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ABSTRACT

In this note we describe and exercise a detailed model of the lightning
return stroke and calculate the radio frequency electromagnetic fields
emitted from the lightning stroke. The model uses a tortuous channel con-
structed of straight line segments on which a specified current waveform
propagates at a known, arbitrary velocity. Once the current is established
on the channel the electromagnetic fields as a function of distance and
frequency are computed. Effects of an imperfectly conducting earth and an
anisotropic ionosphere are calculated.

Finally, a signal function is introduced to separate some of the bulk
characteristics of the stroke, such as overall length from the field
spectra.
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INTRODUCTION

The Tightning return stroke radiates radio frequency electromagnetic
fields that may be measured and used to.study the properties of the return
stroke current. Measured fields are usually in the form of transient wave-
forms. Lightning discharges occur at uncontrolled distances from the
observer and the surrounding earth and ionosphere tend to distort the
waveforms. This distortion must be removed prior to comparing the electro-
magnetic signals from two lightning strokes. Waveforms at varying dis-
tances but with colinear observation points are required to quantify the
wave distortion for a given path. When verified, theoretical models may
then be used to correct lightning data for propagation path distortion so
that correct inferences about the discharge current may be made.

Lightning propagation models currently used in the lightning literature
have assumed a perfectly conducting ground. Complications in the models
have generally been made in the description of the source current and
source geometry rather than in the propagation path model (Ref. 1).

In several papers (Refs. 2 through 4), M. A. Uman and his colleagques
have developed a model of the return stroke fields using a line source and
a perfectly conducting earth. A current waveform propagates up the channel
without change of shape in the vertical direction at a velocity v.

Reference 5 presents an exact solution to Maxwell's equations for a
very idealized vertical source. The major restriction in their solution is
that the current pulse must propagate along the channel at a velocity equal
to the speed of light, c.

Reference 6 solves the problem of the fields radiated by a current
traveling at a constant velocity along an arbitrarily oriented line segment




(i. e., an idealized transmission line model) above a perfectly conducting
earth. Details of this type of current model are given in Section 1.1
below. Unly one sample waveform is presented as compared to the rather
large collection of parameter variations presented by References 7 through
9. Perhaps the lack of examples is due to the strictly numerical method
used for the multi-dimensional line integration.

References 7 through 9 present a concise development of the lightning
return stroke current model as a current traveling along a series of
straight-line segments. The earth is modeled as a perfect conductor. They
present an exact analytic solution to this model for velocity of current
propagation velocity v = c.

None of the above models use anything more complex than a perfectly
conducting ground model. The theory of propagation of electromagnetic
waves over a finitely conducting earth began with Reference 10 but there
are more recent developments in References 11 through 14. Applications of
this theory to the lightning return stroke modeled as an ideal current
moment appear in References 15 through 17. In the rest of this note a
model for a lightning return stroke is developed that considers both the
effects of a finitely conducting ground and the effects of a reflection
from the ionosphere. The source description is complex and consists of a
known current propagating along a tortuous channel.

A frequency domain model for the perfectly conducting case is presented
first, then the extension to finite ground conductivity is derived. An
estimate of the reflection from the ionosphere is calculated using a one
bounce approximation for frequencies above 1 kHz. Below that frequency
propagation between the earth and ionosphere is treated using waveguide
theory. The effect of the earth-ionospheric boundary is, in general, to
attenuate certain frequencies. The concept of an signal function in which
geometric factors have been removed, is useful for comparison with data.




Signal functions from the theoretical model are compared with integral
transforms of experimental results. Finally, inverse transform techniques
are used to study the distortion of transient waveforms by the environment
surrounding the electromagnetic radiation.

The original contribution in this note is the combination of a complex
return stroke model with an imperfectly conducting earth propagation
model. The addition of the effects of the ionosphere to that model and the
use of the model to interpret experimental data is also new.

1. THE PERFECTLY CONDUCTING EARTH

For simplicity, it is usually assumed that the earth is a perfect con-
ductor when dealing with the propagation of lightning produced fields. For
example, Reference 9 uses the image theory technique to calculate the
fields from a geometrically complex return stroke model, including varia-
tions of velocity of propagation of the current pulse. The following
derivation for a perfectly conducting earth follows their treatment
closely. These results are later compared with more general analytical
models where the effect of the finite ground conductivity is calculated.

1.1 The Current Model

The return stroke of a lightning flash discharges a charged conducting
tortuous channel in the atmosphere. The leader channel appears optically
to be a series of straight line segments which are connected to form the
discharge path (Ref. 18). The diameter of the highly conducting channel is
of the order of centimeters or less (Ref. 19) (while the corona radius is
of the order of meters or greater) and the length of each line segment is
about 50 m (Ref. 18). An analytical model of the return stroke current
which is immediately appealing is that of a current pulse traveling along a
path defined by a series of connected line segments leading from ground to
cloud or from cloud to cloud. This model has discontinuities in path




direction which contribute significantly to the radiation (Refs. 7, 20).

The corner formed by two intersecting channel segments is very sharp

because of the small diameter of the current carrying channel. The discon-

tinuities at the corner formed by the line segments in the model do not

radiate much differently in the frequency range of interest (< 10 MHz) than

the actual corners. The number of line segments required for a given field .
calculation depends on observer distance and the highest frequency for

which calculations of the fields are needed; but only a few segments pro- *
vides a reasonable field prediction for most cases. The question of the

number of segments required will be dealt with more quantitatively in

Reference 21.

The shape of the current pulse traveling along the channel has been
estimated from measurements of the current at the base of the channel
(Refs. 18, 22). For convenience, the current pulse is usually described as
a series of decaying exponentials (Ref. 18). For example, Reference 7
uses the following form for the current pulse. (::)

£(8) = [rote=t = &) + 1o | e) (1)

where U(t) is the unit step function. Values chosen for the coefficients
and decay constants from the current at the base of the channel are

(Ref. 7). These values are arbitrary and are only used by the model. A
more complex model such as that of Reference 23 could as easily be intro-

duced. .
I, = 30 kA
I, = 2.5 kA
a = 2. x 10* sec?
g = 2. x 10° sec~?
vy = 1. x 103 sec-!
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The first two exponentials represent the main current pulse, and the
third exponential allows the addition of a slow bleed off of charge.
Reference 24 uses a similar type of exponential series to represent the
current pulse. These representations have the difficulty that the deriva-
tive of the current pulse has a maximum at t = 0 and is discontinuous
there. In the LeVine and Meneghini model the current pulse itself has dis-
continuity at t = 0. References 25, 26 have measurements of the fields
which indicate very fast rise times for the fields, but they have not
generated equivalent possible currents. Propagation path distortion (as
modeled in this note) and slow instrumentation have masked this rapidly
changing character of the fields in the past. In spite of the above dif-
ficulties this current model is used in this note so that comparisons with
the LeVine-Meneghini field predictions may be made.

The current pulse itself is shown in Figure 1. Note the non-zero value
at t = 0. The pulse rise time is typically of the order of microseconds
with a fall time of the order of hundreds of microseconds. This waveform is
similar to measurements shown for the base of a channel (Ref. 22). These
measurements are usually distorted by the presence of towers on which the
measuring devices are placed. Also, the inherent assumption that the cur-
rent waveform propagates up the channel without distortion cannot be sup-
ported (Ref. 22).

The return stroke, as mentioned before, is the discharge of a pre-
charged conducting channel. A simple but useful model of this process is
that of a pre-charged transmission line discharging. Using this model the
current pulse travels along the set of line segments without distortion
(not correct, see above) at some constant velocity. The actual velocity of
propagation of the current along the channel is not well known, but is
believed to be about one third of the speed of light (Ref. 27).
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Figure 1. Transient waveform from model used by LeVine and Meneghini
(Ref. 1). Waveform propagates along line segements.
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The Fourier transform of the current pulse is given by:

[1

qiw+7

o) = 1o 1

Olivta  iw+B

(2)

The Fourier transform '?(w)l is shown in Figure 2 as a function of fre-
quency. The spectrum is relatively constant at low frequencies and falls
off as 1/w above about 10 kHz.

The Fourier transform in this part of the note is defined as

f) = { F(t)e et dt

The Tower Timit is 0 since the function is defined as zero for t < 0. The
inverse transform is given by

F(®) = 50 [ Flw)e aw

Later in the note the integration contour will be varied in these defini-
tions for numerical convenience.

A spatially distributed and time dependent current is used to model the
1ightning return stroke in this note. The necessity for the details of the
model is demonstrated in Reference 21 for several of the parameters in the
current model and the propagation model developed in this note. This cur-
rent model is now used to calculate electromagnetic fields for various
geometries.

1.2 The Fields

The following derivation for the fields using a perfectly conducting
ground assumption follows Reference 7 closely and is included because their

11
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Figure 2. Fourier transform of return stroke current pulse from
Figure 1.
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results are used extensively to show the effects ofthe imperfectly con-
ducting ground and ionosphere. Assume the return stroke current on a seg-
ment can be modeled as a traveling pulse, i. e., a transmission line model.

J(#t) = lf[t— p (3)

where f is a unit vector directed along the line segment as in the section
above. The segment begins at r' = ?; and continues to F' = FS. The geome-
try is shown in Figure 3. The vector potential is then an integral over the
line source and its image.

Ay =p [ }"(r.:)e-*'""“‘?'z‘e-ik'm"l
segment an|# -7 |
- e-a|?-?,'| .
T )

For a current propagation velocity v the propagation parameter n is
given by n = ¢/v. The unit vector in the propagation directionhis 1 with
corresponding image unit vector T'. The reflection coefficients for this
model have unit magnitude. The reflection coefficients for the tangential
fields are negative as required to maintain zero tangential electric
field. The electric field may be constructed from the vector potential.

E(’i’o,o) = ikclf(i’o.w) - ;%V(V'E(Fo.w)) (5)

For the propagation velocity of the current pulse equal to that of
light (n = 1), the integration in Equation 4 is done analytically by
Reference 7. The integration is performed by rotating the coordinates to a
new set of coordinates in which the new z axis is parallel to the current
filament. The substitution in Equation 4 is

13
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Figure 3. Geometry used in perfectly conducting earth solution.
Waveform is shown propagating along line segment.
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u = ?_?sl"'(;s—go) : (6)

in the first integral and

W= |7 -]+ (- 2 (7)

for the image term.

The tilde for this equation (and this equation only) represents the
transformed coordinates and 8 and ¢ are the angles of rotation in normal
spherical coordinates. The tilde in any other equation indicates Laplace or
Fourier transformed quantities. Transforming back to the original coor-
dinates (Eq. 4) becomes

~ ps U®)  —ixu
3, R T AT T e
A(7Fow) = ,u,o_f(w){ e m{) e du
L U(b)' —iku
e [ 2 (8)
Uta) nu
where for m = a,b
U(m)= I?O‘ ' | _i\'(?o—"'m)
U'tm) = |#o = #m| = (o = 7m) (9)

and then Fm = Fa’?b are the coordinates of the filament end points. Equa-
tion 9 denotes the location of the end points of the filaments and their
images in the substitution (Egs. 6, 7). Substituting Equation 8 into Equa-
tion 5 yields the electric field in the frequency domain.
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1
~ ) -ﬂ'kpb -i'kpll
E ‘? = —‘f?_ 2~ e _ e -~
( O'Q) €0 f(w) 47pr E(vaﬂ 4ﬂp° E(patl)
i) - S T
- D s - ’ ’
anp, V° Anp, ¢ (10)
where for m = a,b
147 1
-~k + Vo, |2 ~ Vp
[ AY=¢€ R | I S 1) - i —2
and
o a L= (I'Vom)Vp
e(om.l) = = ’Z (12)
1 - (9pm )
and similarly for the image terms. The P, are p. = |? - Fm' and
(R Ixd >y ' '
Py = 'r -

~ ~

> >
The magnetic field may be obtained from H = v x A, but numerical values
of the magnetic field were not required for this development.

Equation 10 is called the "exact solution" and is valid for all fre-
quencies, but only for n = 1. For n > 1 the integral in Equation 4 can be
performed only approximately. It is convenient in the derivation of the
approximate solution to insert Equation 4 into Equation 5 prior to per-
forming the integration. The result is

1
oy - R o ~ - ?
Blrow) = ~ikfuo)?F(e) [ >0
Jilament
e~ %p
4np

dp

X
rmmPAn——y,

i+ é—(i‘-v)v

e~ %p

anp’

-+ fz—(l‘-’V) dp’ (13)

{
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The source-observer distance may then be expanded around the coor-
dinates of the center of the filament P.

p= I‘? "’i’gl =. I('? "?c)l + l(?c -'?s)l
I"'O-"'clg]

Hl"'(l—'"'t:l"'l"'t:"7"s|c‘35‘(§9)"'_' I'f'o‘?l (14)

where ¢ is the angle between filament and the vector from observer to the
filament center or:

(';'.0 -7 )(';'.c - 713)
NPo-70| |7, = 7,1 (15)

cos(p) =

If kL?/pc € 1 and kL » 1 where L is the length of the filament and p. =
'? - Fcl’ then the second term of Equation 14 may be dropped. Since the

phase, in Equation 13 is more rapidly varying than the geometric factors
pc may be replaced by

p=pc+ ’?c -?.lcos(i’)
in the exponential and p = p¢ elsewhere.

Then Equation 13 becomes

-apo

Mo 2~

f ()

E(Fow) = —ik|— C+ —(z v)v I(m)

g I'(w) (16)

17




where

I@) = [ explik(n(#,)+ |7 - 7| cos(p))] a7, (17)

Jilament

and similarly for the image term.

This integration may be performed in the same way as the vector inte-
gration for the n = 1 case. The result is:

I(w) = e-ﬂ:"t?"[[, sinc

l (18)

1 -
S kL (n - 1-Vp.)
where sinc(z) = sin(z)/z

The derivative operations may be carried through in Equation 16 as

T+ (v

e %P RCIN Y PR 1
4np. kpc kpc (kpc)2

K2
The approximaté solution is then
1
B(Fow) = —ikl—e“-o"—]gf” (w){z‘[l - T " TR
- [1 - k:’:c -'(ksc)z (prc)Vpc]-E%EI(w) (20)

+ image terms.

If only the terms proportional to l/kpC are retained in Equation 20
_the far field solution is obtained. The exact and far field solutions may
be compared in Figures 4-6 for a vertical return stroke model with n = 1,

Fa = (0,0,0) and Fb = (0,0,1500) meters. The observer is located at 5, 50,

and 500 km distant from the source along the x-axis. For an increasing
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Figure 4. Electric field spectrum 5 km from return stroke over per-

fectly conducting ground. Return stroke channel is 1.5 km
vertical column. Exact solution curve is exact electromag-
netic solution for assumed current and return stroke
geometry.
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vertical column. Exact solution curve is exact electromag-
netic solution for assumed current and return stroke
geometry.
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distance the quasi-static (proportional to 1/f) contribution becomes less
important and the radiated field ( proportional to f until the source roll-
of f becomes significant) becomes more dominant. The approximate solution
is identical to the exact or complete solution for these distances. Equa-
tions 20 and 10 give essentially the same results as close as 2 km. The
divergence between them at a distance of 1.5 km is shown in Figure 7. The
importance of the close agreement of the approximate and exact solutions
becomes apparent in the section on finite earth conductivity. In general,
the effect of the finitely conducting earth is to attenuate frequencies
above about 10 kHz for most example geometries. At frequencies below 1 kHz
the earth is essentially a perfect conductor. The solution for a finitely
conducting earth presented in t he next section then must approach the per-
fectly conducting earth solution at Tow frequencies and indeed closely
matches the approximate (Eq. 20) solution at those low frequencies.

The effect of the velocity of propagation on the spectrum for the per-
fectly conducting earth case may be determined from Equation 20. The
effect of a velocity of propagation of the current pulse less than c,

n > 1, is to shift the nulls of the spectrum toward lower frequencies.
This "spectral compression" also has the effect of attenuating higher
frequencies. The effect of various propagation velocity parameters is
shown in Figure 8. The spectra are only plotted to the first null for
economy so the spectral compression is evident but the high frequency
behavior of the fields is not. The variation of n and its effect on the
fields is explored further in Reference 21. The return stroke channel
model for Figure 8 is the same as that for Figures 4-7. The observer is
500 km away.

2. EFFECT OF AN IMPERFECTLY CONDUCTING GROUND

The effect of the environment on electromagnetic waves transmitted by a
lightning return stroke consists of two parts at frequencies above about 1

22
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Nearby electric field spectrum showing close agreement of
approximate and exact solutions. Exact solution is an
exact electromagnetic solution for an assumed current and
1.5 km vertical column for a return stroke model.
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kHz. The most important effect is the attenuation due to an imperfectly
conducting ground. The second contribution is due to reflection from the
ionosphere and is generally much smaller than the ground wave (i. e.,
everything but the signal reflected from the ionosphere) since the signal
is attenuated by distance in the frequency domain and delayed and attenu-
ated for transient solutions. The reflected fields from the ionosphere are
calculated in Section 3. A qualitative description of the importance of
the addition of complexities to propagation models is given in Reference
28. Below about 1 kHz the signal wavelengths are larger than the earth-
ionospheric separation and thus must be treated as a waveguide. The wave-
guide solution is described in Section 4.

Propagation of electromagnetic fields in the earth-ionospheric wave-
guide is the subject of extensive literature. The usual method of solving
the propagation problem along an interface between earth and air is to use
the Sommerfeld integral approach. Reducing the problem to an integral
solution is straightforward, but the evaluation of the Sommerfeld integrals
is more difficult. Reference 11 devotes a volume to a catalog of various
approximations of the integrals, but evaluates none of them. References
13, 14, and 29 provide solutions to a large number of propagation problems
in layered media, including the earth-ionospheric waveguide. The following
derivation of the ground wave is a combination of the results of both texts
but depends most strongly on the results of Reference 13.

The geometry for this problem is essentially the same as that in Figure
3 but now the parameters of the earth are finite. To help keep the indices
straight the new geometry is shown in Figure 9. The upper medium is air
and has permeability u, = pg, conductivity o = 0, and permittivity e, =
eg. It is denoted as medium 2 and the appropriate propqgation constant is
ko w(uzez)%. The lower medium is earth with permittivity e;, permeabilty
m po» and conductivity o;. The appropriate propagation constant is

25
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1
ky = (0Pu1g) — iwpo)? (21)

In the formulation for the imperfectly conducting earth the lightning
return stroke channel is again modeled by a series of line segments or
filaments. However, each filament is decomposed into three dipoles, for
convenience, each of which is treated as a separate transmitter, one
parallel to each of the three cartesian unit vectors. The filament inte-
gration of each source is then performed in the same way as that of the
approximate solution in the last section. The current pulse propagation
velocity v is also decomposed into three cartesian components. As the cur-
rent pulse propagates along the channel from filament to filament the phase
is corrected using the filament midpoint as a reference. As a way of
organizing the derivation, the fields for an ideal dipole are determined
first. These results are then integrated to form the extended source
results.

The z directed dipole is known as a vertical electric dipole (VED) and
is the simplest to calculate of the two possible orientations (The third
case can be found by rotation of the observation point by 90° parallel to
the ground). Since only z directed currents are involved in the VED
problem only a z-component of a Hertz vector I = Eﬁz is required to match
the boundary conditions. The Hertz vector above the interface consists of
a primary contribution, Hg, from the dipole and a scattered congribution
from the interface, ni. Then, the total Hertz vector is ng + n;. The
primary field is just the field of a dipole in free space. The appropriate
Hertz potential is

N .?(U)Lz e-:’sza
nz - 41”:060 Rz (22)

where R, = [p? + (z - h)?] and L, is the length of the dipole z component.
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Equation (22) can be written in Sommerfeld integral form.

~ .F(U)Lz y —uylz—
I = S [ Jo(p)e ™8 * ™M\ sug dn (23)
4mingg %

1
where u_ = (22 - k;)z, m = 1,2. The sign of the square root is chosen,
by convention, so that the real part is positive and thus insures conver-

gence of the integral. The Bessel function of the first kind is denoted by

Jo(Axp). The reflected fields can be represented by

s = ______f(w)L, T B nye-uelz+h) A
Iy = 4miweg {R()\)e uzdk (24)

where R(A) is an undetermined coefficient. The Hertz vector for z > 0 then
is

ﬁz =ﬁ:+ nzS z>0

The Hertz vector for z < 0, or for the fields in the ground can be
represented by

B o= F (o)L

T uy(z=h)_A_
= amioes { T (AW o(Ao)e el

,2<0 (25)

where T(A) is an undetermined transmission coefficient. The electric
fields must be continuous across the interface, or equivalently

k211, poor = k4L o
“and
afl, _ afl, (26)
0z z2=0% - dz 2=0"
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Since these conditions must hold for all p, the following equations result.
kZe ¥ + k2R (A) = kE T()e ™"
and

-uyh

ugze —-ug R(A\) e M = uy T(A\) e M (27)

These two equations may be solved for R(1). Since only the fields above
the interface are of interest, T(A) is not required. The result is

kfug — kdu,

R(\) = — —1¥2 = xeus
) kfug + kiu,

(28)

The reflection coefficient R(\) may be decomposed two different ways to
achieve two ways of presenting the results. The first is

kfu, + k3u, 2k fu,
Inserting this result in (24) yields
~ 7 ’U‘sz o K2Ry
o Sl [e ¥ REV (30)
4miweg | Ry R,
where
y uﬂz+h)

This V is one of the fundamental integrals used in Banos ' development
of this problem. The integral also appears in the horizontal electric
dipole (HED) problem and in the analogous magnetic dipole problems. A fea-
ture of this presentation is that the contribution from the two free space
Green's functions cancel for observation points on the interface. In the
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quasi-static limit (i. e., ko + 0, k; remains finite) the reflection coef-
ficient R(Ax) » 1 and k%V approaches twice the free space Green's function
from the image, as it must.

Another way of decomposing R(A) is

kfus + kfu, Rk fusy
R(A) = -
( ) k1u2+k2u1 ’C121.L2+ kézul (32)
In this case
N~ ?(Q)L ¢ %2R e—ﬂczR‘
e = tmiveo| Rzt R, ~%F (33)
where
- 2'U. B
P = f kiu, e uz(z+h) A J J(A0) dA (34)

kfup + kfu,

In Equation 33 the perfectly conducting result appears in the two
Green's functions and the term 2P forms a correction to the perfectly con-
ducting result. This form is particularly applicable to this problem since
earth is nearly perfectly conducting throughout the frequency range of
interest.

The remaining problem is to perform the integration in Equation 31 or
Equation 34. The two integrals are related so only one derivation is
needed. Reference 13 demonstrates a compact form of the integration. A
couple of definitions are required first to demonstrate the general appli-
cability of the integral form of the Hertz vector.
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Let A and Z; be defined by

A=Z,/1)g=u,/(0'1+icas1) (35)

where

Mo = [#0/50]%

is the impedance of free space. The quantity L,, then represents the sur-
face impedance of the lower medium (Ref. 13). The impedance Ly is just the
ratio of the tangential fields at the earth's surface.

Z1= "Ez/Hy 2= (36)

0
Continuity of the tangential fields is then equivalent to requiring the
continuity of the impedance across the interface z = 0. The impedance con-
cept is analogous to the similar development for transmission lines, but
the impedance in a circuit is the ratio of a voltage to current rather than
electric field (V/m) to magnetic field (A/m) as in the fields problem
(Ref. 30). Equation 35 is only valid for the vertical polarization used
here, but an similar result holds for the horizontal electric dipole. The
reason for introducing the impedance concept is that it contains all the
required information about the material below the interface to determine
the reflection from that surface, no matter how complex. Suppose it is
necessary to use a multi-layered earth model, rather than the homogeneous
model used here. The quantity, Z;(A) is all that is needed to determine
the reflection coefficient from the lower medium. One must then do the
non-trivial integral (Eq. 23) and of course this sequence of calculation is
equivalent to any other way of solving the complete boundary value problem.
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The

14.

After this diversion P may be written using the impedance notation as

- 2(2 4')1)

- isze
P = {m‘l_‘;‘]d)\p) dA (37)

evaluation of the integral P will require the following assumptions.

(1) |Aj® < 1 and

14

0<arglA< 1

These conditions are normally met in a highly conducting homogeneous
earth model.

(2) kp,p » 1, This far field condition is not always physically met,

so other methods will be needed to calculate the fields when this con-
dition is not met. Fortunately, this condition is not too restric-
tive.

The details of the integration (Eq. 37) are contained in Reference
The method used is that of steepest descents. The method of steepest

descents is a technique for finding the asymptotic value of integrals of
the form (Ref. 31).

I{z) = [ h(t)e=rdt (38)
C

where h(t) and p(t) are analytic functions of t. It is required generally
that x be a large parameter. The large parameter role is played by k,P
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in Equation 37. The contour C is distorted to a new contour on which p(t)
has a constant imaginary part to eliminate rapid oscillations when t is
large. In the distortion of the contour contributions from poles and
branch cuts must be correctly considered. It is then assumed that the
integral only has a major contribution near a maximum of Real (p(t)) at

t = ¢c. The function h(t) may then be expanded around t = ¢, and the inte-
gration carried out term by term. The point c is known as a saddle point.
Frequently, only the first term approximation h(t) = h(c) is needed. When
distorting the contour one must consider branch points and poles of h(t)
and p(t). In particular a pole near the saddle point can severely restrict
the radius of convergence of the asymptotic series (Ref. 11). To extend
the validity of this series the pole should be treated separately. In the
case of the integral P there is a pole near the saddle point. The integral
is then evaluated by removing the slowly varying quantities from the inte-
grand and evaluating the remaining integral, which contains the exponential
and the term with the pole. This remaining integral can be evaluated
analytically, in this case.

The result of these operations on Equation 37 yields the following
approximate value of the integral (Ref. 13) for the assumptions about dis-
tance of the observer and ground conductivity stated above.

=ik aR,
R,

e

1 1
P = i[ﬂp]ze"‘“’erfc(iwa) (39)

where o = p(1 + (h + 2)/(aR;2))% and p = (-ikpR;)/(2)a; is the Sommerfeld
Numerical Distance. The expression for P can also be written

—ik
e 2Ry

Ry

o)

(40)

P=(E) [1-F (w)]
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where a method of calculating F(w) is given in Appendix B. Inserting Equa-
tion 40 into Equation 33 and comparing to Equation 30 yields for V.

1 1 kR
EEV = 2(1-ifnp] Fev erto(in T)) S (a1)

The fields from the dipole are given by

e"”‘sz e"’”‘le
Ry Ry

F = _iuf ()L p0] 82
4 ank$ droz

|

+ kv

5o _imf(w)Lzuo [a2 k2 g et - e e + k2 (43
£ 4nk§ lazz Il R Ry 1 )
E,=0
and
~ .F(“’)Lz d e—isza e-ikaRl
_ 8 _ 2
a, e Tt REV (44)
ﬁr = [?‘ =0

These fields are for a point dipole. This solution may be used directly by
always choosing the filaments of which the return stroke channel model is
constructed to be much smaller than a wavelength. A numerically more effi-
cient approach is to use the technique leading to (Eq. 20). To use this
technique note that V contains a factor of (eikaRi)/(Ry). The remainder

of V and the geometric part of the Green's function may be evaluated at the
center coordinates of the filament. A better value for the fields allowing
the use of longer filaments is:

~ iof(@)lu] . |1 92 ¢ kefa
Er - - 471’]622 sinc zksz (77: - (VRC)z) W R2
. 1 . a2 e--&kzli,
— sinc 'gkgL,(T]z - (VR¢):) aroz | R, + k2V (45)
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and

PR ACTT [sinc

—é—kaLz (nz = (VR¢). )]

Ank 2
[62 e""‘aRz
+ k2
% l822 ,Cz Rg
lk I a? . e W2fy . (46)
e —J~ - (V [— .
sinc 2 2 z(nz ( RC)z) aza +k2 Rl kIV

where Rc. and Rt are the distances to the center of the filament and its
image. The velocity parameter n, = c/vz, where v, is the vertical
component of the current pulse propagation velocity and L, is the verti-
cal extent of the filament. The correction factor varies very slowly with
distance and so its derivatives do not contribute. It should be noted that
(Eq. 46) represents the dominant part of the electric fields from a given
filament. Proper evaluation of the derivative in (Eq. 46) gives a set of
values for Ez valid over a similar range of parameters as the approximate
solution (Eq. 20). Both (Eq. 20) and (Eq. 46) approximate the exact solu-
tion (Eq. 10) rather well at low frequencies. Equation (Eq. 46) was
derived under the assumption k,P » 1. However, the finitely conducting
solution (Eq. 46) does not depart significantly from the perfectly con-
ducting solution (Eq. 20) wuntil the condition koP » 1 is met for a range
greater than about 1 km. Therefore, (Eq. 46) is a reasonable approximation
of the fields over a homogeneous conducting ground for frequencies from 1
kHz to several MHz and for ranges from 1 km to about 250 km. The upper
range limit is required because the effects of earth curvature become
important.

For the horizontal dipole it is sufficient to consider only the ;
directed components since, by symmetry of the interface, the & component
can be obtained by rotating the observation point parallel to the ground
90°. For the ; directed dipole (geometry still as in Figure 9) two com-
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ponents are required for the Hertz vector to match the boundary condi-
tions. While there are only horizontal driving currents there are also, of
course, vertical currents induced in the ground. The Hertz vector is then

=N

= (I, 0 .0,) (47)

The boundary conditions are that the tangential fields are continuous.
This in turn requires that

klaﬁlz = kzaﬁz.e
0 ~ 0 ~
klaa_znlz = ké"gﬂaz
klzﬁlz = k??ﬁzz
0 ~ g ~ 0 ~ 0 o~
Bz e + gz The = g Tl t 5 Thas (48)

where the integer subscript to the Hertz vector components indicates the
region in which the component is evaluated. Using a similar set of inte-
gral forms for the Hertz vectors and applying the boundary conditions
yields the following values for the electric fields in the air region due
to an x directed dipole in air (Ref. 11)

B = _%cos(w) [-5:3 + k8 e‘;‘:‘?a
[:,.22 + k§ ‘::Rt - kfaa; V - k23U

T o L
o R e-:le - kE2y - kFU
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and

N iwf(w)lau | a2 [e-szna]
Ee=—mz e R
pafet o]
*loroz| B, kY

where the angle ¢ is the angle between the x-axis and the observer.

These fields for the horizontal dipole may be integrated over the
finite extent of the line source. This integration is identical to the
approximate source integration for the vertical dipole and explicitly des-
cribed in Section 1 for the perfectly conducting ground. The perfectly
conducting ground result is the same as in Reference 7. After the integra-
tion is performed the fields for the finite horizontal component of the
line segment are

n _ il (@)l.p i e ®fe 11
Br= - ipoos0)5m + kB[S, sine g kalu (s - (Re).)
62 e-ikanl 92
- + k3 —kE—5V -kSU
la’r2 | R, ®or? ¢
! .
X smc[é—ksz (772 - (VRC)::)]} (49)

E - 1:0?(“)111#0
- 4k 2

e
R

] ~ik R,

10 . 1
sin(yp) [—7-_-—5;_- + k2 SIDC[Ekng (nz — (VRc):)

—‘ikeRl 19
-—k2Z Yy .2
kE— -V - kEU

X smc[‘;—k2Lz (n: - (VRt..')z )]] (50)
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and
~ i0f (©)L, 1o | 8% |ekeRe
E, = —W—COS(SD) ordoz| R» sinc|>kal.(n, — (VRc):)
[ 82 [e-wanl 2yl ginel L p
+ laraz " =&, — kiV|sinc EkaLz(nz - (YR¢):) (51)

The integral V is the same as in the VED case and U is a similar funda-
mental integral given by

-4 2(2 +h )

U= fu,+u o8 (\e) Ad (52)

This integral can evaluated using steepest descents techniques, as
well, but there is no pole to worry about in the integrand in (Eq. 52).
Banos evaluates the integral under the conditions e-1kiP » 1 and |n2| =
'kz/kl'z € 1. Both these conditions are readily met for the usual earth
parameters and range restrictions for the vertical dipole. Banos divides
the calculation for U into two parts corresponding to integrations around
the branch cuts for the branch points A = k; and A = k. The result is

U=vuM4y®

The contribution U(1l) is proportional to e-1K1P and is therefore
exponentially attenuated with distance and does not contribute for dis-
tances larger than a few hundred meters. The remaining u(2) contribution
can be approximated for distances larger than a few hundred meters and for
n €1 by
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U® s

2(1 +1iky(z +h)) 1 3 [e""‘z'
Y- sl

- (53)

The value for U in (Eq. 53) is only valid for observation and source
points near the interface because of the way Banos applies the steepest
descent technique. In the model presented in this note no derivatives are
taken of U. Derivatives are taken, however, of the expression for V.
Banos derives an expression analogous to (Eq. 41) which is also to be used
for observation points and source points near the interface. That expres-
sion is:

-1

Q @ ikpp - —inkg(z+h)
m [ ../ —
| 4 21«:?(1 -'n‘)pe e

i 1
x|1- i(%ﬂ)axoe-z‘?erfc(ixo/za)} (54)

where Q = 2n=2[(1 - n,)% - 1]

1
kg= ka/(l + ‘nz)z

and xg is defined using Banos representation for the Sommerfeld Numerical
Distance.

1
1 1. -z .
p = gab = = gintkap(1+n) 2Q = (ks = kolp

One must be cautious when substituting this value for V into the field
Equations 45-51 since 1imits as z becomes small have already been taken.
The derivative with respect to z is proportional to n. The derivatives
then vanish in the perfectly conducting limit, which is not correct.

This behavior implies that E, for the HED vanishes for n » 0.  The
fields in that case are small but do not vanish. The derivative must be
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taken before the approximation for small z is made. Equation 41 may be
substituted directly in the field equations and leads to the correct deriv-
atives. Equation 41 is used in the numerical evaluation of the fields for
examples using the model in this note.

This summary completes the ground wave portion of the field propaga-
tion model. The complete solution requires a calculation of reflection
from the ionosphere.

3. THE SKY WAVE

The total electromagnetic field due to a source in the earth-
ionospheric waveguide can considered as constructed of two parts. The
first part is the direct wave with modification due to the presence of the
ground as calculated in section 2. This part is known as the ground wave.
The other part of the wave is that contribution that interacts with the
ionosphere and is known as the sky wave. Further interactions may take
place between the earth and ionosphere than the single bounce approximation
used here but the effects are usually smaller than those calculated in the
model. Multiple bounces may be included in a straightforward way.

The magnitude of the sky wave is usually significantly less than that
of the ground wave for these reasons:

(1) The time of arrival of the sky wave is delayed by the additional
travel time from the source to ionosphere to receiver.

(2) The additional path length allows additional geometric attenuation
of the wave.
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(3) At some frequencies the reflection coefficient for the ionosphere
is significantly less than 1 and the majority of the wave is trans-
mitted through the ionosphere rather than reflected to the receiver.

In this model the sky wave contribution is modeled using a single
bounce theory with appropriate reflection coefficients used at the boun-
daries, as shown in Figure 10.

The single bounce model adds the contributions from those rays that
bounce once from the ionosphere, including those that also bounce once from
the ground, before reaching the observer.

The waves bouncing from the ground are modified by the appropriate
Fresnel reflection coefficients. The waves bouncing from the ionosphere
are also modified to account for the anisotropy of the ionosphere as in
Reference 32.

Using the quasi-longitudinal (Refs. 33 and 35) approximation (vertical
magnetic field and vertical propagation within the ionosphere), appropriate
in the region of 70-90 km altitude where much of the reflection occurs, the
complex refractive index u of the ionosphere may be approximated as

el - ifw,/w)exp(+iT) (55)

where tan(t) = w /v and

1
or = 0§12 + wf) 2

In the above w; is the cyclotron frequency, v is the collision frequency

and wy is the plasma frequency. Numerical values for these constants are
given in Section 4. The plus sign in (Eq. 55) corresponds to the refrac-
tive index for the ordinary ray and the refractive index for that case is
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42




denoted by py. The negative sign corresponds to the extraordinary ray and
is denoted by yq.

The reflection coefficients are determined by considering a plane wave
incident on an ionospheric model with a step function boundary. The wave
is incident at an angle ¢ with the vertical. The reflection coefficients
are then obtained by matching tangential fields at the interface. The
result is (Ref. 32)

HRU = l(ﬂo + F"c)(ca - Cocs)

+ (Mote — 1)(C, + Ca)C}/D

WRy = 2iC(u,C, - #eCo)/D
Ry = 2iC (1, Cy — #:Co)/D

L= {(.U'o + 1 )(C? - CoCs)

- (“‘oﬂc - 1)(00 + Ce)C}/D (56)
where
D = (u, + y,.,;)(Cz + C,C,)
+ (ﬂoﬂ-s + 1)(Co + Ce)C,
asin(p,) = u,sin(p, ) = sin(yp)
and

C = cos(p).C, = cos(p,),Ce = cos(yp,)

The subscripts on the reflection coefficients indicate reflection from
one wave polarization to another. For example, R 1is the reflection coef-
ficient representing that portion of a wave with electric field parallel to
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the plane of incidence that is reflected with electric field perpendicular
to the plane of incidence.

The real parts of the reflection coefficients for the ground are shown
in Figure 1l. The departure from perfect conductivity for the earth (¢ = 5
x 10-3) mho/m does not occur until nearly 100 kHz.

The real parts of the reflection coefficients for the ionosphere are
shown in Figure 12. At the 100 kHz point these coefficients have dropped
severely. After 100 kHz the ionosphere has begun to be transparent and so
the sky wave contribution is no longer significant. For these curves the
angle of incidence is about 45°,

The effect of anisotropy is shown in Figure 13 and appears to become
significant around 800 Hz, increasing to a maximum at about 100 kHz before
the entire sky wave fades due to transparency. These reflection coeffi-
cients are based on a sharply bounded ionospheric model with collision fre-
quency v = 108 s-1, electron density n = 10® m=3 the longitudinal magnetic
field Hiong = 5 x 107*/ug A/m.

Reflection from the ionosphere may be calculated for much more detailed
models of the ionosphere. The slab model may be replaced with, for
example, an exponential profile (Refs. 12, 35). The wave reflects from
deeper in the ionosphere as frequency increases for a non-slab geometry.
The exponential profile is in the wave number for the reflective boundary.
The anisotropic nature of the ionosphere may be treated in a more detailed
way without the quasi-longitudinal approximation (Ref. 36). The method
described in this section for calculating the reflection from the iono-
sphere is intended only to provide an estimate of the reflection since the
sky wave generally does not play a large part in the total field.
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These reflection coefficients may be used to compute the sky wave.
Figure 14 shows a comparison of the perfectly conducting ionosphere
reflected fields versus the ionospheric reflection coefficients calculated
earlier. The fields are nearly the same up to 10% Hz but are attenuated
severely thereafter. The observer is 215 km from a vertical dipole 1500 m
high terminating on the ground with double exponential propagating up the
dipole at velocity v = c. The fields are about a factor of two low since
reflection from the ground at the receiver is not considered.

Figure 15 shows only Ez~for the reflection from the ionosphere.
Again the reflection from the ground near the receiver is not taken into
account for those two figures but is considered in the complete model.

4. FREQUENCY DOMAIN RESULTS

This section is a compendium of the field calculations for sections 2
and 5. Specifically, perfectly conducting ground results refer to fields
calculated by Equation 10. The ground wave fields are those calculated
using Equations 46 and 51. Total fields are those calculated as a sum of
the ground wave and sky wave fields. Generally lEZ' is the output field
since it dominates any measured response. The ground, when treated as an
imperfect conductor, is modeled as a homogeneous half space with ¢ = 5. x
10-3 mho/m, permittivity ¢ = 10 ¢y, and permeability u = yy. For the iono-
sphere the collision frequency is v = 106/3, and the earth's magnetic field
is B = 5 x 10-° Nb/mz. The corresponding conductivity is on the order of
o = 10-° mho/m. The first spectrum is in Figure 16. The source for this
curve is a model of a return stroke which is a vertical column 1.5 km high
and terminating on the ground. The column is treated as a single fila-
ment. The current pulse propagation velocity is v = ¢ for all example
curves in this section. The solid line curve represents 'Ez| in dB as
function of frequency for the total field. Note that the total field
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oscillates around the ground wave (dashed curve) as the sky wave destruc-
tively and constructively interferes with the ground wave. The observer is
100 km from the column. Both curves are to be compared with the perfectly
conducting ground fields derived by Reference 7 denoted by alternating dots
and dashes on Figure 16. Note the additional damping due to the finitely
conducting earth. The point at which the curve departs from the exact
solution begins earlier (linearly) with increasing observation distance.
The ground wave solution agrees very well with the exact solution for low
frequencies even when the condition kP » 1 is not strictly satisfied.

The analogous spectrum for a horizontal filament (corresponding to a
cloud-to-cloud return stroke) is shown in Figure 17. The three curves in
this graph refer to the same models as for the vertical column (Fig. 16).
Note again the added attenuation due to the finite conductivity ground
model. The complex structure is due again to interference with the sky-
wave. The skywave is of the same order as the ground wave for the horizon-
tal dipole case so the oscillations are quite large. At the high frequency
end the sky wave has a set of nulls (See Fig. 13). The fields near the
nulls interfere with similar fields from the ground wave creating a hash,
just below 1 MHz. The horizontal line model is not very realistic since a
normal cloud-to-cloud stroke would have some vertical excursion.

Finally a first order tortuous case is shown in Figure 18, The tor-
tuous model has only three filaments as shown on the figure but demon-
strates a few of the characteristics of the tortuous path. First, the
initial low frequency hump decays much faster than the same hump in the
single vertical segment case from Figure 16. This decay is due to the
decreased apparent current pulse propagatioﬁpVe1oc1ty. Along each indi-
vidual filament the propagation velocity remains v = c. The first null
occurs at a lower frequency. The various filaments interfere with each
other and the skywave. The vertical dipole portion dominates until the
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horizontal component from the skywave dominates for a narrow frequency
band.

5. LOW FREQUENCY RESULTS

For frequencies below about 1000 Hz the model described in Sections 2
and 3 is not really appropriate because the wavelengths involved are
greater than the earth-ionospheric separation. It is now desirable to look
at the propagation environment for the signals transmitted by the return
stroke as a waveguide. In this method the solution is determined as a sum
of waveguide modes. This approach can, in principle, be extended to all
frequencies and ranges, but has some practical limitations. In the modal
analysis solution the anisotropy of the ionosphere is ignored. This
assumption is appropriate for frequencies below lkHz, as can be seen from
Figure 13. This solution does not contribute to the late time transient
analysis since the long wavelengths would correspond to data time windows
much greater than a millisecond.

The solution follows as Wait (Refs. 13, 14) for the flat earth models.
The flat earth assumption restricts the applicable range to less than 250
km. The problem is treated as a three layer version of the earlier
Sommerfeld half space problem.

We begin as before by assuming a Sommerfeld integral form for the scat-
tered wave, except that the integral form must now consider scattering from
above and below. For the vertical dipole case only one component is needed
for the Hertz vector. The source is treated as a point dipole located at
the midpoint of the channel for this case, because the return stroke chan-
nel is quite small compared to a wavelength. The expressions for the z
component of the Hertz vector is, for the geometry in Figure 19
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=P+ [lac)e™ + p(oyets
r

x H§? (kSp)dC (57)
for 0 <z < h.
The Hertz vector for the fields transmitted into the ground is
Nz ik C z 2)
7= [6(C)e™ 9" HE) (kS p)dC (58)
T

and into the ionosphere

i= [1(C)e ™ H§ (kS p)dC (59)

T

The notation is similar to that for Equation 23 except that a par-

ticular physical interpretation can now be established. Consider the rela-
tion

A = kgsin(9) (60)

and if S = sin(e) and C = cos(8) in Equations 57-59 the two expressions for
the Hertz vector have the same form as the integral used in Equation 23.
The angle 6 is physically that angle with the vertical of a ray that would
be generated by an equivalent line source corresponding to the vertical
dipole and the infinite number of images in the two interface planes. A
ray is formed by the constructive interference of the image sources. The
constructive interference forms phase fronts at various angles since the
phase repeats over distances of oneiwave1ength. (See Fig. 20.) In addi-
tion to the solutions for real angles which represent real rays in propa-
gating modes there are also non-propagating or evanescent modes. For these
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Figure 20. First mode ray geometry for parallel plate model of earth-
ionosphere waveguide.
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modes C > 1 and are thus represented by complex angles of incidence in Equ-
ations 57-59. The integration path I is chosen so that the integral repre-
sentation of Hz is correct.

The forms in Equations 57-59 satisfy phase continuity at the boundary
if

(ST

1 1 !
Ny(1-CHR=(1-C®% =N, (1-Cd

which is just Snell's Law. The indices of refraction are

. 11
gy +10E, |2

N, = ——2

1weg ]

and

. 1
o; +iwe; {2

N;= |——

1WEp

The g suffix refers to ground components, i to those for the ionosphere
and o to those of free space, or the air between the boundaries.

The direct or primary contribution to the Hertz vector is

1
ko (= - 207?

ﬁf:M T
[02 +(z - 20)2]2
Mik
= =5 fexpl-ikoC )z - 2] |H§ (kS p)aC (61)
T
where
y = @)L,
T Amiweg
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The contour T then extends from -« along the negative real axis along

the positive real axis to +=. The contribution for values of C > 1 are
clearly required.

The coefficients of Equations 57-59 are chosen by requiring kzﬁz and
dllz/8z to be continuous across the two interfaces. The resulting Hertz
vector for the fields between the interfaces is (Ref. 13)

kM

fl, = 5 {F(C)Héz)(kSp)dC (62)
where
p(oy = LT 4 Ry (€ * ) (M 720 4 py(0)e TR 79
- ke nCh ,- —os
e 9™ (1 = Ry (C)R(C)e ™™= ™)
and

' N,C - C
R - 9 9
#(C) N, C + C
NiC - C‘I'.
RI(C) - N;,C + C;

are the reflection coefficients for the two boundaries. With notational
changes they are of the same form as Equation 28.

The integrand has poles where
1= Ry(C)R;(C)e o™ = o (63)
which is the modal equation. Exact solutions for finitely conducting earth

and ionosphere are not trivial. The numerical methods of Appendix A were
developed to solve this equation.
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The integral may be evaluated by function theoretic means. Changing
the integration variable from C to S does not result in a change of contour
. The contour may now be closed in the lower half plane as indicated in
Figure 21. Since F(C) is odd and there is an additional C in the integrand
then the integrand is even in C. Therefore crossing the branch line at S =
+1 does not contribute to a change in the function and can be ignored. The
resulting integral in then -2ni times the sum of the residues plus the con-
tribution from the indentations for S = N; and S = Ng. The branch Tine
contributions are generally negligible for the case considered here. The
integration for the Nj part is included in later calculations but adds
Tittle to the integration. The decaying exponential behavior of the Hankel
function assures zero contribution from the two semi-circles. The solu-
tions to the modal equation are the poles of the integral and are located
as shown in Figube 21 by the x's. The waveguide modes represented by those
poles along the imaginary axis are highly damped and are the evanescent
contributions. Expanding the residue series results in the following
expression for the Hertz vector.

B, = 22 5 B (koSup)fn(za)f n(2)54(C) (64)

n=—ew

where
-1

C,

_a—%[Ri(c)R,(C)
6n(C) = 1+12kohRi(C)Rg(C) c

The C, are solutions to Equation 63 and

i —ik
e® 9 4 R, (Cp)e * o

fal2) = s
2|r, (Ca)|?
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Figure 21.
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When the walls are perfectly conducting (Eq. 64) reduces to

~ _ ipiM &
I, = %‘”_021”. enH P (koS p)cos(k oCp zg)cos(koCpz) (65)

where the C, are the standard parallel plate resonance solutions and
gog = 1, en = 2(n > 1).

The field solution for the vertical dipole for the dominant E, is

~ 2 aa ~
Ez = ’Co + ‘5;"2' nz
inMk§ = 2
= Th L SaHE (keSnp)fa(z0)f (2)8n(C) (67)

For the horizontal dipole, the fields may be found by finding Tin a
similar way to the above, but using

i = (11,.0.11,)

and boundary conditions (Eq. 48). This result is contained in Wait (Ref.
13). For this low frequency case the reflection coefficients are very near
unit magnitude and so the fields EX and Ey contribute very little to the
fields when the observation point is near the surface. Therefore only E,
is needed and may be obtained more simply using the reciprocity theorem
(Ref. 14). A general form of the reciprocity theorem states, for no mag-
netic sources (Ref. 37).

[ Foar= [f[E>Tear (68)
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>
Suppose JP is chosen to be
Jo = 16(7)2

>
and Ja is chosen to be

J® = I6(7)Z ‘
> >
then E% and E
the integration

b are the corresponding field expressions. Then, carrying out

Ex#) = E¥#) (69)

The interpretation of this equation is that Ez due to an x directed
dipole is the same as Ex due to the vertical dipole of the same magnitude

with source and observer coordinates interchanged. Since for the vertical (::)
dipole we have I, and
~ 32 o~

Therefore, for the horizontal dipole contribution

E _ __a_ kcJ’:(U)LzT'
5= 9z | 4miwegh

x gn(z0)fn(z )611’(0)]

%, HE (koSnp)
| (71) y
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where f, and $n(C) are the same as before byt

0
kogn(zp) = - ig;;fn(zo)

as in Wait (Ref. 14)

For some numerical solutio
estimates of the roots. Th

the frequencies below 1000 Hz,
indices of refraction (Ni,Ng) a
may be approximated as follows.,

on is used the
re large and the reflection coefficients

N,C -, 2c,
RP(C)‘N,C+C, “l-¥c

N,C
R eXp(-E/N, C)

and similarly for the Ri(C). The resonance condition then becomes

fectly conducting limit, (i, e., Ny,
Ng > ). The result is, Wait (Ref. 13)

_ 2413 . .
then Sn = (1 - Cn) With the sign on the

Square root taken to maintain s
in the lower right quadrant.

~ n
These approximate solutions may be used as
rmination of the roots of Equation 63.
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The series solutions to this three layer problem are, in principle,
good for all source-observer separations and for all frequencies (as long
as an isotropic ionospheric model is useful). However, the number of terms
that can practically be summed is limited by both round-off errors and
economics.

Consider series (Eq. 67). The Fp(z) and 6,(C) are functions of
order 1 and vary slowly with n. The S, are related to solution of the
modal equation. As n increases S, increases in magnitude down the
imaginary axis as in Figure 21.

The convergence of the series in Equation 67 is dominated by the
behavior of the term Héz)(kosnp). It; eventual decay is exponential and so
dominates the algebraic behavior of Sh, fn, and sn(C). Requiring
Héz)(kosnp) to behave as a strongly decaying exponential for all terms left
out of the series, places two requirements on the argument of the Hankel

function.

The first is that the Sn = (1 - Cﬁ)% can be approximated be a large
negative imaginary number. Physically this requirement is to sum all prop-
agating modes and the first few evanescent modes. The approximation

Sp = — 1’:: (73)

is a reasonable substitution for S, for the purposes of examining the
convergence of Equation 67. The small variations from the strict imaginary
axis or along the imaginary axis do not affect convergence, only the value
of the sum. The approximation (Eq. 73) requires the restriction Re(C,) »
1. 1If C, is approximated by
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Cn m-%3%>>1

then for a given truncation index N there is a restirction on Ko

In addition, for Equation 67 to converge the argument of the Hankel
function must be large, or kSyp » 1. This restriction places a limit on

the magnitude of the radial separation distance between source and
observer.

For example, assume that 10 is sufficiently larger than 1 for the con-
vergence ratios desired and that N = 100 is the maximum number of terms
that can be economically and accurately calculated, then

Nn = 10— nc

kh 2rn = 10 (74)

or that f < 15 kHz is the restriction on the frequency necessitated by
summing all propagating modes plus a few evanescent modes.

For the other restriction

kSyp = 10-»"—;:3 =10 (h = 100km)

—»p%-—:%’r—t-zfikm

For other selections of N, ppax scales as 1/N, and fpax scales as
N. For accurately located modes (as in Appendix A), N = 10 would probably
be the economic upper limit for N. For modes calculated as those near the
solutions for perfectly conducting boundaries (As in e. g., Wait and
Carter, (Ref. 38) or in Eq. 72) then N = 1000 would be feasible.
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The fields calculated for the lightning return stroke are handled as
before. That is, the return stroke is assumed to be constructed of a
series of interconnected filaments. Each filament is divided into a set of
three orthogonal dipoles. The fields are then calculated and summed. The
corrections for phase changes due to the source current propagating along
the filament are irrelevant for these long wavelengths.

The waveguide solution is compared to the previously used exact solu-
tion for the perfectly conducting earth, no ionosphere, solution in Figure
22. The attenuation of the signal by the waveguide is about 6 dB over most
of the frequency range. Near 1 kHz the solution meshes with the total
field and ground wave solutions which are taken from Figure 16. The two
mesh closely at 1 kHz in both slope and amplitude.

Figure 22 is a good example to use to summarize the features of this
new model. For the first time fields may be predicted using a complex
Tightning current model in a realistic earth-ionosphere propagation model. (::)
The earlier models predict fields about a factor of two too high below 1000
Hertz. Above about 100 kHz the fields may be over estimated be an order of
magnitude or more. Recent observations (Refs. 25, 26) indicate field
behavior with rise times as fast as 30 ns. This fast behavior is success-
fully masked by ground wave attenuation for distances larger than a few
tens of kilometers. Therefore, understanding the effect of propagation on
these fields is vital if one is to use field measurements to understand
lightning currents.*

6. INTEGRAL TRANSFORMS AND THE TIME DOMAIN

The solution of Maxwell's equations can be simplified by use of an
integral transform to eliminate the time dependence. The resulting dif-

*Kirder, private communication, 1980.
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ferential equations have one less independent variable and the time depen-
dence may restored using the inverse transform. The most widely used

transform is the Fourier transform by which one obtains the usual frequency
domain solutions.

Calculation of the forward and inverse transforms, particularly for
transient waveforms, and has received much attention in recent years since
large computers have allowed the transform calculation. Calculation of the
Fourier transform via a discrete approximation of the Fourier integral
using the fast Fourier transform algorithm is a widely used technique
(Ref. 39). Any discrete Fourier transform technique suffers from errors
due to truncation of the integration and from errors from improper treat-
ment of singularities of the integration axis. A way of avoiding the sin-
gularities on the integration axis and at the same time minimize the
effects of the poor late time data in this problem is to use the Modified
Fourier Transform (MFT) (Ref. 40). In the MFT the integration path of the
inverse transform is parallel to the real frequency axis and displaced from
it slightly. The MFT pair is identical to the normal Fourier transform
pair for e-Stf(t) (s real and positive) rather than for f(t) in the stan-
dard definition. Explicitly the transform pair is

F(s.0)= ] eiot [e'“f (t)]dt

and
- 1% s
e”t f(t) =-§;-_/_: et Fs,w)dw

where s is a constant. The FFT algorithm of Brigham (Ref. 39) is used for
the explicit calculation.
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An signal function A(w) is particularly useful in comparing theory to
data and for explicitly showing the effects of the earth-ionospheric
environment on the waves propagating through the waveguide. This type of
analysis, for point sources, was done for intercontinental distances by
Jean, Taylor, and Wait (Ref. 41). The signal function A(w) is defined by

(75)

where Fn and ?f are near and far observation points, respectively. The
observation points are usually co-linear with the source. The signal func-
tion separates the 1/r geometric attenuation and explicit current effects
from the field values. Remaining is the distortion of the field by the
propagation path. This propagation path distortion is still dependent on
the geometry of the return stroke channel and the velocity of propagation
of the current pulse, so the separation of propagation effects from the
source geometry is not entirely successful.

An example of comparison of data and experiment uses the modified fast
Fourier transform algorithm on the MFT for both the forward and inverse
transforms. Data from Lin (Ref. 42) which has a time window (150 usec to
180 usec) are used. The sample set of measurements for this method is a
simultaneous two station set at observation points at 5.2 km and 200 km
from the return stroke. The two waveforms, normalized to 100 km, are shown
in Figure 23. The solid curve is the near measurement and the dashed curve
is for the far measurement. The slowly varying quasi-static component in
the near waveform is apparent, as well as the decreased rise time.

The signal function derived from the numerically transformed measured
transient waveforms (Ref. 42) from Figure 23 are shown in Figure 24 as the
solid line. The dashed line is the signal function from calculated wave-
forms. The near observer predicted waveform is propagated over a sea water
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model with conductivity ¢ = 4 mho/m and permittivity e = 81 ¢g. The ground

model for the far observer measurement is propagated entirely over a ground

model with conductivity ¢ = 2 x 10-3 mho/m and permittivity e = 12 ¢,.

The observed 1lightning stroke was over sea water. The transition from sea

water to land which affects the waves is not considered. A predicted and .
observed transient waveform, is shown in Figure 25.

The A(w) derived from the theoretical model, as shown in Figure 24 is
multiplied by the transform of the near observation point transient wave-
form as shown in Figure 23. The result is inverse transformed and compared
with the far observation point transient waveform in Figure 25. There is
room for improvement in the agreement of the two waveforms. Better
matching techniques are shown in Reference 21.

7. CONCLUSIONS

In this note the methodology of determining the effect of a finitely (::) |
conducting ground and reflections from the ionosphere on a transient wave-
form transmitted from a lightning return stroke. In the frequency domain
spectra for various transmitted electric fields are shown. The general
effect of the imperfectly conducting ground is to attenuate the transmitted
waveform. The added attenuation is calculated explicitly and compared to
experimental data. In that comparison and in the inverse Laplace trans-
formed results it is clear that a better specification of the environment
and the return stroke current model is needed. The sensitivity of these
curves to the possible parameter variations, (i. e., current pulse,
velocity, variations of conductivity and permittivity with frequency and
position, and filament geometry) as well as a selection of the best set of
parameters for matching experimental data is shown in Reference 21 using
the models of this note. The correct values of the possible parameters
will be chosen from the data.
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This model represents a more accurate method of predicting electric
fields from lightning return strokes than has yet been available. The
model successfully predicts the masking of high-fréquency components of

fields radiated by lightning return strokes that have only recently been
discovered (Refs. 25, 26).
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APPENDIX A
FLAT EARTH RESONANCES CALCULATION

Calculation of the resonant frequencies of the earth-ionospheric wave-
guide as used in this note requires solving the following equation for the
cosine C of the complex angle of incidence.

R (C)R;(C)e3*hC — g-2inm = g (A1)

The air reflection coefficients for vertical polarization for the air-
ground and air-ionosphere interfaces are Rg and Rj. A similar equation
must be solved for the horizontally polarized modes. The solution techni-
que is the same as for the vertical polarization. One method of solution
is to estimate the solutions C and use a Newton's (or higher order) method
root finder to calculate a better estimate for the root. For low fre-
quencies this method works well. Below about 2500 Hz the reflection coef-
ficients are only slightly different from the perfectly reflecting case
(e.g., Ry = Rg = 1). The solutions of Equation Al are the well approxi-
mated by the parallel plate waveguide solutions.

C, = -’ihl (A2)

To solve Equation Al more precisely the following method may be used.
Suppose we are solving

Z(z)=X(z.y) +i¥(z.y) =0 (A3)

where z = x + iy, and X and Y are the real and imaginary part of z. If we
have an approximation to the zero of A(z), say z, = sp + iy, then a better

approximation, zp4+1, is given by the solutions of

81




0X o0X oX 0X
xn+1?£lz=zn + yn+1'égly=y,, = =X(Zp.Yyn) + In‘é;i:::,l + yn@ |'y='yﬂ

aY 2Y oY
zn-ﬂalza‘:“ + n+1@|y=y,. = "'Y(xn-yn) + xnal:t:z”
oy
+ Yn0Y|y=y, (A4) s
The derivatives may be calculated by the approximation given in the a

following example

X(z,y) _ X(z +g(z)y) - X(z.y)
CE g(z)

(A5)

The formula (Eq. A5) is exact in the limit g(x) » 0. If g(x) is set to
a small constant this technique is the familiar secant method. The zero is
approached more rapidly at the expense of some instability far from the
zero if g(x) is set to =X(x,y) (Ref. Al). This method is known as
Steffenson's method. The algorithm is second order in the sense that the (::) |
error term is proportional to the second order term in a Taylor expansion. l
|

At higher frequencies Rg remains near Rg = 1 but Rj becomes small and
Ri = -1 yields a better starting point. In the limit as Rj » -1 the C,
are given by

Gy = nln — 2)/kh (A5) :

A better approximation for higher frequencies is given by (Ref. A2)

n(n—1,/2) +i/(N,C)
kh — iNZ[NE-1 + (C, )12

Cp™ (A6)
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The approximation (Eq. A6) coupled with the iteration method above
determines the zeroes efficiently up to about f = 30 kHz. Above this fre-
quency the approximations from (Eq. A6) drift into the second quadrant and
SO are not correct. The trajectory of C, as given by (Eq. A6) as a func-
tion of frequency is shown in Figure Al as compared to the numerically
computer result. The approximation does not match the curl-up of the
numerical result for frequencies above 30 kHz.

The desired zero is still known to lie within a region in the complex
plane bounded by (n - 1)w/kh and nm/kh on the real axis and by 0 and a
small constant on the imaginary axis. The zero may be determined from a
contour integration around that contour (Ref. A3).

1
2eni

K
[ 1) = ;ﬁlz! -yl (A7)

The zj are the zeroes of f(z) within the contour C and the wj are the
poles. The function defined in (Eq. Al) is analytic in this contour so the
second sum disappears. For N = 0 (Eq. A7) determines the number of zeroes
so that possibility of the contour encircling two zeroes can be checked.
For the cases here the above contour encloses only one zero and that zero
is given by (Eq. A7) for N = 1. For the calculations for Ref. A4 above f =
30 kHz the root was estimated by (Eq. A7) using an 8 point gaussian quadra-
ture for each root. The code used was a modified version of the Code
SEARCH (Ref. A5). If the iteration method did not converge 20 point quad-
rature was used to determine the zero.

The numerical integration technique has the advantage of required only
one particular number of function evaluations per root (usually = 32). The
search type routines (i.e., Newton's method or contour following) require 3
evaluations per iteration. There is a trade-off.
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Figure Al. Trajectories of C,(f) as computed by approximation

(Eq. A6) compared to numerical solution of Equation Al.
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APPENDIX B
CALCULATION OF F(p)

Values for the attenuation function, F(p), as defined in Equation 40
are frequently needed in a study of the type performed in this note. Cor-
rect evaluation of the function is not entirely straight forward. Explic-
itly F(p) is written as

1

1 1
F(p)=1-i(np)2ePerfc(ip?

) (B1)

The argument p is nearly real. Values of the complementary error func-
tion for complex argument may be calculated by using the series (Ref. B1)

-2d
erfc{(z +iy)=erfc(z) — e27r:z: [(1 = cos(2zy)) + isin(2zy)]
=1
2 _.z o e 4n® ]
-e® E,m[“(“"y) +ign(z.y)] (B2)

where

Jn(z.,y) = 2z - 2z cosh(ny )cos (2zy) + nsinh(ny )sin (2zy)
and

gn(z .y) = 2z cosh(ny )sin(Rzy ) + nsinh (ny )cos(2zry)

Care must be taken to evaluate all arguments of exponentials (including
hyperbolics) together to eliminate truncation errors. The real argument
part of (Eq. B2) may be evaluated over part of the required values using
the rational approximation
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erfc(z) = (ayt + apt? + aqgt? + astt + astd)e " + £(z) (B3)

where

1
—-_— -7
t = 1 . |e(z)|=1.5z10

and

q = 0.3275911

a; = 0.259829592

a = -0.284496736
a3 = 1.421413741

@, = -1.453152027

1.061405429

a5

Equation B3 is quite accurate but does undergo a sign change at certain
large values. To avoid this direct numerical integration is used.

For large values of 'p' the asymptotic expansion is most efficient.
The asymptotic expansion used here is

)= 3 (- A2emo D (84)

For this study for 'p' < 0.11, Equation B2 was used for erfc(ip%) and
(Eq. Bl) evaluated directly. For 0.11 < 'p. < 5, (p) was evaluated
numerically with the exponential in F(p) taken into the integral. Finally
for 'p' > 5, (Eq. B4) was used.
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