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ABSTRACT

This memorandum describes the processing of two sets of pulse data
to obtain a transfer function, Limitations in the data and the accuracy
.and response of the data-processing system and their effects on the

transfer function are noted.
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I INTRODUCTION

It is usually the purpose of an EMP interaction study to define
phenomenological relationehips between a free-field (reference) pulse
and current or voltage pulses induced by the free-field pulse in a test .
system of unique configuration. To this end, it is necessary to ade-
quately define both the free-field pulse, or the approximationjused in
its stead, over that region in space where interaction with the system
occurs and the induced pulses at those test points of interest within

the system. For a reference pulse which is reasonably uniform over the

region of interaction or which varies over that region in the same manner

‘as would be expected of any free~field pulse of interest and which is

highly reproducible from one test run to the next, a single set of

measurements made at one point in the region will suffice to define a

‘reference puise for all measurements made at the system test points.

This set of measurements must be adequate for defining the time-amplitude
history of the reference pulse for its duration of interest and at the
same time be adequate for defining the spectral content of\the pulse over
its bandwidth of interest. The same may be said of the measurements of
the induced pulses. It should also be said that both the durations and
bandwidths of interest for the reference pulse and an induced pulse

should coincide.

For linear systems of interaction, one way of relating an induced
pulse to the reference puise is to calculate a transfer function, defined
as the ratio of the Fourier Transform of the induced pulse to the Fourier
Transform of the reference pulse. Such a transfer function may also be
calculated for nonlinear systems of interaction but is of limited

usefulness.




To investigate the possibilities of obtaining, from a collection
of experimenfal data, some reasonably defined pulse waveforms and of
obtainiﬁg from these waveforms some meaningful transfer functions, two
fairly representative sets of measurements obtained at a certain test
facility will be necessary. One of these sets purports to define the
horizontal magnetic-field component of the reference pulse and the other
Ato define a voltage pulse indﬁced at one test point within.tﬁé test sys-
tem. These sets will be used as vehicles for presenting thé data-
processing sequence used to obtain a transfer function from field pulse

data and for pointing up the requirements that the data-processing system

pPlaces on the field data and vice versa.



I1 DATA REDUCTION

The data selected for reduction are in the form of polaroid photo-
graphs of oscilloscope traces of voltage pulses and are shown in Figure 1
(reference pulse) and Figure 2 (system test pulse). Data reduction con-

sists of essentially two phases: digitization and data processing.

A, Digitization

Digitization itself consists of four steps: slide-making, slide-

projection and hand-tracing of the waveform, preparation for digitizing,

and digitizing.

Slide-making consists of photographically producing negatives of the
polaroids with about a four-to-one reduction and mounting these negatives

in slide frames.

Slide-projection and hand-tracing consists of projecting the slides
onto worksheets taped to a wall at a distance of about i

~Slide-projection and hand-tracing consists of projecting the slides
onto onksheets taped to a wall at a distance of about fifteen feet from
the projector and at an enlargement of about thirty-to-one (or about
seven-to-one over the original polaroids) and carefully tracing, with
due regard for the peculiarities of oscilloscopes, the projected wave-
form onto the worksheets, along with any other pertinent information,
such as oscilloscope gridlines, zero-amplitude lines, time calibration
markers, etc. For the data presented here the only other pertinent

information was the gridlines.

Preparation for digitizing consists of marking on the worksheets the

correct placement and orientation of the zero-amplitude baseline, picking
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RECORD NO. 1
1 V/div. VERTICAL SENSITIVITY

10 ns/div. HORIZONTAL SENSITIVITY
1 is RC TIME CONSTANT

RECORD NO. 2
0.5 V/div. VERTICAL SENSITIVITY

20 ns/div. HORIZONTAL SENSITIVITY
1 4s RC TIME CONSTANT

RECORD NO. 3
0.1 V/div. VERTICAL SENSITIVITY

50 ns/div. HORIZONTAL SENSITIVITY
10 us RC TIME CONSTANT

RECORD NO. 4
2 V/div. VERTICAL SENSITIVITY

200 ns/div. HORIZONTAL SENSITIVITY
1 us RC TIME CONSTANT

RECORD NO. 5
1 V/div. VERTICAL SENSITIVITY

1 uUs/div, HORIZONTAL SENSITIVITY
1 Ms RC TIME CONSTANT

TA-7995-9

FIGURE 1 RAW DATA FOR REFERENCE PULSE
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20 mV/div. VERTICAL SENSITIVITY
200 ns/div. HORIZONTAL SENSITIVITY

RECORD NO. 2

20 mV/div, VERTICAL SENSITIVITY
500 ns/div. HORIZONTAL SENSITIVITY

RECCRD MO. 3

20 mV/div. VERTICAL SENSITIVITY
2 ps/div. HORIZONTAL SENSITIVITY

TA~7995-10

RAW DATA FOR SYSTEM TEST PULSE



the time onset (zero time) of the waveform, noting down the digitizing
sensitivities to be used (250, 500, or 1000 counts per inch), and
specifying the sampling rate (éo many counts per inch). For thé data

at hand the zero-aﬁplitude baselines were assumed to be parallel to the
hsrizontal gridlines, since there were no other compelling indications

to the contrary. The sampling rates were chosen by applying a rule of
thumb: #* the sampling rate shall be at least ten times the highest
frequency visible in the waveform to be sampled. Although ‘it is not

always necessary, in this case each waveform was sampled at one uniform
rate. For the waveforms shown in Figure 1 (refefence pulse) the sampling
‘rates chosen correspeonded to real-time rates of 2000 MHz, 2000 MHz, 1000 MHz;
1000 MHz, and 200 MHz for Records No. 1 through No. 5, respectively. |
For those shown in Figure 2 (system‘test'pulse) the rates chosen were

200 MHz, 100 MHz, and 50 MHz.

# The motivation behind this rule of thumb is as follows: a sampling
rate at least twice the highest frequency visible in the time wave-
form is necessary if one wishes to avoid aliasing (folding of frequency
components about integer multiples of one-half the sample rate) these
visible, and hence presumably appreciable, high-frequency components
into the lower frequency components; a sampling rate on the order of
four times (appreciably greater than twice, at any rate) the highest
frequency visible is necessary if one wishes to define the spectral
content of the waveform for these visible frequencies (aliasing of
frequency components just above these frequencies into these frequencies
is thus avoided); a sampling rate on the order of ten times (or, a
little over twice four times) is necessary if one wishes to define the
high-frequency roll-off of the spectrum above the visible high fre-
quencies (again, to avoid significant aliasing into regions of possible
interest). In addition, a high sampling rate facilitates subsequent
data processing: the digital waveform may be plotted by connecting
the sampled values with straight lines to obtain an adequate represen-
tation of the original continuous waveform; the computer routine used
to numerically evaluate the Fourier Integral requires that the repre-
sentation resulting from connecting the sampled values with straight
lines be a good approximation to the original continuous waveform; a
larger number of samples yields a greater reliable range of spectral
amplitudes (see Appendix); etc.’ : ’



Digitizing consists of manually following the curves on the work-
sheet with an automated X-Y digitizer (Benson~Lehrer LARR V) which is
set to sample at the rate specified on the worksheet. The digital out-

put of the LARR V is recorded on magnetic tape.

The effect of sampling a continuous waveform at a uniform rate for
a finite period of time'is'shown in Figure 3. Convolution of the curve,
h(y), shown in Figure 3 with the Fourier Transform, g(v), of the con-
tinuous time waveform produces the Fourier Transform, E(v), of the sample
series:

@®

g™ =h @gM =] hEew - €)dg .

The function h(v) represents the combined effect of two separate phenom-
ena: the effect, hl(v), of truncating the continuous time waveform and
the effect, hz(v), of sampling the truncated continuous time waveform.
The repetitive spikes occurring every Vn = nvs, whére Vg is the sampling
rate, shown in Figure 3(b) would have been true delta functions had the
time waveform.been sampled for &dll time, in which case the convolution

would yield

@

E(v) = Z gl - nvs) =gM) + I [g*(nvs - V) + g(nvS +Vv)] o,

n=-=-" n 1

-

which is the aliasing phenomenon,

Truncating the continuous time waveform at times O and T is equiva-
lent to multiplying the continuous time waveform by a square pulse of
amplitude unity and width T centered at time T/2. The Fourier Transform

of this square pulse is

n (V) = T _ sin T | i™VT
1Y T 2n ™T €
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and the Fourier Transform of the truncated continuous time waveform is

gv) = h (V) ® g(v) .

Sampling the truncated continuous time waveform at intervals

T = 1/\)S is equivalent to multiplying the truncated continuous time
[-=]

waveform by the function £ &8(t - nT). The Fourier Transform of
@©
n= -
this series of delta functions is

® ©
hz(V) = z = z §(v - nv )
xR <] s

n= = n = =

i2mvnT
e

and the Fourier Transform of the sampled truncated continuous time wave-

form is
gWwv) = h2(v) ®gW) = hz(v) ® hl(v) dg(v) |,
or
gW) = h(M ® gv) ,
where

h(V) = hz(V) ® hl(v) .

The function h(v) shown in Figure 3 is for a typical case totaling

500 samples.

B. Data Processing

In this instance data processing consists of calibration, filtering,
removal of differences in recording system characteristics, composite
making, calculation of Fourier Integrals, removal of recording system

characteristics, and calculation of a transfer function.

Calibration consists of transformation from the raw units of digi-

tization to real-time units. Sihce no calibration information was




"

available; the scope sweeps and vertical deflections were assumed to be
linear, and the data were merely scaled to conform to the nominal de-
flection sensitivities shown in Figures 1 and 2. Lack of calibration
is most regrettable, particularly in calculating a transfer function

where frequency matchup is of crucial importance.

Filtering consists of "smoothing" the digitized waveform to remove,

as much as possible, noise introduced in the process of tracing and
digitizing and to minimize the effects of quantizing introduced in
digitizing.*. A typical smoothing filter is shown in Figures 4 and 5,
which filter is applied in the time domain (Figure 4) as a convolution
(weighted average). The smoothing filters applied to the data had cut-
offs (~ 0 dB down, shown as a dashed line in Figure 5) at 300 Miz,

300 MHz, 150 MHz, 100 MHz, and 25 MHz for the waveforms shown in Fig-

ure 1 and 18 MHz; 15 MHz, and 8 MHz for those shown in Figure 2.

Removal of differences in recording system characteristics in the
various waveforms used in obtaining a composite waveform is necessary

if the differences are appreciable in the time interval or bandwidth

* The noise introduced in the process of tracing and digitizing is
primarily in the form of jitter caused by an unsteady hand following
the curve and to a much lesser extent in the form of quantizing noise.
(It is the purpose of digitization to "quantize”: digital values
are recorded as integer multiples of a least-significant unit--one
least-significant unit equals 1/500th of an inch, for example.) The
smoothing filter removes (diminishes by at least 40 dB) the high-
frequency components of the noise (HF noise, sharp corners, etc.)
but, obviously, does not affect the low-frequency components of the
noise. The frequency band of this noise (both jitter and quantizing
noise) is greatly dependent on the form and complexity of the curve
being traced by hand; but it has been our experience that this fre-
quency band falls mostly above the bandwidth of interest of the wave-
form being traced, so it is generally possible to separate unwanted
signal from wanted signal by the application of a low-pass filter.

10



s-1

AMPLITUDE

-0.1 ] | | | ! | 1 | | ! l | | ! ! 1 ]
-0 9 -8 -7 6 -6 4 3 -2 -1t 0 1 2 3 4 5 6 8 9 10
. TIME — in units of spacing between samples
TA-79956-12

FIGURE 4 IMPULSE RESPONSE OF SMOOTHING FILTER

11



*“

AMPLITUDE — dimensionless

g

AMPLITUDE — dB

1.0}

05 |-

(a)

— .

]

—-

]

1

0 0.125

FREQUENCY DIVIDED BY SAMPLING RATE

0.250

0.375

0.500

(b)

0 0.25

FREQUENCY DIVIDED BY SAMPLING RATE
TA-7995-13

FIGURE 5

0.50

12

0.7

SMOOTHING FILTER RESPONSE

1.00



of interest, This step was omitted, "The omission is particularly re-
grettable in that one of the five waveforms (Figure 1, Record No. 3)

used in obtaining a composite representation of the reference pulse was

recorded with an integrating circuit with a different RC time constant

(10 ps as opposed to 1 ps) substituted in the recording system; and it
is all the more regrettable in that, as a first approximation to cor-A
rection (lacking more detailed information), this maverick waveform
could easily have been corrected to take out the difference introduced
by a different simple, theoreticai RC integrator (one capacitor, one
resistor). Figure 6 shows the response of the simple RC-integrator
(17 + jJuRC) ] divided by the response of an ideal integrator (1/jw).
Note that there is a considerable differeﬁce in responses of the two

Rc-integrafors for frequencies less than 1 MHz,

Constructing the composite consists of piecing together the various
individual waveforms to form as complete a representation as possible of
the original recorded wavefofm. The individual waveforms are selected
to obtain the best possible resolution in time, amplitude, and bandwidth
and are matched up against one another to obtain agreement of such com-
mon features as time and amplitude of peaks, time of zero-crossings,
etc.; such matching frequently entails translation along the time axis
of several waveforms and occasionally entails rescaling a waveform (the
better the calibration, the less frequént the rescaling). .The points
of transition between individual waveforms are chosen to avoid intro-
ducing discontinuities in amplitude,'phasing, or resolution of salient
features (intuitive judgment is occasionally necessary--amplitude values
are changed slightly to achieve a smooth match at the transition). All
the records shown in Figure 1 were used in obtaining a composite repre-
sentation of the reference pulse (Figures 7 and 8); these records, from

fastest to slowest sweep rate, account for the follqwing intervals in

13
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" the definition of the composite waveform: 0-38 ns, 38-116 ns, 116-144 hs,
0.444-1,925 ps, 1.925-10.250 us. In order to match up the five individ-
ual waveforms, it was necessary to rescale them: in the same 6rder as |
above, the amplitude values were multiplied by 0.70, 1.73, 7;85, 1.00,
é.OO.* All the records in Figure 2 were used in obtaining a composite
representation of the system test pulse (Figure 9); these records, from
fastest to slowest sweep rate; account for the following intervals in

the definition of the composite waveform: 0-1.45 ps, 1.45-3.92 us,
3.92-17.88 ps. It was not necessary to rescale any of the three in-

dividual waveforms.

Calculation of the Fourier Intégral consists 6f assuming that the
time functions are well approximated by a series of triangular impulses
and of summing, with appropriate phase shift, the Fourier Transforms of
the triangular impulsesf It is assumed that the height of the triangu-
lar impulses is the amplitude of a sample point on the digital composite
waveform, that the base is the time interval between the sample points
ad jacent to that sample point, and that it is centered in time at that
sample point. (These assumptions are equivalent to assuming that the
time fuﬂction is well approximated by straight lines drawn between ad-
jacent sample points of the digital composite waveform,) The response

(transfer function) of this component of the data-processing system

* The lack of agreement among the five individual waveforms as to the
amplitude of the reference pulse casts some doubt on the validity of
the composite representation of the reference pulse. Apparently,
either the nominal values given for the vertical sensitivities of the
oscilloscope traces are in error or the five traces do not portray
the same waveform. In either case, the amplitude of the composite
pulse is essentially arbitrary; in the latter case, the composite is
definitely invalid. ’ ’ ‘

19
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(Fourier Integral approximation) is shown in Figure 10.* The Fourier N
Transforms for the reference pulse and for the system test pulse obtained

from this calculation are shown in Figures 12-15 and in Figures 16-19,

Removal of recording system characteristics consists of determining
from the system calibration information the response (transfer function)--
émplitude and phase as a function of frequency over the entire frequency
band of interest--of each component of the recording system and of di-
viding the Fourier Transform of the recorded time function by the collec-
tive response of the recording system components. These recording sys-
tem components presumably include, for the reference pulse, a free-field
pulse sensor, a delay line, an RC integrator, a current or voltage probe,
the probe termination, and an oscilloscope; for the system test pulse,
they include a current or voltage probe, the probe termination, and an
6scilloscope. Inasmuch as the necessary calibration information was not

available, this step was omitted.

Calculation of a transfer function (Figures 20-22) consists of di- 'C:)
viding the Fourier Transform of the system test pulse by the Fourier

Transform of the reference pulse.

A summary of the various sampling rates, sampling intervals, smooth-

ing filters, etc. is presented in Table I.

* Figure 11 shows the combined effect on the Fourier Transform of the
application in the time domain of the smoothing filters and the re-
sponse of the approximation to the Fourier Integral.

+ Since the two sets of the Fourier Transform values (reference pulse,
system test pulse) were not calculated with the same frequency spac-
ings, it was necessary to interpolate between adjacent amplitude
values and adjacent phase values for the reference pulse Fourier
Transform, (The computer program which performed the division auto-
mafically interpolates if necessary.) The effect of this interpola-
tion on the resulting transfer function is extremely complicated and
is not presented here. (It would appear that the effect on the early-
time behavior--0-2 pus--of the impulse response is negligible.) Suf-
fice it to say that this interpolation is not desirable nor should it

be necessary. ‘ .
| 22 O
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III RESULTS

The results presented hérein are in fact the products of the data-
reduction system, showing the time history of the reference pulse, the
'time history of the systems test pulse, the Fourier Transform of the
reference pulse, the Fourier Transform of the system test pulse, and

the transfer function,

The validity of the digital composites of the pulse~time histories
is judged by comparing the digital composites to the original oscillo-
scope traces with one criterion in mind: +the digital composite must
appear in every way identical to the original traces. Before proceeding
with this application of this criterion, one qualification must be
clearly stated: establishing a relationship of the oscilloscope traces,
and hence of-the digital composite waveform, to the actual time waveform
recorded was possible in this case only by assuming that the oscillo;cope
amplification and deflection sensitivities were linear (or by:some other

equally, or more arbitrary assumption).

Comparison of the digital composite representation of the reference
pulse (Figures 7 and 8) to the polaroids of the oscilloscope records of
the reference pulse (Figure 1) shows that the composite is a good repre-

sentation of the reference pulse, with three qualifications:

1. Since the absolute amplitudes of the various oscilloscope rec-
ords do not agree with one anothér, the absolute amplitude of
the composite does not agree with all oscilloécope records-—
an observation which does cast some doubt on the validity of

the composite.
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2. Owing to this uncertainty in amplitude, it was not possible to
. use the amplitude of the different records as an aid in piecing
them together to form the composite, so that, due to the faint-
ness in definition of the onset of the Waveform in Records
No. 2 and No, 3, it is possible that there may be one too many,
- or one too few, cycles of about 150 MHz ridiné on the onset of

the éomposite waveform,

3. On the interval 150 to 350 ns (this segment was taken from‘
Record No, 3, the maverick*) the amplifude of the composite is
seen to be increasing slightly in magnitude, while the amplitude
on this interval appears to be decreasing slightly on oscillo-

scope Records No. 4 and No, 5.

Comparison of the digital compoSite representation of the system
test pulse (Figure 9) to the polaroids of the oscilloscope redords of
the system test pulse (Figure 2) shows that the composite 1is a good

representation of the system test pulse, with no qualifications.*

The validity of the Fourier Transforms of the composite pulses is
ascertained by comparison with the time histories of the composite pulses.
Inasmuch as the computer program that performs the Fourier integration
has been fhoroughly checked out, the question . of validity is really the
question of determining the valid range of frequency and the valid rénge

of amplitude of the Fourier Transform (bandwidth over which the time

* Refer to the paragraph on removal of differences in recording system
characteristics during data reduction, Section II-B.

+ The high-frequency noise (50 MHz and greater) seen riding on the com-
posite waveform (particularly noticeable at the onset as jitter at
about 200 MHz) is not present in the composite. This noise has been
introduced by a malfunctioning plotter. (CRT).
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history affords sufficient resolution in time and amplitude) and the
question of determining to what extent the resolution in frequency, am-

plitude, and phase is sufficient.

Comparison of the Fourier Transform of the reference pulse (Figures
12-15) to the time history of the reference pulse (Figures 7 and 8) shows
'that the Fourier Transform is reliable over the frequency range 100 kHz
to greater than 100 MHz and over an amplitude rangé of about 80 dB:*
the range ofbthe oscillations (varying between about 10-20 dB) about
the trend.of the amplitude is approximately'the same throughout the en-
tire frequency rahge (Figure 12(a)); the repetitive amplitude minima at
about 950-kHz intervals (Figures 12(a) and 13(a)) correspond to the
square-wave nature of the pulse (Figure 8(c)), which has a period a
little greater than 2 ps; the amplitude maximum (spike at 540 kHz) would
seem.to correspond with the slightly greater than 500-kHz dominant fre-
quency seen following the first cycle or so of the square wave; the am-

plitude spike at about 3.15 MHz and the following amplitude disturbances

* Strictly speaking, a claim of 80-dB range in Fourier amplitude cannot
be justified. However, intuition, past experience, and a statistical
approach indicate that the c¢laim is not unreasonable. From inspection
of the two Fourier Transforms (Figures 12(a) and 16(a)) one sees that
the transforms seem to preserve their character in regions where the
amplitudes are 60 to 80 dB down from peak amplitude and do not seem
to be appreciably noisier in these regions. The computer program that
performs the Fourier Integral calculation was checked out with a trial

" waveform, the time-amplitude values of which were calculated from a
known Fourier Transform, plotted with a thick pen, and digitized from
the plot. The calculated Fourier Transform was found to be reliable
over a 60-dB range for this one trial waveform. Comparisons made
during past experiments of pulse-derived and CW-derived transfer func-
tions have shown that agreement over ranges in excess of 60 dB is not
uncommon. One statistical approach (presented in the Appendix as a
continuation of this footnote) demonstrates that the range of reliable
amplitudes for the reference pulse Fourier Transform is probably
greater than approximately 60 dB and for the system test pulse is
probably greater than approximately 50 dB.
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fall in the band containing the dominant frequency distortions seen on
the "square' wave; the upswing in the trend of the Fourier amplitude
after about 60 MHz is beiievable, since it is necessary to account for
the high-frequency ringing seen riding on the onset of.the pulse (Fig-
ure 7); etc., Comparison of the real-amplitude-versus-frequency and
imaginary-amplitude~-versus-frequency plots (Figure 14), as well as the
phase plot (Figure 13(b)) and polar plot (Figure 15), seems to indicate
that the repetitive minima referred to above are true "zeroes' in the
Fourier Transform, but these indications are 1nconclusi§e. The‘polér
plot (Figure 15(b)) does indicate that the Fourier Transform has not

been calculated at frequencies spaced sufficiently close together.

Comparison of the Fourier Transform of the system test pulse (Fig-
ures 16-19) to the time history of the system test pulse (Figure 9) shows
that the transform is reliable over the frequency range 200 kHz to'about
30 MHz and over an amplitude range of about 80 dB:* the large resonance
at about 2.4 MHz (Figure 19(a)) corresponds to the dominant ringing of
the system test pulse; the repetitive amplitude minima at about 970-kHz
intervals is seen as a strong modulation of the amplitude envelope of
the pulse, which modulations appear quite noticeably as a bobsting about
every 1 us; the peak in Fourier amplitude at about 540 kHz can be seen
in the time history of the pulse as a component riding under tpe resonant
ringing; the véry sharp minimum in amplitude at about 10.86 MHz corre-
sponds to a‘distortion at about this frequency seen in the onset of the
pulse; etc. It is difficult to tell whether or not the repetitive minima
referred to above are true "zeroes." The polar plot (Figure 19(b)) indi-
cates that the Fourier Transform has probably been calcu%ated with suffi-
ciently close frequency spacing. The Fourier Transform is not reliable

beyond about 30 MHz.

* See footnote ‘on preceding page.
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Table I

SUNDRY PARAMETERS AND CONSIDERATIONS PERTAINING TO THE PROCESSING OF THE PULSE RADAR

R Waveform
Reference Pulse System Test Pulse
Record Record Record Record Record Record | Record | Record
Paramoter No. 1 No. 2 No. 3 No. 4 No. 5 No. 1 No. 2 No. 3 Impulse Response
Number of somples, n 7 156 328 1481 1665 291 247 698 .
(3707 total) (1236 total)
Time of first sample on 0 0,038 0.116 0.444 1.925 0 1.45 3.92
interval, 1;l (ns)
Time of last sample on 0,038 0.116 0.444 1.925 10.250 1.45 3,92 17.88
interval, t2 (us)
time domain, f(t) Time incremecnt between 0.5 ‘0.5 1.0 1.0 5,0 5 10 20 Not calculated
samples, T (ns)
Sampling rate, vg = 1/7 2000 2000 1000 1000 200 200 100 50
(Mitz)
Corner (0 dB) of smoothing 300 300 150 100 25 18 15 8
tilter, v (Miiz)
o
Half-width of filter cutoff 100 100 50 75 10 9 7.5 4
-6 d
(-6 dB), &y 59
Highest meaningful frequency 400 400 200 175 35 27 22.5 12
t = MH
component, v, ., = v+ A\’I/Z (MHz)
Highest possible frequency 1000 1000 500 500 100 100 50 25
“,t) ~ &) component v, = 172 v (MHZ)
Coarsest sampling increment - 4310 1126 260 49 345 128 28
fr = 2t
(trequency), avmax 1/ 2 (kHz)
Sampling rate, 'l‘S 4 20 5 10 50 5 10 50
(ps)
Frequency increment between 250 50 200 100 20 200 100 20
f somples, §v = 1/']‘s (kHz)
£ d N o) Frequency of first sample on 40 0 30 15 0 30 15 o
requency domain, giv interval, vl (MHZz)
Frequency of last sample on 100 40 40 30 , 15 40 30 15
interval, v, (MHZ) ’
Number of samples, n 240 801 50 150 751 50 150 751
v (1041 total) (951 total (951 total)
Latest possible time 2 10 2.5 5 25 2.5 5 25
component Tn =1/2 Ts - (ps)
g(v) - £(t) Coarsest sampling incrément 5 12.5 12-1/2 | 16-2/3 | 33-1/3 [ 12-1/2 16-2/3 33-1/3
(time), T =1/2 (ns)
max 2




Compaéison of the Fourier Transform of the system test pulse with
the Fourier Transform of the reference pulse shows that the two pulses,
are related, in that they have fepetitive minima at about the same spac-
ing in frequency (although apparently not identical spacing), somewhat
equivalent "trends" in amplitude, and some significant features (such
as a resonance at about 540 kHz) in common. They differ in that the
Fourier Transform of the system test pulse is, for lackkof’a better
term, more complicated; they also differ in other significant featurés
(such as a second harmonic of the 2.4-MHz resonance appearing in the
system test pulse Fourier Transform where the reference Fourier Transform

shows a sharp, double-spiked minimum).

The validity of the transfer function (Figures 20-22) depends not
only on the vaiidity of the two Fourier Transforms used in its calcula-
‘tion, but to a very great extent on how well the two transforms iine up
against one another. Reliable features of the transfer function are its
general trend (attenuation of the response below the 2.,4-MHz resonance,
boosting of the response above the 2,4-MHz response, and a roll-off in
response starting at about 20 MHz), and by and large its detailed char-
actey (amplitude mgxima and minima consistent in spacing with those for
the system test pulse Fourier Transform and the amplitude range of this
detail (10-30 dB) equivalent with the range (10-20 dB) for the system
test pulse Fourier Transform). Somewhat disconcerting features are the
double-spiked maximum at about 4.8 MHz, which is noticeable on the ref-
erence Fourier Transform as a minimum, and some evidence that the re-
pefitive minima (zeroes ?) of the two transforms are not lining up.

Just how disconcerting these features should be is diffibult to assess:
the double-spiked maximum is somewhat believable (the max;mum, anyway,

if not the double-spike) in that there is evidence in the system test
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pulse transform that there is a resonance at about 4.8 MHz; the possible
mismatch of zeroes is confused by the fact that the effect on the trans-
fer function of the typical double-spike character of such a mismatch is

apparently in character with the systems test pulse transform.
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IV CONCLUSIONS

Since the character of the transfer function is consistent with the

character of the system test pulse Fourier Transform, the transfer func-

tion is probably fairly reliable over the frequency range 200 kHz to

25 MHz. However, there are two unfortunate aspects to the calculation
of this transfer function, both aspects directly attributable to the
square-wave nature of the reference pulse, e.g., the repetitive minima

in the reference Fourier Transform. ¥t is safe to say that the repeti-
tive minima in the reference pulse transform and in the system fest pulse
transform were probably not lined up exactly in calculating the transfer
function. The seriousness of this misalignment is difficult to judge.
The effect on this alignment of inadequate calibration information for
the pulse time histories and of inadequate sampling of the reference
pulse transform is a matter of speculation; but one can assert without
speculating that adequate calibration and sampling would improve'at least

the analysis of the alignment problem by removing some uncertainties.

The second unfortunate aspect is the appearance of a probable reso-
nance in the response of the test system at a point (approximately4.8MHz)
where the reference pulse transform has a marked minimum. Consequently,

this resonance is not well defined. In addition to the two unfortunate

-aspects, it should be noted that the transfer function (Figures 20-22)

has not been corrected for the responses of the recording systems.

It is anticipated that the processing of data similar to that pre-
sented here would yield similar results. The transfer function so ob-
tained would be by and large reliable but would suffer two defects:

(1) possible mismatch of minima in the Fourier Transforms of the test
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and reference pulses, exacerbated by inadequate calibration of the pulse
time-domain waveforms (but presumably ameliorated by calculating the
transforms at the'appropfiate frequencies the next time around), and

(2) diminished resolution of features of the transfer function occur-
riﬁg near those minima. In order to obtain a meaningful transfer func-
tion, it will also be necessary to remove the effects of the recording

systems.

Since it may be surmised that a great deal of attention must be paid
to accurately recording and processing the data in order to obtain a trans-
fer function, it may be worthwhile to inquire into the usefulness of the
transfer function concepf as applied to the purposes of the experiment.
The sole purpose of the transfer function is to explicitly relate the
output of a system to the input to that system and, in relating the ouf—
put to the input, to make i£ easier to predict the response of the system
to a different input. The calculation of a transfer function (or some
equivalent relationship) is necessary if the response of the system is to
be calculated for a variety of different theoretical inputs or if exper-
imental results ;btained using different source functions (iﬁputs) are to
be compared directly. The caléulation of a transfer function is a waste
of time if different source functions, theoretical or experimental, are
not to be considered or if the actual source function has a spectrum suf-
ficiently flat across the bandwidth of interest to be used as‘a good
‘approximatién to an impulse. Additionally, the transfer function useful-
ness is necessarily limited to systems of linear response characteristics,
although the calculation of transfer functions may be useful in pinpoint-

ing areas of nonlinear response.

In an EMP interaction study, where the source function is a simulated
EMP, calculation of transfer functions is useful only if (1) the response

of the system, or critical sybsystems thereof, exposed to the simulated
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EMP is linear and (2) the assumed threat EMP is significantly different
in form from the simulated EMP, or if the transfer functions are used to
define the linear parts of the system so that a simulated pulse, such as

from a cable-driver, may be injected directly into the system to investi-

gédte the nonlinear subsystems.

The burden of addressing oneself to the question of whether or not
any transfer function obtained by considering one component of the elec-
tromagnetic field is meaningful to the purpose of the experiment has not
been assumed by this writer. His feeling--and it is only that--is that
the transfer function is also meaningful to the extent that the reference

pulse can be described as in the first paragraph of the Introduction.
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Appendix

DYNAMIC RANGE IN THE FREQUENCY DOMAIN

Given a continuous function of time, f£(t), defined over the inter-

val [O,T], suppose we have a measured version of f(t), which is contami-

nated by an error function e(t) such- that

T(t) = £(t) + e(t)

The average power in the desired signal is proportional to

Then the maximum Ps is

Suppose we can define a maximum f£(t), fhax

P =}-/f2 dt
smax T max



The error functions will be assumed zero-mean, random, and stationary

(such that the expected value of the squared error function will be in-

V\“
dependent of time). Then the expected value of P will be -
: €
T
. 1 [ 9
Ep_} = = [ B{e®(t) Jat
€ T
0
T
1 zdt
0
2
= G .
€
A maximum signal-to-noise ratio (SNR) may be defined as
2
A = smax  max
" E{p } 2
8 (e}
€
The sources of the errors have been discussed in the body of the report,
and it may be realistically assumed that the standard deviation of the
error is proportional to f ,
. max
c = qaf )
€ max
and the maximum SNR becomes:
1
A= — . .
2
(o
Our primary interest lies in the frequency domain representation of
the signal ?(t). We arrive at such a representation by applying the
finite-time, discrete Fourier Transform to the sample values of f(t). ~
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N-1

. . I
g(GA) = T E £ (kr)e [2TRIAT
| ~
N-1 N-1
-i j -i -
-1 2 : £(kT)e 21KJAT . EE: e (kT Ye i2nkjAT , (A-1)
=0 =0

‘The quantities T and A are the intervals between samples in the time

domain and in the frequency domain, respectively. Uniform sampling at

a sufficient rate is assumed and

T= (N - 1)

The guantity E(jA) represents an averaged version of E(v)--averaged over
the interval EJA -A/2, A+ A/2]. This results from the fact that the
time waveform is available only for a finite interval [O, T]. The fre-

guency band, A, is given by

1 1
A.= T = (N — ]_)T . (A-2)

Suppose that the signal energy is contained in only one of these
bands and to illustrate let f(kT) be equal to fmax' By using Eq. (A-2),

the first term in Eq. (A-1) becomes

N-1 i 21k j
2 : N-1

T f e = f NT
» max max
k=0
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The signal power in the narrow band A Hz in bandwidth is proportional to

P
max smax

We also know that the power in the error signal is proportional to

0e . If we further assume that the errors associated with different sam-

ple values are mutually independent, it is reasonable to conclude that
the power spectral density of the error signal is essentially uniform
with respect to frequency in the band (N - 1)A Hz wide. The error signal

2
power in a band A Hz wide is proportional to ce /(N - 1).

With the signal concentrated in a narrow band, we have in the fre-

quency domain an improved SNR given by

fi;“ - 1)
A= AN -1)
v 2
(o}
€

1t is unrealistic to assume that all of the signal energy is concentrated
in a single narrow frequency band, so we will define a reduction factor
for the SNR in terms of the ratio of the value of g at peak resonance to

the £ NT. The modified SNR becomes
max

-

/ g pk. res.
A\) = AN L £ Nt
max
k ] 2
g pk. res.
= (N 1) ——“;‘“';—‘
max .
A-4
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The dynamic range that may be anticipated in the frequency domain

analysis is approximately the SNR and expressed in dB is i i C:)
pk. res 2
. res.
10 lo N -1 g Pr. 759
€0 |¢ ) of T
max

We now apply this estimate to the pulse data. Referring to the os-
cilloscope traces of the waveforms (Figures 1 and 2), we seé that
o = 0,01 (1 percent of peak amplitude) is a reasonably conservative esti-

mate. For the reference pulse (refer also to Figures 8(b) and 15(a) and

to Table I), we have

¢ = 0.01

f ~ 5.5V
max

T~ 10 us
g peak resonance xp 9 V-us -

5107 O

N

Thus, the reliable range in spectral amplitude for the reference pulse

is 60 dB from peak resonance.

For.the system test pulse (refer also to Figures 9(d) and 19(a) and

to Table(I), we have .
o = 0.01
f = 48 mV
- “max
T ~ 20us

g peak resonance = 74 mV-us

N 1236 .

The reliable range in spectral amplitude for the system test pglse is

49 dB from peak resonance.





