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ABSTRACT

The natural frequencies of a metallic post attached to a lightning
channel are calculated. Two different lightning channel models are discussed
and the asymptotic antenna technique is employed to solve the problem
formulated in terms of an integro-differential equation. The results are
presented by way of figures and approximate analytic formulas.
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I. INTRODUCTION

 The objective of this effort is to calculate the natural frequencies of a
metallic post attached to a Tightning channel. Two different lightning
channel models will be employed for the calculation. The natural frequenc1es
calculated herefrom can be compared with measured data when the latter become
available. Such a comparison will enable one to determine the parameters
inherent in the models. With the models the electromagnetic characteristics,
such as the fields, of a lightning channel can be calculated and simulated.

Section II describes the two different lightning channel models. Section
II1 details the approach which eventually leads to transcendental equations
required for numerical computation. Explicit approximate analytical formu]as
for the natural frequencies are also derived in Section III. The
transcendental equations are described by Equations 18 and 19, and the

explicit analytical formulas are given by Equations 20 through 22; Section IV
presents the numerical results.




IT. MODELS

In this section two lightning models, which may be referred to as the
~resistive model and the carona-sheath model, are introduced for the
calculation of the natural freguencies of a pbst with a lightning channel
attachment. The important features and the required parameters of these
models are described below.

1. RESISTIVE MODEL

~ In Reference 1, it was demonstrated that a lightning channel and its
surrounding corona could be represented by a finitely conducting rod with an
effective radius. Such a representation (Fig. la), according to Reference 2,

can be considered as a transmission line. The required parameters for this
model are

® the effective radius Tas and

® the effective resistance per unit length R'.

In terms of these two parameters, the 11ghtn1ng channel has a character1st1c
impedance given by (See Ref. 2)

Z ' 4
20(s) == ¥(s) - (1)
where
1/2
2mR ' n(sr_/c)
¥(s) =~ [.%n(51r'e/c)]‘2 m € ; '
)

= jw is the complex frequency; ZO, c, W, are, respectively, the free-space
wave impedance, speed of light, permeability; and the superscript "r" is used
to indicate "resistive" model quantities.

2. CORONA-SHEATH MODEL

The corona-sheath model has been suggested in Reference 3 for a Tightning
channel and its surrounding corona. In this model, the lightning current
flows only in the perfectly conducting center channel, while all the electric
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Figure 1. Various models for lightning which strikes a metallic post. (a) Resistive
' model, (b) corona-sheath model, and, (c) a general representation for both

(a) and (b).
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In the figure, R' is the resistance per unit length.




charges reside on an effective corona surface. This model is shown in

Figure 1b together with a post. The reqguired parameters for the‘coronaésheath

model are

® the effective radius‘of the lightning center channel ro; ahd

o the effective radius of the corona surface ree

The effective corona radius re is related to the.chargé per un%t 1ength of’the
corona Q' via '

- o]

(2)
c ZneoEb

where Ep and e, are the air breakdown electric field and the permittivity of

the surround1ng air. This model can also be considered as a transmission 11ne
with the character1st1c impedance

7 ;
zi(s) =-2—% ¥ (s) : ' (3)

where

and the superscript "c" is used to indicate “corona-sheath" mode]l

quantities. Clearly, the above two lightning models are special cases of a
more complicated model depicted in Figure lc, which allows for resistivity in
the center channel and, therefore, has the following correspondlng
characteristic impedance

m(sro)m (src) ) 2m* m(src/c){l/z (45 ‘

Suo
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The next section will describe an approach to solving this more general
model. The two special models can then be obtained by teking

® r,=r. = Te for the resistive model, and

© e R "0 for the corona-sheath model.




II1. APPROACH

The original problem of Figure lc where the post sits vertically on a
perfectly conducting ground is equivalent to that of Figure 2 where tHe images
are used to account for the ground effects. The natural modes of the imaged
probiem can be obtained by solving for the nontrivial solutions of the
following homogeneous integro-differential equation with certain appropriate
boundary conditions (see Ref. 4 and the references quoted therein):

L
dz S2 e-(s/c)\/a2 + (z - z‘)2
— - I(z')dz' =0, |z]<2 (5)
dz ¢ aNa% + (z - z')?

where a and £ are, respectively, the radius and length of the post.

Equation 5 can first be reduced to an integral equation

L

-(s/c)\/a2 + (z - z')2
\Jaz + (z - z')2

e

I(z')dz' = B cosh(sz/c), |z| = ¢  (6)

-2

after imposing the following symmetrical condition
I(z) = I(-z) (7)

Additional conditions are required for solving Equation 6: they are the
continuation of current and the equality of potential at the attachment point
of the post and lightning channel, i.e., at z = 2

3

1_(8) = I.(2) = I(2)

-©-
—
P
~
i

= ¢,(2) = ¢(2) (8)

where the subscript "-" or "+" indicates quantities at the post side or the
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Figure 2. An equivalent representation of Figure lc, with the ground effect being
accounted for with images.




lightning side.

Since the potential at the post side is given by

1 d o (s/c) \/a + (z - 2')2
- 7 411550 dz > 5 I(_Z‘)dz' ' (9)
Va© + (z - 2)¢ z =12

-2

and the potential at the lightning side is equal to the potent1a1 drop for a
current I, flowing through Z c(s), i.e.

Equation 8 is then equivalent to

2
d e-(s/c) VQZ + (z - z')2

rra = . I(z')dz' = - 4useoZC(s)I(2) (11)
L Y rlz-zy | z = 4

which can be combined with Equatibn 6 to give

L

-(s/c) Va? + (z - 2)? v =2u(s)I(%
J - ( )2 (z )dZ = W)- COSh SZ/C) (12)
a + (z -2z2' ’ k

This is the final integral equation that one needs to solve for the natural
modes of the problem posed in Figure 2.

Since the radius a of the post "is much smaller than its length £, an
asymptotic theory can be used to solve Equation 12. First, one rewrites

‘Equation 12 in the following form

11




2 .2 2
1(2) 1 2t + 1(z') (S/C)\/a +(z - 2z2") } I(,z) "
Vol + (z - 2°) Va 2+ (z-21)2
-2 -2
- _"(—T)'s?:r(wsgi(é) cosh(sz/c) (13)
or equivalently,
+ 2¥(s)I(2)
I(z)a(z) + mcosh(sz/c)
2
1 2 Y
I(z')e (S/C) Ja + (Z 4 ) _ I(Z) le (14)
\/a2 + (z - z')2
where B
8(z) = sinh'l(z; Z)+ sinh'l(" ; Z) ' (15)

is a slowly varying function of z with 2(0) = 2 sinh'l(z/a) ~ 2 ﬁh(Zz/a).
Using the fact that (z) =~ 2(0)>>1 and|y(s)|>>1, one can expand s and I(z)
in the following fashion

S0, (1)

w
"

4+ eccee

1(0) , (1)

—
t

+oeeees (16)

\
where s(m) p(m) are 0(1/¢", 1/¢"). Substituting Equation 16 in Equatlon 14,
one has, after a tedious but stra1ghtforward mathematical mampu]at]on,

19(z) - a, &% cosn (s z/c) (17)
. |
1+ —?—;%%—h coth( (0)2/c> (18)

and

12




(1 22(0) 2 (O \gyls(0) | T
O 2 2 — = |2(0) + FOR -%cosh 2 ) jjo)
(0) (0 0
ceS M ginn (LC-?-J’:) 3 <4S(c) > (19)

where (see Ref. 5)

E(ei=E(c) + an ¢+ vy
-t
E1 (g) = ———dt Eexponentw] integral
g

Yy=2J.577..... = Eyler's constant.

When !\p(s)l + =, Equations 16 through 19 agree, as they should, with
Equations 16 end 17 of Reference 4 where a post without a lightning attachment
was discussed. Equation 18 can be used to solve for s(o), from which s(l) can
then be calculated via Equation 19.

When R'2:->7 ' and/or a>> (ro, res To)s One has [¥(s)] >=> (1), and
Equation 18 cé1 be approximately solved. The approximate solution is

n ~:2n + Dn o) -
R Bkt R RLREN (20)

where ¥ = Y(s) with s = j(2n + 1)nc/(2'2), i.e.,

H

b, =

([ Fv]48) (o 7))

. 1/2
R' 2 4 25
T, T+ D) <‘“‘[(2n v n] 3?)§ (21)

13




Furthermore, Equation 19 can be approximated by
s'(‘l).e 1 T ‘1 |
< ()] mi(2n + 1)20] + vy + J['z' - m] (22)

In equations 20 through 22,a(%) = n(4%/a), 2(0) =22n(22/a), and the
subscript n indicates_the quantity referring to the n-th natural mode

The sum, S£0) + s(l), obtained from Equations 20 through 22 gives the
approximate analytical formula for the natural frequencies of a post with a
lightning channel attachment. The accuracy of the approximate analytical
formula will be checked against the numerical results computed from Equations
18 and 19 in Section IV. It is seen from Equation 20 and 22 that the effect
of a channel attachment op the post's natural frequencies is entirely acounted
for by the last term of Equation 20. This term is proportional

to (R'/Z ) -1/2 when the lightning channel is highly resistive, and vanishes,

as expected when R' + o,

14
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IV. NUMERICAL RESULTS

Equations 18 and 19 were numerically solved on a microcomputer for
¥(s) given by Equation 4. The results of s(o) + s(l) are given in F1gures 3
through 14 for post radius a = 0.05 m, and various post length 2 and Tightning
parameter values. The lTightning parameters are the corona radius re» the
channel radius oo the combined effective radius Tes and the effective
resistance R' per unit length (see Figure 1),

Figures 3 through 9 are the natural-frequency plots for the resistive
model with o 5T = re and nonzero R' 2/2 Figures 3 and 4 show the effect
of the channel resistance R' on.the post'’ s natural frequencies for two
different values of effective lightning radius re- The imaginary part of the
natural frequencies remains almost unchanged as R‘z/Z varies. On the other
hand, the absolute value of the real part (i.e., the decay1ng constant )
increases when R' k/Z decreases. This is expected because a post with a

lightning attachment of lower resistance is different from a post without a
lightning attachment.

Figures 5 and 6 show the effect of the effectlve lightning radius re oOn
the post's natural frequencies for R' k/Z 10 and equal to 10. The natural
frequencies are found to depend only weak]y on re. This is because the
dependence of the characteristic impedance ZC of a lightning channel on re is
logarithmic. Also, when the channel is very resistive, i.e., when
R'z/Z 21 4 » the natural frequencies become independent of res and are the

same as those of a post without a 11ghtn1ng attachment.

Figures 7 through 9 show the effect of the post length % on the natural
frequencies. When R"R./Z0 is large (i.e., 2 104), the decaying constant
increases as % decreases. The reason is that there is more radiation loss for
a thicker post of a given length. When R’ z/z is small ( £10), the dependence
of the normalized natural frequency on £ is weak This is attributable to the

-fact that the damping of the post current is ma1n1y caused by the leakage into

the lightning channel whose dependence on % is logar1thmic.

Figures 10 through 14 give the natural frequencies of the corona-sheath
model with R'% Z = 0. Figures 10 and 11 show the effect of the corona radius
re whereas F191res 12 throu;h 14 show the effect of the post length £ on the
post's natural frequenc1es. The normalized natural frequencies are nearly
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independent of %.

The approximate analytical results given by Equations 20 and 22 are also
plotted in Figures 3 through 14 for comparison with the numerical results.
The agreement is generally excellent for the lower-order modes.
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