Mathematics Notes

Note 3

7 August 1969

LEGEN

A Subroutine for the Generation of Associated Legendre Functions of the First Kind for Real Arguments Along the Cut

Lawrence M. Berg

Air Force Weapons Laboratory

ABSTRACT

A subroutine for the generation of the Legendre polynomial and the Associated Legendre Functions of the first kind is described from the algorithmic and operational points of view. Methods for the verification of accuracy are discussed. The use of the subroutine to generate the Legendre functions and their derivatives is outlined.

LEGEN

A Subroutine for the Generation of Associated Legendre Functions of the First Kind for Real Arguments Along the Cut

INTRODUCTION

This note describes a computer subroutine entitled LEGEN, written in FORTRAN IV for the CDC 6600 computer, which calculates the associated Legendre function $P_n^m(x)$. The subroutine accepts as inputs the degree (n), the order (m), and the argument (x) of the function. The subroutine will return values for $P_n^m(x)$ and its derivative, $P_n^m(x)$. The order and degree of the function must be TYPE INTEGER. The order must be greater than or equal to zero (m \geq 0), and the degree must be greater than zero (n > 0). The argument (x) must be TYPE REAL and range along the cut (-1.0 \leq x \leq 1.0). All returned parameters should be TYPE DOUBLE to insure accuracy at large m and n.

Several error messages and an optional accuracy check is contained within the subroutine to enable the user to verify returned values.

OPERATION

Generation

LEGEN must be used with a calling routine which specifies the order, and argument of the function and accepts the results from the subroutine.

Calling Sequence

Subroutine LEGEN may be called by the calling routine by using the following CALL statement:

CALL LEGEN (N, M, X, P, PP, DE, IDE)

The parameters N, M, X and IDE are supplied to the subroutine by the calling routine. They must have been previously assigned before execution of the CALL statement. The other parameters are returned by LEGEN.

Parameters

- 1. N TYPE INTEGER. This is the uppermost degree of the Legendre functions desired. N must be greater than 0.
- 2. M TYPE INTEGER. This is the order of the Legendre functions to be calculated. M must be greater than or equal to 0.
- 3. X TYPE REAL. This is the argument of the Legendre functions. The range of X must be $-1.0 \le x \le 1.0$.

- 4. P TYPE DOUBLE. This is an array of values of $P_n^m(x)$, returned by the subroutine. The order m is the input value M, and remains constant. The degree n ranges from M through the input value N. If M was input as zero then n will range between 1 and N. The argument of the Legendre function is the input value of X. P must be typed and dimensioned by the calling routine.
- 5. PP TYPE DOUBLE. This is an array of values for $P_n^{m}(x)$, the first derivative of the Legendre functions. The range of n and the values for the parameters m, and x are the same as that of P. PP must be typed and dimensioned by the calling routine.
- 6. DE TYPE DOUBLE. This is an array of values calculated as an accuracy check, representing a solution to the differential equation.

DE =
$$(1-x^2) P_n^{m_1}(x) + nx P_n^{m}(x) - (n+m) P_{n-1}^{m}(x)$$
.

DE should be zero for an exact answer. DE must be typed and dimensioned by the calling routine.

7. IDE TYPE INTEGER. This integer parameter is used to return and print the array DE. If IDE = 0, the array is calculated and printed, along with the arrays P and PP. If IDE is any value, other than 0, only P and PP are calculated and returned, without any printing taking place.

The names given to the parameters were chosen for illustrative purposes and are formal parameters in the subroutine. The actual parameters used must agree in type and number, but need not be identical in name.

ERROR MESSAGES

Several printed messages are provided for incorrect or out of range input. For an input of M < 0 or N < 0, the following printout will occur:

NEGATIVE ORDER OR DEGREE NOT ACCEPTED IN THE LEGENDRE FUNCTION ROUTINE.

If the argument is out of range the following printout will occur:

ONLY VALUES ON THE CUT ARE ACCEPTED AS ARGUMENTS FOR THE LEGENDRE FUNCTION.

If M exceeds N the following message will be printed:

BY DEFINITION M CANNOT EXCEED N.

If any of the preceding messages are printed, LEGEN will force termination of the program.

ACCURACY CHECK

The parameter IDE when set to zero will cause subroutine CHECK to be called. In CHECK the array DE is calculated, to provide a means of checking the accuracy of the Legendre function and their derivatives. The solution to the equation calculated should be zero for an exact answer. However, caution should be used for large M; because of the magnitude of $P_n^m(x)$ machine roundoff error can occur. Subroutine CHECK is called by using the FORTRAN CALL statement.

The formal parameters are the same as described for subroutine LEGEN. If CHECK is called the subroutine will provide a printout similar to the one illustrated below:

---DIFFERENTIAL EQUATION CHECK---

THE EQUATION USED IS
$$(1-x*x) \frac{dP_n^m(x)}{dX} + nxP_n^m(x) - (n+m)P_{n-1}^m(x) = 0$$

THE ORDER OF THE FUNCTION IS O AND THE ARGUMENT IS X = 1.000D+00

N	P	DP/DX	DIFF. EQ. CHECK
1	1.0000000000 D+00	1.000000000	0.
2	1.0000000000 D+00	1.000000000	1.5146129380 D-28

Using CHECK one has a quick, qualitative method of checking the values of $P_n^m(x)$ and $P_n^m(x)$.

ORGANIZATION

LEGEN, as a program, utilizes the subroutine CHECK and various external functions contained in the CDC 6600 FUNCTION library.

External Functions

FLOAT, DSQRT, DABS, MOD

I/O Files

An output file is required by the subroutine.

Timing

Execution of LEGEN depends primarily on the magnitude of the degree N. However when compared to other methods of computing the Legendre functions LEGEN proved to be extremely fast. For example, for M=0, N=1000, X=0.0 (.1) 1.0, the central processor time used on the CDC 6600 was 12.8 seconds.

ALGORITHMS

The Legendre functions of the first kind are computed from forward recurrence relationships. Several different relations are used, depending upon the order M.

Legendre Polynomial, M = 0

Initial values as defined in the <u>Handbook of Mathematical Functions</u>, AMS 55, were used to begin generation of the arrays P and PP.

$$P_1(x) = x$$
, $P_2(x) = \frac{1}{2} (3x^2 - 1)$, $\frac{dP_1(x)}{dx} = 1.0$

From these initial values, the forward recurrence relations

$$Pn+1(x) = \frac{(2n+1) \times Pn(x) - nPn-1(x)}{n+1}$$

and

$$\frac{dPn+1(x)}{dx} = (2n+1) Pn(x) + \frac{dPn(x)}{dx}$$

are used.

Associated Legendre Functions, M > 0

The initial value to begin the recurrence technique is as follows:

From AMS 55

$$P_n^m(x) = (-1)^m (1-x^2)^{1/2m} \frac{d^m Pn(x)}{dx^m}$$

therefore

$$P_1^1(x) = -(1-x^2)^{1/2}$$
:

The recurrence relations to generate the associated Legendre functions are as follows:

For equal order and degree, N = M

$$P_{\tilde{m}}^{m}(x) = -(2m-1)(1-x^{2})^{1/2} P_{n-1}^{m-1}(x)$$

For $m \neq n$

$$P_{n+1}^{m}(x) = \frac{(2n+1) \times P_{n}^{m}(x) - (n+m) P_{n-1}^{m}(x)}{n-m+1}$$

$$\frac{dP_{n}^{m}(x)}{dx} = \frac{-(nxP_{n}^{m}(x) - (n+m) P_{n-1}^{m}(x))}{1-x^{2}}$$

And, for the special case, at |x| = 1

$$\frac{dP_{n-1}^{m}(x)}{dx} = \frac{(n+m+1)}{(n-m+1)} \frac{dP_{n}^{m}(x)}{dx}.$$

When the subroutine CHECKS is called, the differential equation

$$(1-x^2) \frac{dP_n^m(x)}{dx} + nxP_n^m(x) - (n+m) P_{n-1}^m(x) = 0$$

is calculated to verify the values of $P_n^m(x)$ and $\frac{dP_n^m(x)}{dx}$.

SUMMARY

The subroutine LEGEN provides values for the Legendre polynomial, the associated Legendre function and their derivatives for order M, degree M through N and argument x. Accuracy has been verified through the use of tables contained in the references at the end of this note. It should be noted here that the definition of the associated Legendre functions used in this note includes the factor $(-1)^m$, which is omitted in some texts. This is in keeping with the definition as stated in the National Bureau of Standards AMS 55.

ACKNOWLEDGEMENTS

The suggestions and assistance of Mr. Joe P. Martinez of The Dikewood Corporation in the writing of the program and the preparation of this note is gratefully acknowledged.

REFERENCES

- 1. Handbook of Mathematical Functions, AMS 55, M. Abramowitz and I.A. Stegun, ed., National Bureau of Standards, 1964.
- 2. Tables of Functions, E. Jahnke and F. Emde, Chapter VII, Dover Publications, New York, Fourth Edition, 1945.
- 3. Methods of Theoretical Physics, P. Morse and H. Feshbach, Chapter 10, Part II, McGraw-Hill, 1953.
- 4. Associated Legendre Polynomials, CIC Report C3.4-001, R. L. Pexton, University of California, Computer Information Center, Lawrence Radiation Laboratory, 1965.
- 5. Spherical and Ellipsoidal Harmonics, E. W. Hobson, Chapter III, Chelsea Publishing Company, New York, Second Reprint, 1965.
- 6. Spherical Harmonics, T.M. MacRobert, Chapters V, VI, and VII, Pergamon Press, London, Third Edition, 1967.

Methods of Accuracy Verification

The numerical results obtained with subroutine LEGEN were compared with tables contained in the preceding references. The accuracy compared favorably with the tables, having no discrepancies with respect to the number of significant places contained in the tables. A difference in sign at odd-numbered orders (m) was noticed, but this is due to the difference in definition of the associated Legendre functions between reference (1) and the other references. This is the $(-1)^m$ term mentioned before. Unfortunately, existing tables are limited to small order and degree. When testing LEGEN for large m and n results were compared by running the subroutine of reference (4). For small m and n = 100the two subroutines agreed with each other to eight significant digits and were off at the most by 1 in the ninth significant digit. For n > 100 the Lawrence Radiation Laboratory subroutine caused overflow problems in the CDC computer. For n > 100 the equation of subroutine CHECK is used as an accuracy check. For m = 0 and $1 \le n \le 1000$ the solution to the differential equation was in the range of 10^{-26} where the exact solution is 0. For larger m accuracy is reduced. However, even at large m the solution to the differential equation is_still zero for certain values. When m > 10, the associated Legendre function $|P_n^m(x)|$ is extremely large and machine roundoff error may be introduced in the computations. At m > 10 absolute accuracy cannot be guaranteed.

Another method employed in checking accuracy was by calculating the functions using a backward recurrence technique and comparing values. If M is the order and N the largest degree desired, then $P_{N-1}^{M}(x)$ and $P_{N-1}^{M}(x)$ are calculated from the following equations, for starting values.

$$P_{n}^{m}(x) = (-1)^{m} \frac{(n+m)!}{(n-m)!} \frac{(1-x^{2})^{m/2}}{2^{m}m!} \left(\frac{1+x}{2}\right)^{n-m} \sum_{k=0}^{n-m} t_{k} \left(\frac{x-1}{x+1}\right)^{k}$$

where

$$t_0 = 1$$
, and $t_k = t_{k-1} \left[\frac{(n-k+1)(n-k+1-m)}{k(m+k)} \right]$

The backward recurrence formula

$$P_n^m(x) = \frac{(2n+3)x P_{n+1}^m(x) - (n-m+2) P_{n+2}^m(x)}{n+m+1}$$

is then carried to n = m. This recurrence formula produces numbers which differ from the forward recurrence method only in the 9th or 10th significant place. Again at large m computer roundoff errors are introduced due to the large absolute magnitude of the functions, but for m < 10 the results agree with each other to a high degree of accuracy.

```
SUBROUTINE LEGEN (N,M,XX,P,PP,DE,IDE)
                                                                                 LEG
                                                                                 LEG
Č
      THIS ROUTINE CALCULATES THE ASSOCIATED LEGENDRE FUNCTION AND ITS
                                                                                 LEG
                                                                                       3
CCC
      DERIVATIVE FOR ARGUMENTS ON THE CUT.
                                                                                LEG
                                                                                       4
                                                                                       5
                                                                                LEG
      INTEGER N.M. IDE
                                                                                LEG
      DOUBLE PRECISION PP(N), P(N), OMX2, X, SQT, V, W, EM, G, DE(N)
                                                                                LEG
                                                                                       7
      X = XX
                                                                                LEG
                                                                                       8
      IF (-1..GT.X.OR.X.GT.1.) GO TO 350
                                                                                LEG
                                                                                       9
      IF (N.LE.O.OR.M.LT.O) GO TO 340
                                                                                LEG
                                                                                      10
      SIGN=1.
                                                                                LEG
                                                                                      11
      IF (X.LT.O.) SIGN=-1.
                                                                                LEG
                                                                                      12
      W=FLOAT(M)
                                                                                LEG
                                                                                      13
      OMX 2=(1,-X*X)
                                                                                LEG
                                                                                      14
      SQT=DSQRT(OMX2)
                                                                                LEG
                                                                                      15
      N1 = N - 1
                                                                                LEG
                                                                                      16
      IF (M.GT.N) GO TO 360
                                                                                LEG
                                                                                      17
      IF (M.EQ.0) GO TO 200
                                                                                LEG
                                                                                      18
      IF (.99999998-DABS(X)) 190,10,10
                                                                                LEG
                                                                                      19
10
      P(1) = -SOT
                                                                                LEG
                                                                                      20
      IF (N.EQ.1.AND.M.EQ.1) GO TO 100
                                                                                LEG
                                                                                      21
      IF (M.EQ.1) GO TO 30
                                                                                LEG
                                                                                      22
      DO 20 1=2,M
                                                                                LEG
                                                                                      23
      EM=FLOAT(1)
                                                                                LEG
                                                                                      24
      P(1)=-(2.*EM-1.)*SQT*P(1-1)
                                                                                LEG
                                                                                      25
20
      CONTINUE
                                                                                      2(
                                                                                LEG
30
      DO 90 J=M.N1
                                                                                      27
                                                                                LEG
      V=FLOAT(J)
                                                                                LEG
                                                                                      28
      IF (.00000001-DABS(X)) 50,40,40
                                                                                LEG
                                                                                      29
40
      NM = J + 1 + M
                                                                                LEG
                                                                                      30
      IF (MOD(NM, 2).EQ.1) GO TO 80
                                                                                LEG
                                                                                      31
50
      IF((J-1)-M) 70,60,60
                                                                                LEG
                                                                                      32
      P(J+1)=((2.*V+1.)*X*P(J)-(V+W)*P(J-1))/(V-W+1.)
60
                                                                                LEG
                                                                                      33
      GO TO 90
                                                                                LEG
                                                                                      34
70
      P(J+1)=((2.*V+1.)*X*P(J))/(V-W+1.)
                                                                                LEG
                                                                                      35
      GO TO 90
                                                                                LEG
                                                                                      36
80
      P(J+1)=0.0
                                                                                LEG
                                                                                      37
      CONTINUE
90
                                                                                LEG
                                                                                      38
      DO 160 I=M, N
100
                                                                                LEG
                                                                                      39
      V=FLOAT(1)
                                                                                LEG
                                                                                      40
      IF (.00000001-DABS(X)) 120,110,110
                                                                                LEG
                                                                                      41
110
      NM = I + M
                                                                                LEG
                                                                                      42
      IF (MOD(NM, 2).EQ.0) GO TO 150
                                                                                LEG
                                                                                      43
120
      IF((I-1)-M) 130,140,140
                                                                                LEG
                                                                                      44
130
      PP(1) = -(V * X * P(1)) / OMX 2
                                                                                LEG
                                                                                      45
      GO TO 160
                                                                                LEG
                                                                                      46
      PP(1)=-((V*X*P(1)-(V+W)*P(1-1))/OMX2)
140
                                                                                LEG
                                                                                      47
      GO TO 160
                                                                                LEG
                                                                                      48
                                                                                LEG
150
      PP(1)=0.
                                                                                      49
160
      CONTINUE
                                                                                LEG
                                                                                      50
                                                                                      57
      IF (.99999-DABS(X)) 170,330,330
                                                                                LEG
                                                                                      5
170
      DO 180 K=M, N1
                                                                                LEG
      G=FLOAT(K)
                                                                                LEG
                                                                                      53
```

```
P(K)=0.
                                                                                LEG
                                                                                     54
180
       PP(K+1)=((G+W+1.)/(G-W+1.))*PP(K)
                                                                                LEG
                                                                                     55
       P(N)=0.
                                                                                LEG
                                                                                     55A
       GO TO 330
                                                                                LEG
                                                                                     56
      X=.999999*SIGN
190
                                                                                LEG
                                                                                     57
       IF (M.LT.10) X=.9999999999*$IGN
                                                                                LEG
                                                                                     58
      OMX 2 = (1. - X * X)
                                                                                LEG
                                                                                     59
      SQT=DSQRT(OMX2)
                                                                                LEG
                                                                                     60
      GO TO 10
                                                                                LEG
                                                                                     61
C
                                                                                LEG
                                                                                     62
C
      THE FOLLOWING CALCULATES THE LEGENDRE POLYNOMIAL (ORDER = 0)
                                                                                LEG
                                                                                     63
C
                                                                                LEG
                                                                                     64
200
       IF (.00000001-DABS(X)) 210,230,230
                                                                                L EG
                                                                                     65
210
      P(1)=X
                                                                                LEG
                                                                                     66
      PP(2)=3.*X
                                                                                LEG
                                                                                     67
220
      P(2) = .5*(-1.+3.*X*X)
                                                                                LEG
                                                                                     68
      PP(1)=1.
                                                                               LEG
                                                                                     69
      GO TO 240
                                                                               LEG
                                                                                     70
230
      P(1)=0.
                                                                                LEG
                                                                                     71
      PP(2)=0.
                                                                                LEG
                                                                                     72
      GO TO 220
                                                                                LEG
                                                                                     73
240
      IF (N.EQ.1) GO TO 330
                                                                                LEG
                                                                                     74
      IF (.99999998-DABS(X)) 310,250,250
                                                                               LEG
                                                                                     75
250
      DO 300 NN=2,N1
                                                                                LEG
                                                                                     76
      G=FLOAT(NN)
                                                                               LEG
                                                                                     77
      IF (.00000001-DABS(X)) 270,260,260
                                                                                LEG
                                                                                     78
260
      IF (MOD(NN, 2).EQ. 0) GO TO 280
                                                                                LEG
                                                                                     79
      PP(NN+1)=0.
                                                                               LEG
                                                                                     80
      P(NN+1)=((2.*G+1.)*X*P(NN)-G*P(NN-1))/(G+1.)
                                                                               LEG
                                                                                     81
      IF (.00000001-DABS(X)) 290,300,300
                                                                               LEG
                                                                                     82
280
      P(NN+1)=0.
                                                                               LEG
                                                                                     83
290
      PP(NN+1) = (2.*G+1.)*P(NN)+PP(NN-1)
                                                                               LEG
                                                                                     84
300
      CONTINUE
                                                                               LEG
                                                                                     85
      GO TO 330
                                                                               LEG
                                                                                     86
310
      DO 320 KA=2,N
                                                                               LEG
                                                                                     87
      P(KA)=1.
                                                                                LEG
                                                                                     88
      IF (X.LT.0.00) P(KA)=(-1.)**KA
                                                                                LEG
                                                                                     89
      G=FLOAT(KA)
                                                                                LEG
                                                                                     90
      PP(KA+1)=(2.*G+1.)*P(KA)+PP(KA-1)
320
                                                                                LEG
                                                                                     91
330
      IF (DABS(X).GT..999999) X=SIGN
                                                                                LEG
                                                                                     92
      IF (IDE.EQ.O) CALL CHECK (N,M,X,P,PP,DE)
                                                                                     93
                                                                                LEG
                                                                                LEG
                                                                                     94
      RETURN
340
      PRINT 370
                                                                                LEG
                                                                                     95
                                                                                LEG
                                                                                     96
      STOP
                                                                                LEG
                                                                                     97
350
      PRINT 380
      STOP
                                                                                LEG
                                                                                     98
360
                                                                                LEG
                                                                                     99
      PRINT 390
                                                                                LEG
                                                                                    100
      STOP
                                                                                LEG
                                                                                    101
      FORMAT (68H NEGATIVE ORDER OR DEGREE NOT ACCEPTED IN LEGENDRE FUNCLEG 102
370
                                                                                LEG 103
     1TION ROUTINE.)
      FORMAT (76H ONLY VALUES ON THE CUT ARE ACCEPTED AS ARGUMENTS FOR TLEG 104
                                                                                LEG 105
     1HE LEGENDRE FUNCTION.)
                                                                                LEG
                                                                                    106
      FORMAT (32H BY DEFINITION M CANNOT EXCEED N)
```

END

LEG

107-

```
SUBROUTINE CHECK (N,M,X,P,PP,DE)
                                                                               CHE
      INTEGER N,M
                                                                               CHE
      DOUBLE PRECISION DE(N), P(N), PP(N), X, G, EM, C, SIGN
                                                                               CHE
      SIGN=1.
                                                                               CHE
                                                                                     4
      IF (X.LT.O.) SIGN=-SIGN
                                                                                     5
                                                                               CHE
      EM=FLOAT(M)
                                                                               CHE
                                                                                     6
      K = M
                                                                               CHE
                                                                                     7
      C=0.
                                                                               CHE
                                                                                     8
      IF (M.EQ.0) K=1
                                                                                     9
                                                                              CHE
      DO 30 I=K, N
                                                                               CHE
                                                                                    10
      G=FLOAT(I)
                                                                               CHE
                                                                                    11
      IF (M.EQ.O.AND.I.EQ.1) C=SIGN
                                                                              CHE
                                                                                    12
      IF(M.EQ.I.OR.(M.EQ.O.AND.I.EQ.1))GO TO 20
                                                                              CHE
                                                                                    13
10
      DE(1)=(1.-X*X)*PP(1)+G*X*P(1)-(G+EM)*P(1-1)
                                                                              CHE
                                                                                    14
      GO TO 30
                                                                              CHE
                                                                                    15
20
      DE(I)=(1.-X*X)*PP(I)+G*X*P(I)-C
                                                                                    16
                                                                              CHE
30
      CONTINUE
                                                                              CHE
                                                                                    17
      PRINT 40, M,X
                                                                              CHE
                                                                                    18
      PRINT 50, (J,P(J),PP(J),DE(J),J=K,N)
                                                                              CHE
                                                                                    19
      RETURN
                                                                              CHE
                                                                                    20
C
                                                                              CHE
                                                                                    21
40
      FORMAT (1H1,50X,31H--DIFFERENTIAL EQUATION CHECK--//38X,60H THE EQCHE
                                                                                    22
     1UATION USED IS (1.-X+X)+DPN/DX+N+X+PN-(N+M)+PN-1=0.00//28X,31HTHE CHE
                                                                                    23
     20RDER OF THE FUNCTION IS, ,13,25H AND THE ARGUMENT IS X =, D12.4 CHE
                                                                                    24
     3//28X,1HN,15X,1HP,24X,5HDP/DX,17X,15HDIFF. EQ. CHECK//)
                                                                              CHE
                                                                                    25
50
      FORMAT (22X, 16, 6X, D20.10, 6X, D20.10, 7X, D20.10)
                                                                              CHE
      END
                                                                              CHE
```