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ABSTRACT

Techniques have been selected, developed, and implemented for
computing Bessel functions with complex arguments and real orders,
both varying simultaneously over extremely wide ranges of values.

- This paper describes these techniques and how they overcome such diffi-

culties as exponential overflow or underflow, storage of very large
arrays, and loss of accuracy during multiple sequences of recursion
relations in Bessel function calculations. A new approach to vali-
dation testing is presented and the computer routines which use these
techniques are discussed.
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DEVELOPMENTS IN TECHNIQUES FOR COMPUTATION
OF BESSEL FUNCTIONS BY DIGITAL COMPUTERS

1. Introduction

Two new computer routines have been written to compute Bessel
functions over extensive ranges of both arguments and orders. It was
recognized that, in many instances, users have needed certain mathe-
matical tools for use on computers (i.e., mathematical computer
routines) but many of these needed tools were either nonexistent or

possibly lacking in some aspect. As a part of the Sandia Mathematical

Library Project, these two routines have been written to provide the
user with a broader range of quality mathematical routines in the area
of special functions.

In the routine BESSEL a cylindrical Bessel function can have an
argument ranging over all quadrants of the complex plane with magni-
tudes in the tens of thousands. The range of orders is extremely wide
and can extend anywhere from zero to values beyond the magnitude of
the arguments supplied. This feature permits the order to be simul-
taneously of the same magnitude as the argument. The second routine,
BESSPH, provides this same feature for the spherical Bessel functions.
The capability of these two routines allows for applications in which
alternative, less-desirable methods would have been used because of
inherent restrictions in existing routines. This paper describes some

of the techniques employed to circumvent the intrinsic difficulties in
Bessel function calculations.
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2. Basic Theory
Solutions of the differential equation

2 Le B (22 (1)
dz
are known as-.Bessel functions of afgument z and order v. Some par-
ticular functions are those of the first kind J (z), of the second
kind Y (z), and of the third kind H(l)(z), H(z)(z) The functions
Y (z) are also known as Weber's functlons and the H( )(z), H(z)(z)
functions are known as Hankel's functions.

Alternatively, the function JU(z) can be defined by the equation

. L2k L
3@ = @6° T ey @)

and if v is an integer n, then

J-n(z) = (_1)11 Jn(Z) . - "..A-V_ l -

Otherwise, J_U(z) can be defined by substituting -u into equation (2),
replacing vu. : -

Yu(z) is related to JU(z) by

Ju(z) cos (um) = J_ (i)

¥, = sin (um) 2 3)

where the right-hand side of this equation is replaced by its limiting
value if v is an integer. The Hankel functions are related to Ju(z)
and Yu(z) by the equations

1P @) =3, + 1 Y (2) ,

(4)
() =32 - 17 HOP

In the case of real arguments, H(z)(z) is the complex conjugate of
H(l)(z) but it should be noted that for complex arguments we have
complex functions and this conjugation relation is no longer true.
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Solutions of the differential equation

2
2? 2_2 +22 P+ 122 - )] w = 0, (=0, £1, £2, ...) (5)

are known as spherical Bessel functions of argument z and order n.
Again we have particular solutions -- those of the first kind j (z),
of the second kind y, (2), and of the third kind (D (z), n(2 )(z). The
relationship between the spherical and cyllndrlcal functlons are

(@ = Van/z 3,02 ®
Yal@) = Vinlz Y2 = (D™ L@ )
hgD () = 5a@ 1 y@ = Va7 1@ (8)
B0 () = 1@ - 1y, = Ve 1@ . )

Of principal concern in this paper is the description and dis-
cussion of the mathematical methods that are specifically used in the
two routines for the evaluation of these Bessel functions. Before we
begin, however, it should be noted that there are various other ap-
proaches which can be used in evaluating these functions. The treatise
by Watsonl covers many aspects of Bessel functions, including various
series definitions, asymptotic forms, properties about the zeroes of
the functions, etc. The reason for using the particular equations and
techniques discussed here is a combination of three factors: (1) the
methods provide results with as much or more accuracy as results using
other approaches, (2) the methods provide results as fast or faster
than other approaches, and (3) the methods permit the routines to pro-
vide results over a much larger range of arguments and orders than ever
before (except for cases of extreme arguments or orders where special
asymptotic expansions can be applied).




Depending on the ranges of the function parameters, several
different mathematical methods are used for evaluating these functions.
Foremost are the three-term recurrence relations

F,1(2) + Fu (2) = 2L F (2) , (10
£a.1(2) + £y (2) = 2L £ () . . (11)

In (10), F denotes any of the above cylindrical functions or any linear
combination of these functions and, similarly, in (11) f represents the
spherical functions. Reasons for the use of these relations are the
ease of application and the speed with which a set of function values
can be obtained for a wide range of given orders. The equations (10)
and (ll1) are the most commonly used relations although many others
exist and can be used for special purposes such as evaluating deriva-
tives, cross-products, etc. For example, the Handbook of Mathematical
Functions® contains a long list of recurrence relations.

It has been shown by Gautschi3 that for the particular functions
JU(z) and jn(z) the recurrence relations of (10) and (11) are unstable
in the '"forward" direction, that is, in the direction of increasing
order. This instability results from the effect of the dominant so-
lutions of the differential equations (1) and (5) over the minimal
solutions, i.e., the dominance of the functions Yu(z) and yn(z). How-
ever, this effect of dominance is minimized by applying the recurrence
procedure in a "backward' direction (decreasing order). Miller4 first
developed an algorithm for recurring backward with strictly integer
orders and Goldstein and Thaler5 have done additional work with the
algorithm.

In the following discussion we shall present the technique of
backward recurrence as used in the routines BESSEL and BESSPH. Given
an argument z, the functions Ju(z) and jn(z) behave so that as order‘
increases the function values decrease in magnitude. This behavior is
used to our advantage in developing the backward recurrence. Let us

denote these functions simply by fv(z) and when we deal with a specific

function we will then return to the notation for that particular

function.




Suppose the largest order of the function desired is N, where
we denote the fractional part as

= |N| - Int |N]| . (12)

Then our approach is to choose some integer M such that M > N and
assign values

fp14n(2) = 0 and B () = £ (13)

In some journal articles ¢ is taken as unity for purposes of discussion
but, for added control over the growth of the functions during appli-
cation of the backward recurrence, it is to our advantage to make £
some very small value expressible in the computer, e. g.,g = 107 -200 for
the CDC 6600 computer,

Olver6 and Gautschi3

indicate that the criterion for M is that it
be sufficiently large to insure the desired degree of accuracy in the

end results., In our work, the value

M = Int :max. [(§|z|,N)] f + 200 (14)

has proved to supply this degree of accuracy (discussed in more detail
in Section 5). Then from (13) we can calculate the string of values

J % ' % %
fM-l‘l'n(z)’ fM'2+ﬂ(z)’ ey fN(Z), veny fn(z)

by using the recurrence relations. The very important point to recog-
nize is that although fN(z), ceey f (z) are not correct function values,
they are all properly related to each other in the same scale, provided
M is large enough. Since we can multiply the appropriate recurrence
relation by a constant factor without altering the relation, we need
only find the proper normalizing factor ¢ such that

£(2) = afp(2), £,1(2) = afl (@), ..oy £4(2) = afy(2) .




There are several ways in which we can determine this normal-
izing factor q. First, the spherical functions have the very nice

property of being expressed explicitly. Watson1 shows the equation
for Jnﬁ%(z) to be

R A e
<k(n-1) E s,
¥ cos (z-tmm) 3':: 0 (Zr-l-l)( ;t:-zii) ’:Zl)'zpq] (13)
which, for n = 0 and using equation (6), reduces the expression to
jo(a) = 222 (16)

Hence, we have the normalizing factor n by simply making the division
a = - 17

The problem of determining o for the case of cylindrical func-
tions is a bit more involved. When the orders are integers, we know
from Neumann's addition theorem® that

1-2@+2% 2 . \
k=1
If we have
. 12 o . 42
s = [55@] +2 T[], - a®

then let

3@ = 3@ 1V
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so that

@) " - [sta) s

and

by’ +2 = o)’ - ([g@] 2 £ belbe -

k=1 k=1

Since each Jk(z) was multiplied by a constant the recurrence relation
is still maintained and the functions J (z) satisfy the addition
theoreg. Hence, we may assume I (2) = Jk (z), k=0, 1,2, ..., and

= 8 2, This summatlon theorem is only one of many that could be
applled (see Handbook ).

However, in using the summation method, we first notice that an
error is introduced since we can allow the summation to extend only
over a finite range of orders and convergence becomes a part of the
criteria for M. Furthermore, unlike the nice functional behavior for
real arguments, the appearance of complex arguments can cause extreme
functional behavior. As an example,

for zy = 100 and zy = 100 + i 100

we have
J5(zy) =~ -0.007 and Jg(zp) ~ 2.7 x 10*0 + 1 8.6 x 10%0,

Several questions can be raised in light of this information. Clearly,
the large magnitudes would indicate the summation may need to extend
over a much larger range of orders than desired before (18) attains
some degree of validity when a finite number of terms is used. But
this leads us into the next question which is the problem of deciding
whether, in practice, we can ever handle magnitudes such as these and
expect to control the accuracy.

A more reasonable approach in determining the normallzing factor
is to calculate a very good approximate value for J (z), say 3 (z),
and then let

- 3n(z)/J:(Z)- | (19)
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I1f we have |z| < 10.0, the series (2) provides us with the needed
value Jn(z) and for |z| > 10.0 we can determine Jn(z), n < 1, from
Hankel's asymptotic expansion. This expansion and some of the compu-
tational aspects of using the expan51ons are discussed in Appendix A,
Should the circumstance arise where J (z) is zero, then the function
Jn+1(z) is used in determining the normallzatlon factor a. Otherwise,
we would have q :: 0 and this would clearly be an incorrect normalizing
factor for the sequence.

Let us now consider the evaluation of the functions of the second
and third kinds. As a result of their dominant characteristics, the
functions Yu(z) and yn(z) permit usage of the recurrence relations (10)
and (11) in the forward direction. Hence the problem in this case
reduces to determining good starting values to use in the recurrence.

For the spherical functions, the explicit expression makes every-
thing straightforward. We have

Yo(2) = - 52 vy (2) = - 225 Z + sin z) . (20)

A few more calculations are necessary to get the cylindrical
functions started. In the case where integer orders are to be used we
need Yo(z) and Yl(z) to start. For noninteger orders we need to de-
termine Yn(z) and Yn+1(z) where n == |uv| - int Ju|. If |z| > 10.0, the
Hankel expansion (equation (Al), Appendix A) will provide the values
Y (z) and Yl(z) or Y (z) and Yn+1(z) In the case |z( < 10.0, separate
methods are needed for integer orders as opposed to noninteger orders.
With integer orders, we can determine Yo(z) from the equation

2 2.2
Yy(2) = 2 (In(he) + v} Jy(2) + 2 {?’léz—)-z - (%) %z—)%
%22 3
+ (1+k+1/3) S(S—')-}- - }

and then from the Wronskian

3

Jl(Z) YO(Z) - JO(Z) Yl(Z) TS e

we can obtain Yl(z).

12




In the case of noninteger orders the series (2) can be used to
evaluate Jn(z) and J_n(z) and then using (3) we have Yn(z). Similarly,
we can determine Yn+l(z).

Because of the domination of the functions of the second kind
over those of the first kind we are safe in using the recurrence re-
lations in the forward direction to evaluate the remaining class of
functions. From the definitions of the third kind of functions we can
determine the starting values of these functions and then proceed to
use the recurrence relation. For example, to determine the starting
values for hél)(z) we use (8) together with (16) and (20) to give

hél)(z) = % (sin z - i cos 2)

and

h£1)(z) = iz (sin z - 1 cos z) - % (cos z + 1 sin z) .

In a similar manner, we would determine the lowest two orders for
Ju(z) and Yu(z) to provide us with the necessary H function starters.

One might ask why a recurrence on the Hankel functions is neces-
sary when the functions of the first and second kind could be used and
simply added to or subtracted from each other. As a result of the
oscillatory nature of these functions, the functional values will many
times be very nearly equal. If, in the finite precision of the com-
puter representations, we have the numbers alike, then we say that for
our purposes the functions are equal. We must be concerned when the
values are nearly equal. For during the course of studying techniques

and examining results, it was shown that although the functions of the

first and second kind were calculated to, say, an accuracy of 10 sig-
nificant places, upon combination little significance remained in the
real or imaginary parts (in some cases, both) because of cancellation.
But, by starting the Hankel functions with good values and allowing the
functions to run through the recurrence, the result was that both real
and imaginary parts of the functions were accurate, '

There is a special situation where the recurrence relation should

not be used to evaluate the third kind of functions. For strictly real
arguments and positive orders, the first and second kinds of functions

13
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provide strictly real results., Hence, both parts of the Hankel func-
tions can be accurately obtained by combining the other two functions
as shown in (4), (8), or (9). But why not use recurrence? Depending
on the argument and order, of the two numbers that would be carried
during recurrence (real and imaginary parts) one number could become
much larger than the other. As recurrence progressed, the smaller
would then either lose significance or become zero. Granted, if one
were only concerned with the magnitude of the function, this condition
would have little effect since the larger part would completely domi-
nate. But in other cases, for example multiplication of functions, it
is critical that both parts be accurate,

Aside from the equations and methods just discussed there are
also some very important approaches to be considered in evaluating the
functions of the first kind for a relatively small but still signifi-
cant range of arguments and orders. This much-used region is that for
which arguments are of méénitude |z] < 10.0. Basically, the approach
is to use the series (2) for the evaluations in this range. For the

spherical functions, jn(z), equations (2) and (6) are used. The series

is modified first by breaking up the gamma function so that

:""JU(‘Z) =(z/2)u TT‘-}’-’F_IT_ {1 + :Z‘:l (21)

(422/4)k }
KR ... (FD(

Evaluaéiéﬁ'iézéimplifié& by considering the series in (21) as
> 8
k=1

where

-22/4
B+l = ((k+1)(u+1c+1)) 2k

and

Hence, we have a two-term recurrence to evaluate the series of (2n).
For most applications equation (21) is calculated in a straightforward
manner and, because of the limitation that |z] < 10.0, convergence can
be achieved rapidly. For that matter, large orders or small arguments
improve the convergence rate,

14




Since one of the major features of the routines BESSEL and
BESSPH is to provide results for arguments and orders over large
ranges, we must also face the fact that we should be capable of pro-
viding results for very small arguments and orders. For very small
arguments, (21) reduces to the asymptotic form

3,02 ~ (22" oy - (22)

Let us first consider the situation where the asymptotic form is to be
used and the order is quite large. Our first reaction is to call the
result zero, but with very little effort we can provide a nonzero
result. That is, the logarithm can be calculated so that

in I, (@) ~v 1n(z/2) - 1n T(utl) (23)

and by using Stirling's approximation2 we have

In T(wl) = 1n v+ 1n T(V) ~ (utk) 1n v -u

« B
+% 1n2n+ 3 2k

k=1 2k(2k_1)U£k—I ’ (U—»a). (24)

The terms BZk are known as Bernoulli numbers and

]

Bg = 1/42, Bg

1/6, 34 = ‘1/30,

Equation (24) can be rewritten as

1n T(utl) ~ (utk) 1nu-u+%ln2n+-f%-g
1

1260v°

1

- +
360u3

cesey (Uma),

Note that we are restricting ourselves to large orders so the
approximation is appropriate and convergence is again rapid. For
smaller orders, the approximation becomes questionable and we can
achieve better accuracy by calculating the gamma function outright
first and then using logarithms of the function to finish.




s ")

During the calculation of the Bessel functions, certain argument-
and order-dependent relations between the functions must be observed.
These relations are discussed in detail in Appendix B. At this point
we have the methods and equations necessary for evaluating the Bessel
functions. However, there still remains part of the iceberg to be
uncovered., That is, although the equations are certainly valid as they
appear, several factors must now be considered in the process of com-
puter applications.

16
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3. Scaling

We have already noted that multiplying the terms in recurrence
relations (10) and (11) by a constant will not alter the relationships,
and hence the concept of scaling becomes very valuable, The reasons
for scaling actually result from the behavior of the Bessel functions
themselves.

By simply examining the tables in the Handbook2 for real argu-
ments it can be seen that, for functions of the second and third kinds,
exponential growth is typical as the order increases. The growth rate
is even more extreme when the arguments are complex. If we are to
allow a wide range of orders to be used then scaling of some nature
must be employed. '

On the other hand, functions of the first kind actually decrease
in magnitude as the order increases. This feature is utilized in the
backward recurrence by starting the recurrence with very small values,
But as the recurrence proceeds and order decreases, the growth pattern
is such that the computed functions increase in magnitude until a
relatively level plateau is reached (see Figure 1).

direction of recurrence

€5 ()

Figure 1.

To start, the order-over-argument term in (10) and (1ll) is the
dominant factor and during recurrence the magnitudes of the computed
functions increase. Also during the process of recurrence, however,
this factor reaches a magnitude less than unity and is no longer

17
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dominant. The role has been taken over by the computed functions and
growth of the functions levels out. In using a computer, the problem 4 ]t:)
to be aware of is that this plateau may not be reached before the

exponential capacity of the computer is surpassed. 1In fact, this is :
the usual limiting restriction on most Bessel function computer
routines, hence another reason for the use of scaling.

The clinching point which requires us to use scaling was demon-
strated earlier in a simple example. The fact that we are dealing with
complex arguments forces an awareness of the occurence of large func-
tional values. We may encounter large values not only after long use of
the recurrence (either forward or backward), but even in calculating
starting values or correction factors.

The general scaling method used during recurrence for all of the
functions is to extract exponential factors, ea, from the function
values whenever a certain level of magnitude, L, is reached. The
recurrence is then continued with the new function values. As a
result, the build-up shown in.Figure 1 for backward recurrence is
transformed to that of Figure 2.

‘ direction of recurrence

Figure 2.

We can picture the same sort of behavior for the forward recur-
rence as that of Figure 2 by simply considering the origin to be at
the right.

18
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The actual process of scaling can best be explained by following
through an example. Suppose that we are in the recurrence process,
either forward or backward, and the function values are increasing in
magnitude as we proceed. From two previously calculated values we are
determining a third. After computing this third value we check and
find that the magnitude exceeds the limit L. The order of this
function value--in a sense the location of this function value in the
recurrence--is saved. The function value is then decreased by the
factor e and also the function value just previously calculated on
the last recurrence. Recurrence then proceeds from these. two new
function values. At the same time, the two new values are saved in an
array for further use later in the routines. A counter is also incre-
mented so that after the entire recurrence has been completed we have
available the number of times, m, that scaling was required, and also
the exponent of the final factor, e™e, Now, at this point, the forward
recurrence is completed and the function values are properly scaled.

However, the entire problem of factor scaling becomes much more
nmuddled before we can say that we have finished with the backward
recurrence and are able to return the true function values. From the
earlier description of backward recurrence we recognize that we have
only scaled the recurred values and a normalizing factor must still be
determined. Consider the '"true" function values of equations (17) and
(19) and for purposes of discussion let us denote either function
jo(z) or Jn(z) by ft(z). If we have

-as<ln Ift(z)] < a

then no correction to the scaling factors is necessary and a can be
calculated. In the case that 1In lft(z)! lies outside these bounds,
then all of the scaling factors must be adiusted to represent the true
exponent of the function. This is easily accomplished by making the
adjustment in multiples of a (i.e., (m % k)a, k =1, 2, ...). Of
course, before computing g, the true function value ft(z) must have
the exponent appropriately adjusted.

The end representation of the scaling process is designed to
provide the user of the routines with as much flexibility as possible.
Suppose the function,fu(z) were to be evaluated and returned., From

>
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the particular routine selected would come a two-part result., First
there would be a function value f$(z) and then the corresponding expo-
nential scaling factor for this returned value, k, so that '

£,(2) = e £!(2) . (25)

Notice that for k#0, the true function value £ (2) will more than
likely fall outside the exponent bounds of the computer. But since the
user already knows the value of x in the exponent factor e’ he probably
can use exponent arithmetic in his calculations and make use of the
function f;(z) without concern for the computer limitations. For
example, suppose the equation

JU(Z) Y\ﬂ'l(z) - Ju‘l‘l(z)
1) () ¥, (2

w(z) =

were to be calculated. The primed function values would be used in the
multiplications, divisions, and subtractions and, through exponent
bookkeeping, a true final result could be determined.

20
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4. Calculation Efficiency and Storage

The storage of many function values is a major problem that must
be confronted when developing routines such as BESSEL and BESSPH. 1In
these two routines it is possible to compute four different Bessel
functions simultaneously. We must immediately recognize that, when a
very large range of orders is permitted, it is not feasible to attempt
to carry all values in arrays during execution of the routines. For
example, suppose we wished to evaluate all four functions, spherical
or cylindrical, and each function were to be used with various orders
between zero and 20,000. Since the functions are complex, this prob-
lem would require a minimum of 160,000 locations for array storage
alone, Even if it were possible to fit the arrays into available
storage, the core requirement would probably force most computers into
dedicated use for this one problem while executing. For these two
Bessel function routines, we are even permitting orders higher than
that of the example. Hence, we are forced to investigate ways of
reducing core requirements. But the execution time increase must also
be considered when we begin to develop these schemes.

For the routines BESSEL and BESSPH the recurrence relations (10)
and (ll) can be used to work in our favor. In the following discussion
we will use the term primary recurrence to refer to the recurrence
actually applied through the entire range of orders requested. The
term secondary recurrence refers to any recurrence that takes place
over only a portion of the entire order range.

We first partition the entire order range requested into inter-
vals of some size I. 1In the backward recurrence the entire range also
includes those orders that lie between N, the maximum order requested,
and M, the starting order for recurrence. For the forward recurrence,
the primary recurrence extends only up to the order N. Then during the
primary recurrence we retain only two function values in each interval.
To clarify, suppose we go back to the example described above and show
an array as it would be constructed under the partitioning. We assume
there is some given argument z and N = 20000. Let us select I = 1000.
A storage array of values retained would become

21




‘ Array Location Order

/ 1 0
1000 999
1001 1000
1002 1999
1003 2000
1004 2999
1005 3000
1038 19999
1039 - 20000

Hence, for the computation of all four complex functions, our storage
requirement is reduced to 8312 locations. We could have selected

I = 500 and further reduced the amount of storage necessary. The se-
lection of interval size is left to the user for his own particular
problem,

Notice that the lower locations of the array are filled in se-
quence by the corresponding orders., These I locations become the work-
ing portion of the array. Should any or all orders between zero and
1000 be requested, the routine can immediately go to the array and pick
up the answer. Suppose that a higher order or orders is requested.

The routine will pick out the proper interval and the two values which
represent that interval. A secondary recurrence is then performed with
the values in the lower locations replaced by the complete interval
requested. Any subsequent calls for orders within that interval are
immediately available without additional secondary recurrences. With
this scheme it is possible for the order requests to bounce around
various intervals and the routine can still provide results for any
order needed., Naturally, the most expedient method of requesting
orders, if possible, is to call all needed orders in a single interval
before moving outside the interval and into another.

22
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The knowledge of the pattern of needed orders can aid in de-
ciding the value of I that should be used. For example, if many
orders of each interval are needed then a large value of T could be
used (provided core is available) so that a single secondary recur-
rence would provide many results. On the other hand, if only a few
orders are needed from each interval, then a smaller partition size
could be selected for faster secondary recurrence around specific
orders,

The principal reason for doing a second recurrence over an
entire interval is to avoid the need for multiple secondary recurrences
should more than one order be requested from the same interval. Re-
pPeated calls within an interval would be necessary, for example, in
the problem of evaluating a series whose terms are Bessel functions.
This would also be true in determining derivatives of Bessel functions
(see Handbook?)

One might ask how all this affects the user who wants the value
of a Bessel function for only one order. For a small order, we see
from the example that the lower locations will automatically contain
the results for the smaller orders. Suppose for some value of the
argument we wished to know the value of a function of order 400. By
specifying the maximum order as N :- 400 and selecting I to be slightly
larger, we would be guaranteed immediate return of the result without
a secondary recurrence. Should a single, very large order be requested,
the amount of time for a secondary recurrence over the particular par-
tition for that order would be negligible compared to the primary
recurrence which is necessary anyway.

Finally, we present a few fine points about the specific oper-
ation of this storage procedure. Consider again the above example
where I = 1000. If we had specified that N = 20500, the array would
contain two more values, namely, those for orders 20499 and 20500.

That is, the array would have been completed by a fraction of an inter-
val to permit all orders to be covered. Another important facet to the
secondary recurrences is that it is quite possible, and in fact prob-
able, that an exponent factor will have been removed somewhere in the
interior of a partition. This may occur in several partitions or even
several times in the same partition. In Section 3 we stated that when
a factor was removed, two function values and an order were saved,
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During a secondary recurrence, the order of the functions being re-
generated is checked. Whenever an order corresponds to a factor point,
the two saved related function values are brought in to complete the
secondary recurrence from that poiﬁt. The fact that this happens is

reflected by changes in the factor value returned with each function
value,
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5. Program Validation

Several studies have been made on the effectiveness of the re-
peated usage of the recurrence procedures. Olver's6 study was prima-
rily concerned with the backward recurrence technique and the error
propagation that may occur during the application of this algorithm,
The studies made by Gautschi’ and Oliver7 deal with both forward and
backward recurrence procedures. The conclusions from each of these
studies points to some of the restrictions that must be followed in
order to maintain control over errors. Gautschi emphasizes that the
effectiveness of the algorithms is clearly enhanced if good estimates
of the initial values of the functions are available. That is, in the
forward recurrence we are required to make sure that the starting
values are as nearly exact as possible. In the backward recurrence,
we must make sure that the value from which a normalization factor is
calculated, see equations (17) and (19), is as nearly exact as possible.
Furthermore, each of studies emphasizes the fact that in backward re-
currence we must insure that the starting order of recurrence, M, is
sufficiently greater than the largest order N for which we expect
results,

Many functions related by recurrence relations are solutions to
differential equations. In many of these cases, there exist minimal
or nonminimal (dominant) solutions to the differential equations. It
must be clear into which category the functions fall, We cannot expect
to apply one of the recurrence algorithms to the wrong category and
emerge with good results. From their behavior it is clear that the
Bessel functions of the first kind are minimal and must be determined
in the backward direction. On the other hand, the functions of the
second kind are dominant and forward recurrence is used. Functions of
the third kind lie in a middle range and this is the motivation for
using several different methods in the calculation of these functions.
It is shown in the studies just mentioned that, provided a sufficiently
large value for M is selected and nearly exact initial values are
calculated, the error accumulation is held to very small values relative
to the function values calculated. In addition, the error that is
present for some function value is primarily dependent on the initial
errors and the degree of accuracy that was first introduced.
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Actual physical testing of the results from these routines

presents an interesting problem. Although many arguments and orders E:)

fall into regions where other computational methods exist, these two

routines are designed to provide results in regions heretofore not :
treated. The first part of this discussion will be concerned with some

of the standard validation approaches which were used. The remainder .
of the discussion presents a new approach to validation. Specific

degrees of accuracy and test results for the routines are not given

here, but are discussed in two other reports.g’9

Because of priorities in the development of these routines,
BESSPH was written first, Not only was there a greater urgency for
the spherical functions at the time, but this also proved to be
beneficial in the development and testing of BESSEL. From equations
(6) through (9) we see that the spherical functions can be considered
as special cases of the cylindrical functions for half-integer orders.
The routine BESSPH was completely tested and checked before the vali-
dation tests were begun on BESSEL. Hence, we had a tested routine
that provided comparison values for the special real orders of half-
integers in BESSEL.

The first step in the validation of any special function routine
is to determine if there already exist tables for some ranges which can
be used for initial comparisons. The tables provided by the Handbook
of Mathematical Functions,2 the Harvard Computation Laboratory,lo the
National Bureau of Standards,ll’ 12, 13, 14 and Jahnke and Emde15 were
examined., This process insured that no constant multiplying factors
were present in the results. At least for the arguments and orders
that could be used in these tables, the results were assured of being
"in the ballpark."

Let us now consider those equations and methods that were avail- :
able for use in testing. In Figure 3, we see the argument-order range
split into three regions. Region I represents that area in which most
methods are available, the region of relatively small orders where
arguments vary in magnitudes from small to large.
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The spherical functions present a definite advantage in testing
in that they can be explicitly expressed as shown in (15). For a
portion of Region I, these equations provide a very solid basis for
comparison. Results from the cylindrical functions for real arguments
and integer orders were compared to results obtained through a routine
called BES16 which is contained in the Sandia Mathematical Program
Library. This routine has already been thoroughly tested and estab-
lished as having very good accuracy, so that comparisons provided valid
test results. 1In all of these tests, the argument size was limited by
the accuracy and restrictions of the test routines, However, the
asymptotic expansion described in Appendix A holds for larger arguments
and small orders. This expansion applies to spherical as well as
cylindrical functions. Under these conditions, the arguments could be
tested for magnitudes in the tens of thousands; precisely one of those
areas for which BESSEL and BESSPH are designed to operate. It is
evident from the discussion that, so far, unly a small portion of the
argument-order range has been covered. These test methods are re-
stricted to evaluating functions whose orders are relatively small
(less in magnitude than a few hundred), and in some cases very small,

The other extreme of the argument-order range shown in Figure 3
is illustrated by Region II. 1In this region, the orders are con-
sidered to be very large and equation (21) becomes the workhorse of
testing. Since the orders are large, Stirling's approximation is used
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in calculating the gamma function, Because of the magnitude size of
the function values, it is necessary to use logarithms in both Regions
I and II for the validation testing. '

Region III represents that area for which a new test approach
was developed. The capability to evaluate Bessel functions in this
region rounds out the features of the routines BESSEL and BESSPH. We
begin a test sequence by specifying an argument and some order that
will force the routines into Region II. Let this order represent the
maximum order to be requested. We know that recurrence proceeds along
the orders with the argument fixed. Hence, in the backward recurrence,
we start in Region II and as recurrence proceeds we travel a vertical
path downward into Region I. In the forward process, we travel from
I to II. The important point to remember is that the recurrence re-
lations are satisfied by the function values during the recurrence
process. From our previous discussion we have shown that the function
values which lie in Regions I and II can be verified. Therefore, a
reasonable test hypothesis for Region III is the following:

1. Verification of the function values in the starting
) Region (I or II), and :

2. verificatioﬁ of the function values in the stopping
Region (I or II), -

3. implies that the function values of Region III are
‘valid.

A secondary test was established in checking functions of the
first kind to lend further support to the validity of values in
Region III. Let us assume the start point of recurrence to be in
Region II and the stop point in Region I. We represent the travel
between start point Pl and the stop point as line A in Figure 4. Also
consider a second recurrence where the start point does not fall in
Region II, but starts at PZ‘
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The question that must be answered is whether the function values
that result for those orders that lie within the bracket b are exactly
equal for the two recurrences. This is important for the functions of
the first kind since we know that the first recurrence starts well
beyond those values to be tested and we must make sure that the second
recurrence also provides the necessary starting distance. The test can
be emphasized even more in a situation similar to that represented by
line B.

Through the extensive testing techniques just described it is
determined whether the routine is functioning as designed for all
portions of the range to be covered. Furthermore, the accuracy of the
routine can also be demonstrated so the user will have substantial
confidence that the values returned are valid.
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APPENDIX A

Hankel's Asymptotic Expansions

This expansion is defined by considering u fixed and |z]| == with

3 (2) = J[;g-{P(u,z) cos X - Q(u,z) sin x} (A1)
and

Y (2) - J[;g-{P(v,z) sin X + Q(u,z) cos x} (A2)
where

|arg z| <m and X = z - Yum - %,

The terms P(v,z) and Q(v,z) are defined by

P(v,2) ~ 3 (-DF 20 (A3)
k=0 (22)

and

Qv,2) ~ F (-DF (w2t (a4)

k=0 (22)

where (u,m) is Hankel's symbol and is defined to be

(v,m) = o (45)

If we let u - 4u2 and expand (AS5) we have the forms for P(vu,z) and
Q(v,z) that appear most in the literature,

P(u,2) ~ 1 - 4D W=9) , (u-1) (u-9) (u-25) (u-49) _

2! (82)° 4! (8z)* U
and
o0 -5k - SBED

3! (82)°
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One of the most important characteristics of these expansions is
the fact that the series (A3) and (A4) are not convergent and must be
examined carefully during their use. Without loss of generality, in
(A3) consider

P(v,2) ~ Y} a, ag =1
k=0

where we let 341 = T 3. By using the definition of (A5) we find

r o L2kFut3/2) (2kctutl/2) (2k-ut1/2) (2k-ut3/2)
(2z)° (2k+2) (2k+1)

_ (aiPr6k-v?+9/4) (4kP2k-1241/4)
(22)% (4k“+6k+2)

For v = 0, we find that the terms a, are monotonically decreasing
until k ~ int |z|. The ratio r then assumes values greater than unity
and the terms increase in magnitude. For values of v # 0, by examining
(A5) we see that k must be slightly larger than z before a turnaround
occurs. This behavior is demonstrated during this evaluation of the
series by computer. In summary, we find the magnitude of the terms ap
strictly monotonically decreasing to some term a, such that

130l > |31] > «eo > [3g).
Then the situation reverses and the series begins to diverge with the
remaining terms monotonically increasing

Iaml < |am+1| < |am+2| < oo .

It has been found from extensive tests that provided the orders
of the functions are not too large and the series (A3) and (A4) are
stopped at these minimum points, the resulting function values are
good. Indeed, in most cases, convergence within the limitations of
the computer occurs before this turning point. By convergence we
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mean that a certain point is reached when the remaining terms in the
descending part of the series no longer significantly contribute to
the summation, i.e.,

N
al|< el b
k=0 ,

With certain restrictions placed on the argument and order, Watsonl

makes a stronger statement in the form of a theorem:
If in the expansions for Ju(z) and Yu(z)

z is real and positive,

v is real,

2m > |v| -% for P(v,z), and
2m 2 |y| -3/2 for Q(v,z),

then in the oscillatory parts of the series for P(u,z) and Q(v,z) the
remainders after m terms in the expansions are of the same sign as,
and numerically less than, the first terms neglected.

From (A6) we can see that by increasing the size of the order, v,
we also increase the number of terms a, available for evaluation of the
series before cutoff becomes necessary. However, the rate of con-
vergence slows down so more terms are necessary for evaluation, The
slower convergence rate, plus the oscillatory behavior of the terms,
gives rise to accuracy deterioration for increasing orders. Consider

the relative error between a true function value, f_, and a function

t)
value from the corresponding expansion, £ so that

e’
£ - f
_it e -8
€p = ——¥;——— < 10 .

With this acceptance level on fe’ a rough estimate of the maximum
order N that can be used in (Al) or (A2) is
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where u is determined from the positive solution of -
_(H-_IL&EQL -1 b
2(8z) .

For more strict acceptance levels, N decreases in size.

Notice that for orders 0 < v < 1 and |z| > 10.0 the rate of con-
vergence is very fast and there is no problem with the turning point.
Hence, the expansions are particularly useful in calculating values for

the normalization of JU(Z) and initial values of YU(z).
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APPENDIX B

Argument-Order-Dependent Relations
Between Bessel Functions

Since Bessel's differential equation is unaltered if z is re-
placed by -z, we must expect the functions Jiu(-z) to be solutions of
the equation satisfied by Jiu(z). For that matter, we must consider
negative arguments and orders for each of the Bessel functions,

cylindrical or spherical, We first define z" to be

zY = exp(v log 2z)

where the phase (argument) of z is taken to be such that

-mr<arg z < m .

Now let us consider Bessel functions of argument zem“i, where

m is any integer, arg z has its principal value, and we define
arg(zem"i) = arg z + mm .
Watson1 defines JU(z) so that
3 (&™) = ™5 () . (B1)
From the relation

(2)

J (2) cos um - J
\%) - (BZ)

Yu(z) = sin vum

we can define the function of the second kind for all values of the
argument. Using (B2) we have

et J,(2) cos um - "™ 3 (2)

YU(zem”i) - e A (B3)

sin um
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Now

[

el® 5 (2)
= e 18 ; (z) + 21i sin 8 J (2)
v v *
If we let § = mur and substitute (B4) into (B3) we get

e imur ~imyn

Ju(z) cos vur - e J

-V

JU(z) (cos -1 sin g +2i sin g)

(2)

mrri
Yu(ze ) = sin um

+ 2i Ju(z) cot um sin mum

= g VT Y (2) + 21 J (2) cot ur sin mum.

Since

8D (2) = 3,(2) + 17,(2)
and

1 (z) = 3 (2) - 1Y (z) ,

we obtain additional relations for the functions of the third kind from

the relations shown in (Bl) and (B5). That is,

sin un Hgl)(zem"i)

[]

-sin {(@-1)vn} B{D (2)

-V 5in mun HSZ)(Z)
and

sin um HSZ)(zem“i) = sin {(mFl)um) HSZ)(z)

+ eUﬂi sin mun Hél)(z)

.

(B4)

(B3)

(B6)

(B7)

When an argument is supplied to BESSEL or BESSPH, checks on the
quadrant of the argument are made. Thereafter, a code is held and all

calculations are performed on a transformed argument in

the first

quadrant. Any adjustments that are necessary as indicated by the code

are then made before the function values are returned.
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equations shown above to transform the function values according to

the argument as reflected by the code value., In making these trans-
formations we select m = *1 such that any rotations from one quadrant
to another will not cross the negative real axis, a branch cut for the
complex logarithm. Hence, we choose m = 1 for arguments which lie in
the third quadrant and the rotation is counterclockwise into the first
quadrant, For arguments in the second quadrant (including the negative
‘real axis), m = -1 and rotation is clockwise into the fourth quadrant.

In going from the fourth quadrant to the first, we have the conjugate
relations

JU(E) == JUZZ; ’ YU(E) = EUZZ; 5
1D =10 1P @) - 1D .
The spherical Bessel functions are more easily handled since
jn(zem"l) - emnmi jn(z) ,
yn(zem“l) - (-™ emnrriyn(z) ,

hél)(ze(2m+1)ni) -1t héz)(z)

]

héZ)(ze(Zle)ni) (-1y" hél)(z) )

In addition to checking the argument,vorders are also checked
and all calculations are performed for positive orders. For the
spherical functions, simple relationships exist between the various
functions which permit us to evaluate functions of negative orders.
These relations can all be deduced from the single equation

@ = (DT L.

Furthermore, we can determine all the relationships necessary
to evaluate cylindrical functions of negative order from those of
positive order by using equation (B2).
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