readily gives the electric field components by

Aawl(¢)

Y; (3)

go(C) = iho(s’) =

The field and potential graph are obtained by simply plotting con-
tours of fixed values of the u and v functions. The subroutine described
here, having been useful in some past studies, may prove helpful in the

future regardless of the conceptual approach.

I GENERAL

Subroutine BRUT is a sure-fire, brute-force method for calculating
and plotting contours in a specified domain. Given a doubly dimensioned
array defining a surface and the desired values of contours, this routine
will calculate the coordinates (x,y) of each contour and plot it in a region
determined by the user, Any number of contours, positive or negative,
can be requested but aesthetic spacing is the user's responsibility. Since
a complete search is made vertically and horizontally through the array
for each contour no problem exists from multi-valued functions in x or Y.
Likewise, disconnected contours in the region of interest prove to be of
no conseguence,

This subprogram exists mainly as three distinct and separate sub-
routines. The first routine finds the contours as (x,y) data points, the
second sequentially orders this data into an assemblage of continuous
coordinates and the last is a plotting routine that graphs the ordered data.
A short sorting routine called by the ordering subroutine is included.

Subroutine BRUT finds the points for a specified contour by first
holding x constant and looking through the y's to determine if that partic-

ular contour value has been encountered. That is, for a given contour C

C.=(&x,y)={l .. y <y<y m=1,2,3,...,M
* UTh XX TmT T Tmtl n=1,2,3,...,N (4
i< 500

If so, a linear interpolation is used to achieve the approximate y. The x
is then incremented for another search (xi = x +1) until the domain of x is

exhausted. An analogous search

C sd(x.,y.)z l e X < x.< X m=1,2,3,...,M
y Uy |y, BT IT Tt =1,2,3,...,N (5
j< 500 - i .

is then made across the array holding y constant and incrementing x,
Theoretically speaking then, the maximum distance betwcen valid points

(x,y) in the union of these two sets (Cx and Cy) would be

1/2
2 2
8= A +a)

where

Ax " Xn-f-ll’ Ay : ‘yn) yrrl-ll (6)
It is assumed, of course, that the radius of curvature Rc >> A d° Obviously,
the finer the grid, the more accurate (and smoother) the graph.

This generally discontinuous set of points generated by BRUT is then
arranged by subroutine ORDER to allow a continuous line to be drawn, It
is the responsibility of subroutine ORDER to determine the correct sequence
of points along a given contour. This is accomplished, generally, by first
sorting on the abscissa values of a contour and examining the points to
determine if any points are within an appropriate distance (A d) of a given
point ((xi,yi) i=1,2,...,N). When more than one point satisfies the
criterion a look ahead feature chooses the closest point and orders accord-
ingly. Not all starting and ending points are connected and in these cir-
cumstances a gap is left which is <A q° Subroutine ORDER may be called
several times for one contour if BRUT senses points that have not been
ordered. This would happen, for instance, if the particular curve appeared
as completely disjointed line segments in the graphing region. It might be
noted that fewer than four points are not plotted. '

The last subroutine, D4, is a general-purpose linear-linear graphing
routine. This routine is called from BRUT at the outset to initiated the
plot, With this call, the region of interest in which the contours will be
plotted is drawn and scaled. Thereafter, D4 is called from ORDER to

plot, as overlays, all the curves of the various contours, It is impossible

-5-

to tell in advance how many calls to D4 will be initiated from ORDER,
therefore the terminating call for the plotting routine is made from BRUT,
An option that might be of interest is the possibility of inserting a COMMON/
GOOP/+++ card in the calling program in which the arrdys SAVEX and
SAVEY have been filled. Making this addition and changing the number of
points to be plotted in tﬁe first call to D4 (card BRT4) would allow the user
to draw some initial line or boundary pertaining to his problem. Figure 1A
shows an example of an image boundary included by this method,

There are four arrays whose dimensions mighf need to be altered if
the dimensions of A (the abray defining the surface) are large; These
arrays are SAVEX, SAVEY, PX and PY, An error message will be written
if overflow occurs. When this happens an attempt is made to order and -
plot the data to that point at which overflow occurred. A general rule of
thumb is to have these arrays dimensioned about 2(M+N) where M arid N
are the dimensions of A. Of course if a contour is very long as compared
to the perimeter, for example like that in Fig. 1B, such that Eq, 4 or
Eq. 5 would be satisfied many times for a given X, or y; then an increase
will be necessary.

It is sometimes convenient to truncate a surface on which cross-
sectional contours are desired. This can be done; however, the set of
contour values should be judiciously chosen. Much time could be wasted,
for example, by trying to connect a plane region of points,

If the calling routine already utilizes another plotting package such
as GRAPH or CURVES, then subroutine D4 could be deleted and the exist-
ing routine used. Precautions should be taken to insure that the call
located in BRUT (card BRT4) is an initiating or dummy plot, all calls in
ORDER are overlays and the last call in BRUT terminates the graphing.
This substitution éhould be fairly straightforward for microfilm. However,
if Calcomp plots are desired, the change may prove to be more challenging
depending upon how the new graphing package positions itself between

overlays.

III OPERATION

Subroutine BRUT will produce graphs on either microfilm or Calcomp.
Plot 29 is needed from the DAFWL library to produce film while plot 20 is
used for Calcomp. In the program header card of the calling routine the
_FILMPL file must be declared for microfilm and TAPE10 file, along with
the appropriate tape request, for Calcomp. Also, for the case of Calcomp,
the card

CALL PLOT (0.,0.,40)
should be added to the calling program just before completion. An output
file is also required.

Storage requirements for subroutine BRUT (plus the necessary
library package) is approximately 47008 words exclusive of the A array.
About 33008 words are needed for just ERUT and ORDER if some other
plotting package is already present.

The time requirements of subroutine BRUT depend on several things.
Obviously, the number of contours wanted and the size of the A array are
the major factors in determining time consumption. Another factor to con-
sider is the length of the contours, Even though the search time for any
two contours is the same, the time required to order the points is differ-
ent if one contour is longer than the other. Looking for non-existent con-
tours certainly must be avoided if time is of the essence.

For a handle on the timing of this approach consider the graph in
Fig. 2. In this example, the dimension of the A array was 100 by 80.
Fourteen contours were requested and a total of 1197 points were found
and approximately that many plotted. The time required for this more or
less "typical" run was just under 7.5 CPU seconds. This was the time
lapse between the call to BRUT and the time control was transferred back
to the calling program. A complete breakdown of the number of points

found for each contour value is given in Table 1, though the value of the

individual contour is unimportant. The ordering time is also listed per
contour in Table 1. All storage and timing approximations are based upon
the AFWL CDC 6600 computer at Kirtland Air Force Base,

To use subroutine BRUT the calling program must furnish the stun-
dard FORTRAN statement

CALL BRUT (A,M,N, P,CU,NV,L,J)

The arguments of which are defined as follows
A - the two-dimensional array (M by N) defining the surface
M - dimension of A in the y direction

A(M,N) = (x

VY

N - dimension of A in the x direction

P - this argument is a dimensioned array (must be dimensioned 6
by the calling routine) and contains the following information
defining the graphing parameters

P(1) - minimum x represented on the graph
P(2) - maximum x represented on the graph
P(3) - minimum y represented on the graph
P(4) - maximum y represented on the graph
P(5) - scaling factor for x (the length between tic marks)

P(6) - scaling factor for y [under most conditions P(5) = P(6)
and since the frame size is about 10x 10 then (scaling
factor) x (the integral length) < 10]

CU - the array containing values of the desired contours
NV - the number of contours in the CU array

I - the integral length of the graph

J - the integral height of the graph

Note that the array A is loaded by columns. That is, A(m,n) is the mth

element in the n column in the M by N array.

An example of the ''raw'’ output from BRUT is given in Figs. 2, 3A
and 3B. These plots were produced directly from the computer generated
microfilm. The plot in Fig, 2 will be discussed in more detail later in
connection with time analysis. The technique used in BRUT has been
utilized in several different versions on a variety of problems. A few
graphs have been included as examples of Calcomp output (Fig. 4) and
microfilm output (Fig. 5). These last four graphs are included only as a
representation of the capabilities of the technique presented here.

Along with the advantages of this subroutine some of the limitations
might be noted, First, the curves on the graph are not labeled, This
forces an examination of the data or some other trick to determine the
value of each curve, Secondly, since much of the pertinent information
for the printout is contained deep within subroutine ORDER, altering the
cé:ding to cause printout to occur in the user's program may present a

problem. It can be seen that sometimes contours do not quite connect.

This may be of little consequence however since individual graphs can be '

"retouched" and for masses of graphs, e.g., movies, completely ignored.

0=

IV SUMMARY

The subroutine presented here, though simple in approach, has a
distinct advantage. Basically, it can be said that if the contour exists
BRUT will find it, This is better in many instances than a code that
follows a contour, say using a first derivative method, once that contour
has been found. Finding an isolated contour can be as difficult as follow-
ing it. And the ability to get the job done sometimes is as important as

the finesse with which the task was accomplished,

-10-

'.‘0‘

B

.'m 'l' v v
0.0 ol 2 .3 .8

f///// 5

A. Image plane artificially added

1-00. . . : . -
. .md I
«20 - A
-.20.- L
-.50 - L
-1.00 —_— . .
a.a -4 .8 1.2 1.6 2.0

B. Multivalued contour in x and y resulting
in contour length >>2(M+N)

Figure 1. Examples of Programming Considerations
-11-

v

v

-.50 ! L4 " v v v v v "
0'0 “ .2 l’ " .s Cs '7 QB

Figure 2. Microfilm Output from BRUT of a ""Typical Run"

, 1] 2] 3T 4[5 6] 7] 8] 91011 [i2 13] 14
Contour
value ,1_).16 .25 .4 |5 |63 .8 1. [1.25[1.6 2.0 |2.5 [3.2 |4
No. of
pts. found |16 |26 |39 |64 |78 |99 |129| 121] 129] 155] 139} 101] 63| 34
Order
time 024 1,042 [.070 |.138 |.184 }.263 |.401 |.316 |.292 |. 370}. 344.241.1281.059

Table 1. Contour Values, Time Expended and Number of Points Found in
the Graph in Figure 2.

-12-

<30

-SI-

2

D)J

‘.qn

2

N \\\

3 4 .S

A. Unaltered microfilm output

.6

o7 .8

D

0”1

<10+

0.00 4

“e l°‘

'.20;

'.m‘

-804

-.50

— s

B. Unaltered microfilm output

Figure 3, Examples of Quality That Can Be Expected from Subroutine BRUT

1.00 . .

080 - S
20 . s
-.20
[
-.6Q -] |
’ [
-1.00 + - . —
c.0 -4 .8 1.2 1.6 2.0
A. Unaltered Calcomp output
1.00) . . N
oso - | 3
+20 4 .
-.20 4 ' L
)
"'.sn - -
1
‘l -UO . y " ' ' > y
0.0 4 -8 1.2 1.6 2.0

B. Unaltered Calcomp output
" Figure 4. Field and Potential Plots Made With a Version of BRUT

-14-

om‘

Qw‘

<X

4

«20

<104

°¢m<

NA

A

0.00 4
“e ‘04

-.20-

-.13

0.0 .l

A. Unaltered microfilm output

Figure 5. Contour Plots Made With Variation of BRUT
-15-

REFERENCES

Baum, C. E., Sensor and Simulation Note 112, Low-Frequency
Magnetic Field Distribution for a Simulator with the Geometry of
a Half Toroid Joined to the Surface of a Medium with Infinite
Conductivity, July 1970.

Sancer, M. I., and A, D. Varvatsis, Sensor and Simulation Note 123,
Low-Frequency Magnetic Field Distribution of a Half Toroid Simu-
lator Joined to a Finitely Conducting Ground: Modified Ground
Connections, February 1971,

Higgins, D. F., Sensor and Simulation Note 128, The Diffraction
of an Electromagnetic Plane Wave by Interior and Exterior Bends
in a Perfectly Conducting Sheet, January 1971,

Higgins, D. F., ARES MEMOS 2, Diffraction at the Junction
Between the Wave Launching Section and the Working Volume of
the ARES Facility, April 1971,

Higgins, D. F., Sensor and Simulation Note 155, The Effect of a

Perfectly Conducting Ground Plane with a Symmetrically Located

Semi-cylindrical Hump on the Impedance and Field Distribution of
a Two-wire Transmission Line, June 1972,

Marks, J, A., Program HAPS, a Two-Dimensional Computer
Code to Calculate Electromagnetic Fields Resultant from High
Altitude Nuclear Detonations, March 1972, DC-TN-1214-8

Baum, C, E., Sensor and Simulation Note 148, General Principles
for the Design of ATLAS I and II, Part V: Some Approximate
Figures of Merit for Comparing the Waveforms Launched by
Imperfect Pulser Arrays onto TEM Transmission Lines, May 1972,

Baum, C. E., Sensor and Simulation Note 21, Impedances and

Field Distributions for Parallel Plate Transmission Line Simulators,
June 1966,

-16-

Appendix A
Listing of Subroutine BRUT

-17-

10

15

20
25
30

35

40
45

SUBROUTINE BRUT (A, MM, NN, P, CU, NV, IL, J)

DIMENSION A(MM, NN), CU(NV), P(6)

COMMON /GOOP/ DX, DY, K, SAVEX(500), SAVEY(500)

CALL D4 (P(1), P(2), P(3), P(4), IL, J, P(5), P(6) 1, SAVEX, SAVEY, 1, -1)
DY=(P(4)-P(3))/ FLOAT(MM-~1)

DX=(P(2)-P(1))/ FLOAT(NN-1)

NOMM1=MM-1

NONMI1=NN-1

DO 45 I=1, NV

K=0

DO 5 N=1, NN

DO 5 M=1, NOMM1

IF ((A(M, N)-CU(D)*(A(M+1, N)-CU(I)). GT 0.)GOTOS

K=K+1

IF (K.GT.500) GO TO 20

SAVEX(K)=FLOAT(N~1)=DX+P(1)
SAVEY(K)sFLOAT(M-1)*DY+P(3)+DY/(A(M+1, N)-A(M, N)))*(CU(I)-A(M N))
CONTINUE

DO 10 M=1, MM

DO 10 N=1, NONM1

IF ((A(M, N)=CU(1))*(A(M, N+1)=-CU(I)).GT.0.) GO TO 10

K=K+1

IF (K.GT.500) GO TO 20

SAVEX(K)=FLOAT(N=-1)*DX+P(1)HDX/(A(M, N+1)-A(M, N)))*(CU(I)=-A(M, N))
SAVEY(K)=FLOAT(M-1)*DY+P(3)

CONTINUE

PRINT 15, CU(I), K

FORMAT (1HO/1HO, 20X, F10.6,9H CONTOUR/33X, 13HNO. OF PTS. =, I4)
IF (K.LT.4) GO TO 45

GO TO 30

PRINT 25, CU(I)

FORMAT (1X, 23H*** ARRAY OVERFLOW FOR , F10. .6, 9H CONTOUR)
CALL ORDER (P)

DO 40 MISUM=1, 3

LOAD=0

DO 35 JOY=1,K

IF (SAVEX(JOY).GE.1.ES5) GO TO 35

LOAD=LOAD+1

SAVEX(L.OAD)=SAVEX(JOY)

SAVEY(LOAD)=SAVEY(JOY)

CONTINUE ’

IF (LOAD.LT.5) GO TO 45

K=LOAD

CALL ORDER (P)

CONTINUE

CALL PLOT(FLOAT(IL)*P(5)+3 6,0.,-3)

RETURN

END

-18-

BRT
BRT
BRT
BRT
BRT
BRT
BRT
BRT
BRT
BRT
BRT
BRT
BRT
BRT
BRT
BRT
BRT
BRT
BRT
BRT
BRT
BRT
BRT
BRT
BRT
BRT
BRT
BRT
BRT
BRT
BRT
BRT
BRT
BRT
BRT
BRT
BRT
BRT
BRT
BRT
BRT
BRT
BRT
BRT
BRT
BRT
BRT
BRT

D003 W bW -

10

15

20

25
30
35
40
45
50

SUBROUTINE ORDER (P) ’
COMMON /GOOP/ DX, DY, IPLOT, SAVEX(500), SAVEY(500)
DIMENSION PX(500), PY(500), P(6)
V=DX*DX+DY*DY

CALL SORT (SAVEX, IPLOT, SAVEY)
IMAX=0

TEMPX=SAVEX(1)
TEMPY=SAVEY(1)

K6=0

IFD=0

I=1

[P=1

GO TO 10

IP=2

I=JHOLD

PX(1)=SAVEX(I)

PY(1)=SAVEY(I)

PX(IP)=SAVEX(I)

PY(IP)=SAVEY(I)

KOUNT=0

DO 50 J=1, IPLOT

IF (SAVEX(J).GT.L E5) GO TO 50
SX=SAVEX(J)-SAVEX(I)
SY=SAVEY(J)-SAVEY(I)
DEL=SX*SX+SY*SY

IF (DEL.LT.1.E-12) GO TO 50
KEEP=0

IF (DEL.GT.V) GO TO 30

KK=J+6

KK=MINO(KK, IPLOT)

DELT=DEL

KEEP=-1 .
IF (J.EQ.IPLOT) GO TO 30

KB=J+1

DO 25 K=KB, KK

SXC=SAVEX(K)-SAVEX(I)

SYC=SAVEY(K)~SAVEY(I)

DELC=SXC*SXC+SYC*SYC

IF (DELC.LT.1.E-12) GO TO 25

IF (DELC-DELT) 20, 25, 25

DELT=DELC

KEEP=K

CONTINUE

IF (KEEP) 80, 35, 75

IF (IFD) 45, 40, 45

JHOLD=J

I[FD=IFD+1

KOUNT=KOUNT+1

IF (KOUNT.EQ.IPLOT .AND.IFD.NE.0) GO TO 55

IF (IP.GT .4) CALL D4 (P(1),D, P(3), M, M, P(5), P(6), IP, PX, PY,2, -1)

-19-

OR
OR
OR
OR
OR
OR
OR
OR
OR
OR
OR
OR

OR
OR
OR
OR
OR
OR
OR
OR
OR
OR
OR
OR
OR
OR
OR
OR
OR
OR
OR

OR
OR
OR
OR
OR
OR
OR
OR
OR
OR
OR
OR
OR
OR

OR

OR’

OO U D W

- IF (K6.EQ.1) GO TO 100

IF (IP.EQ.IPLOT) GO TO 95
IMAX=IMAX+1

IF (IMAX.LT .(IPLOT+5)) GO TO 15
TSX=PX(IP)-TEMPX °
TSY=PY(IP)-TEMPY
DEL=TSX*TSX+TSY*TSY

IF (DEL.LT.V) GO TO 110

55

60
65

70

5
80

85
90

95

100
105

110

GO TO 100

CONTINUE

IF (K6.NE.0) GO TO 80

PRINT 105, (PX(L), PY(L), L, L=1, IP)
SAVEX(IP)=SAVEX(IP)+1.E6 '

IF (IP.GT .4) CALL D4 (P(l): Dl P(3)a D‘ Mo M‘ P(s)a P(s)p IP: Px. PY. 2. "1)

IF (K86) 70, 70, 65

K6=0

TSX=PX(2)-TEMPX
TSY=PY(2)-TEMPY
DEL=TSX*TSX+TSY*TSY
IF (DEL.GT.V) GO TO 100
PX(1)=TEMPX
PY(1)=TEMPY .

GO TO 100

K6=1

GO TO 5

J=KEEP

[P=IP+1

PX(IP)=SAVEX(J)
PY(IP)=SAVEY(J)
SAVEX()=SAVEX(I)+1.E6
IF (J=-JHOLD) 99, 85, 90
IFD=0

JHOLD=0

I=J

IF (IP-IPLOT) 15, 95, 85
TSX=PX(IP)-TEMPX
TSY=PY(IP)-TEMPY
DEL=TSX*TSX+TSY*TSY
IF (DEL.LE.V) GO TO 110
PRINT 105, (PX(D), PY(D), I, =1, IP)
FORMAT(23X, 1HX, 14X, 1HY/(15X, 2E15.5, I4))
CALL D4 (P(1), D, P(3), D, M, M, P(5), P(6), IP, PX, PY, 2, -1)
SAVEX(I)=SAVEX(I)+1.E6
RETURN .
I[P=1P+1

PX(IP)sTEMPX
PY(IP)=TEMPY

GO TO 100

END

-20-

51
52
53

55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
5
76
77
78
79
80
81
82
83
84
85
86
87
88
89
80
91
92
83
94
95

97
98
99~

10
15
20

25

35
40

45

50
85

60

65

70

75

SUBROUTINE D4 (XMIN, XMAX, YMIN, YMAX, IL, IH, SX, SY, NPTS, X, Y, KIND, LAST) D4

DIMENSION X(NPTS), Y(NPTS)
DATA IFT, JFT, FX, FY/4HF6. 1, 4HF6.2, 0.6, 0.59/
IF (KIND-1) 10, 15, 5

IF (KIND-2) 10, 90, 10

RETURN

IF (10-2) 20, 25, 20

CALL PLOTS (TB, TB, 10)

10=2

CALL PLOT (FX, FY, 3)

REALH=IH

REALL-=IL

SCALEX=(XMAX~-XMIN) /REALL
SCALEY=(YMAX-YMIN)/REALH
RSCALX=1./SCALEX

RSCALY=1./SCALEY

DO 85 I=1, 4

GO TO (30, 35, 30, 35), I

NN=IH+1

GO TO 40

NN=IL+1

DO 85 N=1, NN

REALN=N

GO TO (45, 55, 65, 75), 1

R=REALN-1,

CALL PLOT (-.05+FX, R*SY+FY, 2)

CALL PLOT (FX, R*SY+FY, 2)
YNUM=R*SCALEY+YMIN

IF (ABS(YNUM).LE.1.E-10) YNUM=0.
RR=(REALN-1.)*SY-.03

CALL NUMBER (-.6+FX, RR+FY, .10, YNUM, 0., JFT)
CALL PLOT (FX, R*SY+FY, 3)

IF (N-NN) 50, 85,50

CALL PLOT (FX, REALN*SY+FY, 2)

GO TO 85

R=REALN-1.

RR=REALH+.05

CALL PLOT (R*SX+FX, RR*SY+FY, 2)

CALL PLOT (R*SX+FX, REALH*SY+FY, 2)
IF (N-NN) 60, 85, 60

CALL PLOT (REALN*SX+FX, REALH*SY+FY, 2)
GO TO 85

R=REALL+.05

RR=REALH-REALN+1,

CALL PLOT (R*SX+FX, RR*SY+FY, 2)
CALL PLOT (REALL*SX+FX, RR*SY+FY, 2)
IF (N-NN) 70, 85, 70

CALL PLOT (REALL*SX+FX, (RR-1.)*SY+FY, 2)
GO TO 85

R=REALL-REALN+1.

-21-

D4
D4
D4
D4
D4
D4
D4
D4
D4
D4
D4
D4
D4
D4
D4
D4
D4
D4
D4
D4
D4
D4
D4
D4
D4
D4
D4
D4
D4
D4
D4
D4
D4
D4
D4
D4
D4
D4
D4

D4

D4
D4
D4
D4
D4
D4
D4
D4
D4

OO g U B W N -

80
85
90

CALL PLOT (R*SX+FX, -.05+FY, 2)

CALL PLOT (R*SX+FX, FY, 2)
XNUM=R+*SCALEX+XMIN

IF (ABS(XNUM).LE.1.E-10) XNUM-=0.

RR=R*SX-.25

CALL NUMBER (RR+FX, -.25+FY, . 10,XNUM, 0., IFT)

CALL PLOT (R*SX+FX, FY, 3)
IF (N-NN) 80, 85, 80

CALL PLOT ((R-1.)*SX+FX, FY, 2)

CONTINUE

CALL PLOT ((X(1)-XMtN)*RSCALX*SX+FX. (Y(1)

" . DO 85 I=1, NPTS

95

XX=(X(1)=-XMIN)*RSCALX
YY=(Y(I)-YMIN)*RSCALY

CALL PLOT (XX*SX+FX, YY*SY+FY, 2)

IF (LAST.LT.0) RETURN

CALL PLOT ((REALL+3.)*SX+FX, FY, =3)

RETURN
END

-22-

~YMIN)*RSCAL*SY+FY, 3)

D4
D4
D4
D4
D4
D4

D4
D4

D4
D4
D4
D4

D4
D4
D4

51
52
53
54
55
56
57
58

59 .

60
61
62
63
64
65
66
67
68
69-

—neangd

s

10

15

20

25

- SUBROUTINE SORT (KEY, NUM, KEY1)

INTEGER KEY(NUM), T, KEY(NUM), T2

IF (NUM.LT.2) RETURN
I=1

[=I+] :

IF (I.LE.NUM) GO TO 10
M=I-1

M=M/2

IF (M.LT.1) RETURN
K=NUM-M

DO 25 J=1,K

I=J

IM=I+M

IF (KEY(I) .LE.KEY(IM)) GO TO 25
T2=KEY |(I)

T=KEY(I)
KEYI(D)=KEY1(IM)
KEY(I)=KEY(IM)
KEY(IM)=T2

KEY(IM)=T

Iz]-M

IF (I.GE.1) GO TO 20
CONTINUE

GO TO 15

END

-23-

" SRT

SRT
SRT
SRT
SRT
SRT
SRT
SRT
SRT

OO0 -3;®WLW)N -

SRT 10
SRT 11
SRT 12
SRT 13
SRT 14
SRT 15
SRT 16
SRT 17
SRT 18
SRT 19
SRT 20
SRT 21
SRT 22
SRT 23
SRT 24
SRT 25-

