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Abstract

It is the purpose of this report to review the effects of propatation
for a transient electromagnetic signal that thus enamated from a localized
pulse source. The best example of the latter is a time-varying current in
a lightning channel. The literature on the subject of transient electro-
magnetic fields is vast. But here we will focus on the effects caused by
the presence of the earth's surface.
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I. INTRODUCTION

It is the purpose of this report to review the effects of propagation
for a transient electromagnetic signal that has emanated from a localized
pulse source, The best example of the latter is a time-varying current in
a lightning channel,

The literature on the subject of transient electromagnetic fie]ds is

~vast. But here we will focus on the effects caused by the presence of the

earth's surface. Less attention will be paid to the influence of the atmo-
sphere. For the most part the source of the fields will be regarded as a
vertical electric dipole or current element endowed with a specified time;
dependent moment. In most cases the problem boils down to performing an
inverse Fourier or Laplace transformation of the time harmonic form. _Here
we will not elaborate on the analytical details nor will we carry out new

. numerical evaluations of the inverse transforms., Instead the significance,

scope, and limitations of the existing results in the literature will be
reviewed. This task requires that the known steady state or time harmonic
form be clearly understood before the veracity of the transient counterpart
be established.




space value (i.e., o = 4m x 10°

II. FLAT EARTH MODEL

‘We consider first a homogeneous half-space model of the earth with a
frequency independent conductivity o and permittivity e. The (magnetic)
permeability pp is also a constant and taken to be the same as its free-

7). The source is taken to be a vertical

electrical dipole of current moment M(iw) for a harmonic time factor
exp(iwt). What this means is the present context is that M(s) is the
Laplace transform of the time-dependent current moment m(t). That is

M(s) = s m(t)e'Stdt Q1)
. .

with the variable s identified with iw. The generality of the transform is
extended if we allow Re s > 0, Symbolically we write Equation 1 as

M(s) = L m(t) o (2)
where L is the Laplace transform operator.

For the moment we define m(t) the instantaneous current moment as
follows: ‘

2 ,
m(t) = J. i(z,t) dz (3)
0 .

’where %2 is a fixed height beyond which (i.e., z > &) the current i(z,t) is

always zero. The situation is illustrated in Figure 1 when with reference
to cylindrical coordinates (p,9,2z) the earth's surface is at z = 0 and the
turrent element is located at p = 0 but just above z = 0. The region z > 0
is assumed to be free space with permittivity eg and permeability p.
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Figure 1. The basic prototype model for looking at pulse propégation
over the earth,

The primary obJect1ve of this prototype problem is to determ1ne the
electromagnetic field at a distance point P(p,z) bearing in mind that sym-
metry in ¢ prevails (i.e., 3/3¢ = 0). '

A word might be said here about what we mean by the specification of a
f11amenta1 current i(z,t) on the axis e = 0. The link is Ampere’ S Law
which says that

250 (g:2) = 1(z,t) @

where H (po,z t) is the azimuthal magnetic field as a function of tvmé at
~some rad1us PO that just exceeds the radius of the current filament.

Thus, at this stage, we do not need to describe the discharge mechan1sm
explicitly,

With reference to the model depicted in Figure 1 we make some further
idealizations that are later relaxed. Specifically we assume that the
fields are to be observed in the insulator at z = 0 just above the earth's
surface. Also we assume that the horizontal range is much greater than the
maximum height & (chosen arbitrarily) of the source dipole. That is
P > &. This inequality is a necessary but not a sufficient condition for
the validity of the "moment approximation" (Refs. 1-3).




In the transform s domain we can now write down an expression for the
vertical electric field E,(p,0,s), denoted E;(s), at P(p,0) as follows

E,(s) = Ey(s) Fp) (5)

where F(p) is an attenuation function usually attributed to Sommebfe]d and
Norton. The normalization is such that F(p) = 1 if the ground conductivity
were infinite (i.e., 0 ==). Thus Eg(s) is really twice the free-space ,
field of the current element at a distance p in the broadside direction. .
Thus we may write, without further approximation (Ref. 3), that

oS _sp/c c ¢ ¥ '
Ey(s) = - g e 1+ Sy (EE) M(s) (6)
where
¢ = (egng) /%= 3x 108

The attenuation function mentioned above can be well approximated as
follows:

F(p) = 1 - i(np)l/2 e P erfe (ipl/z) (7);
or
1/2 ) x2
F(p) = 1 - i2p/ %P _{ e dx (8)
Y

when p the numerical distance is defined here by

) _
= p(s) = - 2.0 s e (9)
PP 26u0c3(1 +6) < ouge (1 + 6)>

where, in turn, 6 = es/o. A self contained derivation of Equation 7, or
Equation 8, is available in a recent textbook (Ref. 4). As indicated then




some key approximations are made in the process. For example, in perform-
ing the saddle point method of integration, we have assumed that, in the
present context, 1 sp/c » 1. This far-field approximation is clearly
violated in the near field but in that case lp| <1 and F(p) = 1. Never-
theless, as we indicated below, this point requires further study. Another
key approximation is that I(o + ES)/(EOS)'2 > 1. However, this restric-
tion is not particularly stringent if the form for the numerical distance
given by (Eq. 9) above is employed. 0f course some additional simplifica-
tions are possible if p is further simplified to

p= - Kszp (10)

where

-1

3 7 = (280m0c) "]

K= (2 Kot

This form for p is valid if 'ss/c'2 is sufficiently small. It is important
to note here that the form given by (Eq. 10) neglects displacement currents
in the ground but not in the air.

To obtain results in the time domain we need to invert (Eq. 5). In
their words, if E,(p,0,t) or E;(t) is the vertical electric field at
P(p,0) for a source dipole moment M(t), then we must deal with

| st '
Ez(s) = !. Ez(t) e dt = L Ez(t) (11)

where E;(s) is known. The inverse operation is

b+iw

Ezft) = 5 J. Ez(s) eSt ds = L Ez(s) (12)

b-je

where b(>0) is some small real constant.

Note: An equivalent statement of (Eq. 12) is:
+o+ib
E,(t) = 3 I E, (iw)e'™? du

- +ib
8




The evaluation of the inverse transform given by (Eq. 12) is not a simple
task even when various simplifications in the s plane are made. Further-
more the validity in the time domain is not easily established. To cope
with this problem we describe the time domain results for the simplest case
first and then progressively increase the complex1ty by relaxing the
various approximations.

To provide a comparison bétwéen various approaches it is also con-
venient to adopt a standard source. A desirable form is the ramp current
source chosen such that

dm(t)

a - Au) ‘; | | S mw
where
u(t) = 1 for t >0
=0 fort<O

is the unit (Heaviside) step function. Then m(t) = Atu(t) which rises
linearly with time for all t > 0, Now clearly

M(s) = L m(t) = A/s2 (14)
Thus, our task is to evaluate

%0
E,(t) = -%AR(t -%) (15)

where




or

R(t) = L'I % [F(p) + -g? +(—S-b- . k (16)

2 o <::)
5]
In the simplest case, where o = =, F(p) = 1 and we easily deduce that

, |
R(t) = Ry(t) = [1 S0 () 71] ut) ()

For the "radiation zone", p » ct. The response has the expected step-
function form. The function Ro(t - p/x) is shown Plotted in Figure 2 for
various ranges; p = 20, 50 and 100 km., The rise of these curves above 1.0
exemplifies the influence of the induction and static field components,

Ro(t - p/c)

10 10° 10
t - o/c, us

Figure 2. The transient response Ro(t - p/c) at distance p from
a source dipole energized by a ramp current at t = 0
computed for a flat perfectly conducting earth. (Curves

are actgally applicable for finitely conducting earth if
o> 10-9,) ‘
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In the case of a finitely conducting earth we find that

, o |
LR , [Rr(t) +§£ +%(§_"-) ]u(t) 1 (18)
where

-11
R(8) = L7H 3 F(p) | (19)

is the "radiation field" that is primarily affected by the finite conduc-
tivity of the earth. 1In the simplest case, where we neglect the displace-
ment currents in the ground, we may use (Eq. 10) for p in (Eq. 7)

to yield the remarkably simple form (Refs. 5 and 6):

2 ,
Rr(t) = [1 - exp(z—%EJ] u(t) 4 - (20)

where K = (240noc)'1; As indicated this rises from zero at t = 0 and
reaches a maximum of 1.0 for t » o, )

The function R(t - p/c), as defined by (Eq. 18) with Rp(t) given by
(Eq. 20), is shown plotted by the solid curve in Figure 3 as a function of
the retarded time t - p/c is microseconds. The range p is taken to be 50
km and the conductivity o is 10-1 mhos/m. The slight rise of the func-
tion R(t - p/c) above unity for the later times is the influence of the
static and induction fields, ‘

We now need to deal with the displacement currents in the ground. An

approximate approach (Ref. 5) is based on the evaluation of the inverse
transform

Re(t) = L1 2 F(p) | (21)

11
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Figure 3. The transient response R(t - p/c) at distance o from
a source dipole for a finitely conducting earth showing
the effect of displacement currents at small times.

where

. 2 : '
p=p(s) = - 32 <1 - yquﬁ—gy) o (22)

where & = e€s/o, The validity of the asymptotic expansion

1 1.3 1345
F(p) = - g5 - by 138 (23)
P (2p)? (2p)3

{
is tacitly assumed bearing in mind that p is large for small times. Then

we find that

¥l o
R (t) = [1 -exp |- ——] |+ A(t) (24)
r 4Kp

12
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where A(t) isea first order correction (Refs. 5 and 7) given by

¥ 280‘ e ’ B
A(t) = W(%— + 1) J(x) (25)
and
‘ 2.2 -x% i
J(x) = x5(1 - x%)e™ (26)

Calculations of the response R(t-p/c) based on (Eqs. 18 and 24) are
shown in Figure 3 by. the dashed curve. The -rather small enhancement of the
transient response at short times, when displacement currents are con-
sidered, is typical. Actually the inverse transform of (Eq. 21) can be
performed with the more accurate form of p(s) given by (Eq. 22). Such an
evaluation was carried out by Walsh and Rahman (Ref. 8). They compared
their caTcu]ations with those based on our (Eq. 24) and found the results
were virtually identical in the region of interest (i.e. 10-2 to 1 us for
ranges from 1 to 100 km and o = 10-2 to 10-3 mhos/m). Walsh (Private
Communication) has also extended these transient calculations for the flat
earth model to raised antennas where again the Sommerfeld-Norton form of
the steady state attenuat1on function is employed at the outset

In a recent interesting paper Coohay and Lundquist (Ref. 9) studied the
changes in the rise times and the attenuation of the initial peaks of the
radiation fields from lightning constructed accord1ng to the most recent
observational data on Tightning return stroke radiation fields. ‘he1r
results showed the importance of taking into account the propagation
effects when trying to estimate rise time, rate of rise, and peak current
from measured fields. The predictions based on the formulation of Wait

13
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(Ref. 5) showed good agreement with their data. As pointed out by Cooray
and Lundquist,(Ref. 9) the distance dependence of the risetime is crit-
ically dependent on the effective earth conductivity.

In dealing with pulse propagation over the earth various approximations
are made to facilitate both the spatial and temporal integrationss Various
checks are desirable in addition to observational tests that may not be
convincing. When there is an exact solution to a prototype problem, one
should confirm that the approximated solution reduces to such a form under
appropriate conditions. For example van der Pol (Ref. 10) has provided us
with an exact solution of the problem formulated ébove in the extreme
limiting situation when the ground conductivity o was set equal to zero. A
careful comparison (Ref. 11)  of our approximated so]ution outlined here
concluded that the Sommerfeld-Norton form of the attenuation function is
applicable to pulse propagation over a flat earth provided the dielectric
constant (i.e., s/so) is reasonably large compared with unity.

Some further questions and concerns have arisen more recently about the
validity of the attenuation function used in the transient calculations for
the flat earth model. For example, Haddad and Chang (Ref. 12) developed an
accurate procedure to deal with the inverse frequency transform of the

exact integral formula for the dipole source excited by impulsive current.

They showed an interesting comparison of the early time solution based on
(Refs. 5 and 13), and their admittedly more accurate (but more complicated
form). As they conclude the results for a range of 10 km, for o = 10-2
and 10-3 mhos/m agreed in their "overall pattern" for all times from 0.01
to 10 ps. However, there were differences in the magnitudes and the pre-
cise locations of the nulls and peaks. It would have been useful if Chang
and Haddad (Ref. 12) had integrated their responses twice with respect to
time so that their results could be compared directly with our results for
a ramp current source. It appears that such a step would tend to submerge
the differences in the various theoretical approaches (not meaning we wish
to sweep them under the rug!).

14




Using a surface 1mpedancg model Wait (Ref. 14) ?150 reformulated the
pulse problem for the dipole on the boundary and showed that the tradi-
tional approximations in the frequency domain could omit a slow tail in the
transient response. However, the presence of the static and induction
fields, not explicitly considered by Chang and Haddad (Ref. 12), would tend
to swamp the influence of the slow tail not to mention ionospheric ihflu-
ences. Nevertheless, further work on these more accurate representations
would be well worthwhile. A promising approach is to make use of the known
properties of the integral representations of the incomplete Hankel func-
tions (Refs. 15, 16). In this manner one may avoid the asymptotic approxi-
mations that are ahparent1y violated when the Sommerfeld-Norton form is
used for low frequencies (or large times).

Finally it might be mentiohed that integral equation approaches to deal
with the influence of finite conductivity are fruitful. In fact Hufford
(Ref. 17) shows many years ago that the Sommerfeld-Norton form could be
developed by a direct application of Green's theorem using essentially a
surface impedance model of the homogeneous half-space. This approach has
been followed up by others (Refs., 18, 19) where more complicated geometries
are treated. A contemporary review appears in (Ref. 3) (see Chapter VII).

Footnote: In Theoretical Note 311, June 1980, K.S.H. Lee, derives the
Sommerfeld-Norton form of the attenuation function from an inte-
gral equation whose use is attributed to C. L. Longmire that has
the same form as in References 17, 18, and 19. Lee also obtains
the expected time-domain response as in Reference 5.

15
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ITI. SPHERICAL EARTH MODEL

In discussing pulse propagation over the earth's surface one should
really consider earth curvature. Or at least one should ascertain if the
assumed flat earth model is adequate. The most direct approach is to for-
mulate the problem in spherical geometry which leads to spherical Bessel
functions and Legendre polynomials. In some cases this intricate approach
is .required and the numerical results in both the frequency and time domain
are useful. However if the range is short it is desirable to examine the
spherical model in such a fashion that the corrective terms to the flat
earth model are clearly evident. P

The curvature corrected flat-earth attenuation function was developed
by Bremmer and Wait in 1955 and the results appeared in two papers (Refs,
20, 21). The method is based on an asymptotic development of the field
(Spatial) transform that permitted a term by term inversion to yield the
desired time-harmonic response., Thus, for example we were able to say that
corrected attenuation function F(p), in the s plane, is

F) - 3o [1- 1 Y2 - 1+ 2p)r(p)]

F(p) =
. 1 2
+ 92[1 - i) (1 - p) - 2 +% p? +<-2- P - l)F(p)]
+ terms 1in 93, 94, etc. o . (27)
where
w113/2
Q [puo(1 +8)] ! and 6 = &S
(s/c)4a

16




and a is the earth's‘radius. The flat earth attenuation function F(p) and
the numer1ca1 distance p are as defined by Equat1ons 7 and 9 above. In
spite of the complexity of Equation 27 the inverse Laplace transforim can be
obtained without undue difficulty (Refs, 5, 13) We do not need to exhibit
the ana]yt1ca1 details here. But the transient response for the standard
ramp current source d1po]e is shown in Figure 4 where corrective terms for
-earth curvature are indicated. For the range indicated, the correction
terms are quite small and in fact the third order correction would not

produce a further modification at least to the graphical accuracy of the
f1gure.

————— Flat Earth

- = e First Correction

-=~===Second Correction

t - o/c (us)

Figure 4. The transient response R(t-p/c) at (great circle) distance p
from a source dipole for a f1n1te1y conducting spherical
earth., The flat earth model is shown along with first and
second order corrections. When the third order correction is
added, there is no perceptible change to the second order cor-
rected curve,

17




Using the curvature corrected formulae, the transient responses, for
the ramp current source dipole, are plotted in Figures 5a and &b fdr ranges
of 20 and 50 km, respectively. Both the effects of changing ground conduc-
tivity and displacement currents are shown on the figure. Not surprisingly
the initial rise of the waveforms are delayed significantly when the
groundbconductivity is reduced from 1072 to 1073 mho/m.

Additional short time transient responses are given in Reference 13 for
both ramp- and step-function current sources. Some of these results were
privately communicated by Dr. John Malik and J. R. Johler.

At greater ranges (e.g., >300 km or so) the curvature corrected flat
earth formulae become poorly convergent and many higher order corrections
are needed., The mathematical convergence is conjectured to be absolute in
spite of the asymptotic nature of the attenuation function in transform
épace. A related question was addressed by Wait (Ref. 22). There it was
‘shown that the asymptotic expansion of F(p), indeed, could be inverted term
by term to lead to a convergent time-domain response.

As a pbactica] matter, it is more convincing if somewhat inelegant to
work directly with the residue series representations for the,spherica]
earth attenuation function. Such a series is highly convergent deep in the
shadow zone well (beyond the optical horizon). This approach is appropfi-
ate for ranges beyond 300 km.

In accordance with conventional notation, we now designate the attenua-
tion function, for time harmonic variation, by W(w). Actually it is nor-
malized so that it would reduce to F(p) for the flat earth model. Again we
are dealing with pure ground wave transmission so atmospheric effects are

being ignored--at least for the moment. Thus, with reference to a general

treatment of the problem (Ref. 23), we may write for a time factor
exp(iwt):

18




T T 1 T T
] e ———
. A7 -
S/ P
_ of S .
o)
g - / / a ' —
a // / p = 20 km
1 /,
+ B / / 7]
! / /
-/ / -
/ /
= / -
3 / | |
- ] 1 1 1
10 7 C -
1072 107! 1 10 |
t - o/c (us) — /g =0

—— f,/f,o = 10

Figure 5a. Transient response at distance o on spherical earth
showing dependence on ground conductivity and dis-
placement currents (p = 20 km).

i ! l I 1 I I T
1=
iR
(8]
2 i
';
S 8
=2k
\
-3
1077
10

t - n/c (us)

Figure 5b. Same as Figure 5a for r = 50 km.
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L - -ixt Wo(t. -y) W (t -y
W) = (“x)uz o-in/4 Z e s, 1s 77 Mtts y )
’ s=1,2,3...‘tS - q2 wl(ts) wl(ts)

- (28)

where

an1/3 1/3
y = (EE) 3-2 s X = (93) E
wa c 2c a

1/3 1/3
(I 2c W _, i o fwa .
y (mw) E,z s iq (55) Zg(w)/lZOn

and where Lg is the effective surface impedance at the ground (i.e., at

r = a in spherical coordinates). The function wl(t), of argument t not to
be confused with time, is defined by

W (t) = = 2[Bi(t) - fai(t)] (29)

where Ai(t) and Bi(t) are conventional Airy functions as defined for
example in the Handbook of Mathematical Functions. The summation in
Equation 28 extends over the discrete roots ts which are solutions of

[dwl(t)/dtj - QW (t) =0 , ; (30)

, This “"mode equation” assures -that the surface impedance boundary condition

is satisfied at r = a. In fact, the surface impedance for a homogéneous
ground with properties o, € and py takes the form

ipow 172 1'80(» >1/2
Z =f___ - -
g <c + iew) . o + iew

20
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which 1s, in fact, exactly true for a vertically polarized plane wave
incident at grazing angles on a homogeneous half-space model of the earth,
Actually, stratified earth models can be handled easily by using more
general forms (Refs. 20 23) of Equation 31,

The geometry of the situation is shown in Figure 6 where key parameters
are indicated. Over the years, a great deal of effort has gone 1nto the
evaluation of the time-harmonic form W(w) such as the residue series given
by Equat1on 28 although the notation may be different (e.g., Hankel func-
tions of order 1/3 are sometimes used in place of the less confus1ng Airy

_ /
r = a /
\ /
/
\ y
/
\ /
/
/

Figure 6. Geometry for spherical earth model for ground wave

transmission from vertical (i.e., radial) current element
at P at height 2z'
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functions). Less effort has been made to determine the transient solu-
tions. Our approach (Ref. 24) was to perform a; straightforward 1nverse
Fourier transform of the time harmonic data. Aisimilar approach was
employed by the Soviets (Ref. 25) and also by J. R. Johler (private commun-
ications in 1965). Many of these results are summarized and reviewed in
Reference 13 which is readily accessible.

Tb obtain the desired transient response fo# a ramp current sourte, we
may proceed formally by using the inverse Fourier integration over real w:

+o

R(t) = & s M) futy,
+o
= 1 1 - W) o
=1 T n S iw du
2 [ 1 Ww)
=1+ = J. —— cos(wt)dw (31)
0

To illustrate our procedures, we will assume here that the earth is per-
fectly conducting (essentially the same as sea Qater). Then to pefform the
integration in Equation 31 we employ the simplified form of Equatioh 28
which, for z = z' = 0, is given by (Ref. 26):

o
W) = W(w) = (2r)/2 7174 30 &~ (32)
’ s=0 2175; ‘

22




where

vp = 0.808 ™1 "/3

2.577 o~ 17/3

Tl=
v, = 3.824 7 1%/3
T3 = 4.892 71"/3

<«
1]

@ 1 1\{2/3 _-in/3
s E[Bn(s f?)] e » fors>5

An alternative form of Equation 32, usable for small x and/or Tow frequen-
cies, is adapted from (Refs. 5, 26) or specialized from Equation 27 above:

1/2 . . 1/2 .
—_— 3/2 7 3, 20 - 4) 352
W =1-"__(1+ +2 g2+ 2 -1T)
() g (1+ 1) 170 ° 088 9
+ terms in gs, 915/2, etc. (33)

where

g = (wb/c)(wasc) 23

The analytical form of Equation 33 allows us to perform the integratioh
in Equation 3 to yield the expansion '

R(t) =1 - 1 + 7 * terms in 1

— 1/ _ 3/2 5/2° 1/2
w2 1% s0agz 1Y /21
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where

R

T = tcaz/d

This representation (Ref. 27) is obviously most suitable for "large" times
in the transient response.

 Another approach (Ref. 27) is to evaluate the infinite integral in
Equation 31 by the saddle point method (Ref. 28). This leads to

o v, 3/2 w,3/2
N0 = e""(‘ a7z I ;ﬁ?)’l‘s' (35)

which is valid only for "small" times (i.e., T small).

"To cope with the difficult intermediate region where T is neither large
or small, we must resort to numerical integration using the latter form of
Equation 31 that involves integration over real frequencies from 0 to «.
Actually, this task is not that difficult, if good data for W(w) is avail-
able (Ref. 26), because W(w) is heavily damped at higher frequencies.

The overlapping validity of the three approaches to the transieht
response for the spherical earth model is illustrated in Figure 7. Such
hydrid numerical-analytical approaches are highly recommended in dealing
with such transient waveform predictions. The numerical method involving
double integration over wave number and frequency is particularly prone to
error at small times in the transient response. This point of view has
been also expounded in an elegant fashion by Felsen (Ref. 29).

Another important subject that we call attention to is the influence of
land/sea boundaries and other mixed path conditions (Ref. 30). Some
analytical work on this topic has been carried in the context of pulsed
ground waves (Refs. 22, 31, 32).
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Figure 7. The transient response for a ramp current source on a
spherical earth model showing comparisons between three
different methods (Ref. 27) of calculation.

To illustrate the mixed path problem we consider a two-section ground.
As indicated in Figure 8, the total range is d, the land portion of conduc-
tivity 9 has Tength di and the sea portion of conductivity % is of length

d-d. AN displacement currents are neglected. The attenuation
function for an

observer at P on the land portion can be derived from an integral equation
formulation (Refs. 19, 30) and In the s (=iw) plane we obtain the convolu-
tion integral solution:

1/2
: d
F'(s) = F(-Kszd) - s(so > 1 1

2nc 0%/2 s1/2

X

da (36)

d
51' F(-K(d-a)sz)F(—Klasz)
) [a(d - a)J1/2

where

K = (2cp0c3)-1 = (240ncc)-1

3y-1 -1
Ky = (20qpgc™) ™" = (240m04c)
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Figure 8. Transient response at P at distance d from the source
dipole energized with a ramp current at t = 0. the path
has two sections; the first section is perfectly con-
ducting (e.g., sea water) and the second section of length
dy is finitely conducting (i.e., land). The retarded
time t' =t - d/c and_the time parameter t1 = 2/Kidy
where Ky = (201uqc3)-1,

and the (unprimed) F's are the attenuation functions appropriate for propa-
gatioh over homogeneous paths. Thus the mixed path attenuation function
F'(s) cap be obtained by suitable convolving of the homogeneous attenuation
functions. The next step of course is to perform the inverse transform of
F'(s)/s to get the ramp current response at P. This operation leads in
general to a double convolution integral representation for the desired
time domain function (Refs, 22, 31, 32). In the case where o » o1 (i.e.,
sea water conductivity » land conductivity) the general result reduces to
the remarkable simple form

ST S AR
R(t)=ll-exp<-(t_;>>erfc %(%-1) su»(1:) . ‘(37)
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where erfc is the complement of the error function of the indicated argu-
ment. Of course if dl/d > 0, R'(t') = u(t') within this approximation of a
perfectly conducting all sea path. On the other hand, if d1 > d, corres-
ponding to all land the response reduces to

R'(t') = R(t') = [1 - exp(-(t'/tl)z)] u(t?) (38)
which is the same as Equation 20.

The mixed path transient response function is sketched in Figure 8 for
various values of dlld from 0 (i.e., all sea) to 1.0 (i.e., all land).

One of the major simplifications to ground wave propagation theory was
the introddction of the surface impedance concept. Thus, for example,
layered models (Refs. 13, 19, 20) and mixed path geometries could be con-
sidered in a straightforward manner (Refs. 30, 33), With certain limita-
tions the surface impedance can also be applied to the description of lossy
hemispherical bosses on an otherwise perfectly conducting plane (Ref. 34).
This idea has been followed up in recent years to more complicated situa-
tions (Refs. 35, 36). Including the case of wide band signals from
1ightning propagating over a rough sea (Refs. 37, 38). Malaga, in
particular, has considered the attenuation function in the form given by
Equation 28 here for a spherical earth model. He introduces a spectral
model for the effective (normalized) surface impedance Laff/120n = A(w)
in the form

oo 2TT
; 3 2
Aw) = Ao(w) + 19 S dK de K”cos 65(K,9) (39)
0 0 /kz + (2wK)e)cose

where the first term Ag(w) is the normalized impedance for a smooth
surface and the second term represents the effective increase which depends
on the two-dimensional wave number spectrum S(K,6).
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Var1ous forms of the wave number spectrum for the rough ocean surface

have been proposed (Ref. 39). For a fully developed (steady state) sea
they have the form

K_/k)"
S(K,8) = M(8,a) | # e/ (40)
kP '

where Ky is the wave number at the peak of the spectrum, p is the spec-
trum power law dependence, M(6 ,a) is the wind d1rect1ona11ty dependence, «
is the wind direction relative to the direction of propagation (6 = 0) and
C is a proportionality constant. An example from Malaga's (Ref. 38) paper
is shown in Figure 9 where the response for a step-current excited dipole
is plotted as a function of the retarded time for d = 150 km, wind 0, 20
and 30 knots (see state 0, 4 and 6, respectively) using Phillips isotropic
spectrum. Not surprisingly the roughness tends to increase the dispersion
somewhat. Further studies at this important effect are certainly war-
ranted. A recent thesis written by Srivastava (Ref. 39) includes a rigor-
ous formulation of time- harmonic scattering from a three-dimensional
(moving) surface. This could be the starting point for further studies of
the transient problem.

In propagating to long distances over a spherica]_earth, it is neces-
sary to Consider ionospheric influences. This is a vast subject in its -own
right and the history extends back to the early days of radio when
Appleton, Watson-Watt, and others studies the waveforms of radio atmosphe-
rics or "sferics" as they are often called. Probably the most convenient
approach here is to treat the earth-ionosphere space as a waveguide (Refs.,
40, 1). For the time harmonic problem the vertical electric field E(®) at
(great-circle) distances d as a sum of waveguide modes is

(=]

E(w) = [_ d/a_ ]1/2 (ZWCd)l/Z eo(®) 253/2 8 e(“hd/h)un o 1F(w)

sin d/a h (1w)1/2 rs n n (41)
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Figure 9. Normalized response for a step function current source
at distance 150 km over a fully developed rough sea
(downwind) (adapted from Malaga).

where uy and s, are the attenuation and phase constants of the waveguide
mode of order n, 6n is an excitation coefficient and roughly 60 = 1/2 and
én =1 for n# 0, h is the effective height of the waveguide, a is the
earth's radius and F(w) = (w/c)snd - wt. Here Eb(w) is the transform of
the equivalent radiation field Eo(w) at distance d for a perfectly con-
ducting ground plane, i.e.,

Eb(m) = é Eg(t)e” " dt (42)

Now, of course, the desired transient response to the time domain is
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+jo

E(t)=?;1-§- 5 E(w)e"‘*’td(im) (43)

Jeo

This turns out to be a rather complicated prob]em because un(w) and

Sp(w) must be obtained as a solution of a mode equation for each fre-
quency. In our early work we simplified the process by using the approxi-
mate stationary phase method to evaluate the inverse transform over iu or

s. Also for very great distances one needs only consider several terms in
the waveguide mode expansion,

An example at the transient response is shown in Figure 10 which is
adapted from Reference 40. The oscillatory nature of the waveform is typi-
cal of transmission of pulses to great distances. In fact, the variation
of the quasi-half periods also varies with range in a predictable manner
that is only weakly dependent on source characteristics. Such a behavior
has been observed by Hepburn (Ref. 41) and there is a qualitative agreement
with theony at least for daytime propagation paths. We also call attention
to related investigations (Refs. 42-44),

At intermediate ranges it is probably more convenient to use a geo-
metrical optical representation for the total field. This is the approach'
in a monumental effort by Gardner (Ref. 45). His general formulation and
computer codes should lay the foundation for further quantitative analyses,
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Figure 10. Transient response of then n = 1 dominant mode at a
distance of 3000 km from a source dipole with a current
moment as shown.
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IV. CONCLUDING REMARK

In this review of the propagation phenomenology, we have tried to sum-
marize in a critical fashion the basic theoretical work on the subject.
The writer will admit a certain bias to referencing his own work. But the

diligent reader will discover many additional references to other investi-
gators in the bibliographies to these papers.
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