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ABSTRACT

In this paper, we present a model consistent with the observed features
of nuclear lightning. The problem is divided into two parts. First, an
electrostatic problem is solved, modeling the focusing of fields and cur-
rents near the tip of the discharge. Second, a detailed self consistent
model of the air chemistry, heating rates, and current flow patterns is
presented. From the second model the growth rate of the tip is shown to be
between 0.8 x 105 m/s and 1.5 x 105 m/s consistent with photographic

evidence, and the tip remains sharp, as observed, rather than becoming
bulbous and dissipating.
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I. INTRODUCTION

Electrical discharges resembling lightning have been seen on many
large-yield surface thermonuclear explosions set off by the United States
at Eniwetok and Bikini Atolls in the 1950's. The discharges, observed
photographically, and as shown in Figure 15 occur at ranges'typica]1y‘from
900 to 1400 m from the burst and grow along constant radius lines from the
ground or ocean surface at a velocity of approx1mate1y 105 m/s (Ref. 1).

The shape of the discharge paths, which are nearly circular with the.borst
point as the center, strongly suggestsvthat they»arevdriven by the electric
field associated with surface burst Electromagnetic Pulse (EMP), Estimates
of the EMP environment (Refs. 2 and 3) indicate theta directed electric
fields of about 30 kV/m peaking about 1 km from the burst~pofnt andfat
times of a few milliseconds, which is some two orders of magnitude below
the uniform field breakdown level of 2.1 MV/m. The photograph1c evidence
is indeterminant as to whether the discharges are associated with vertica]
structures on the surface.

The physical model for nuclear lightning which we have developed models
substantially different physical mechan1sms from the processes in natural
lightning due to the presence of Compton current and ambient air conduc-
tivity. Conductivity of the air is caused by _gammas resu1t1ng from the
capture of neutrons in the ground. The conduct1on current, which returns
the charge deposited in the air by Compton currents to the ground is
focused on the tip of the discharge and heats the air near the t1p of the
discharge until it becomes a good electrical" conductor. The physical
model consists of two sets of numerical ca]culatwons,, The first is the
calculation of the collection of conduction current by;fhe tip of the dis-
charge, and the second is the calculation of the heating near the tip
(Ref. 3). These calculations are separable because of the large disparity
in distance scales between them. The collection of current occurs over a




01

o o
o o
— ()]
i

Figure 1.

900

3
|

Lightning strokes observed on IVY MIKE event. Numbers are
ground ranges in meters; the lightning channels have been
inked for better reproduction.
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distance scale of tens of centimeters to tens of meters while the heating
occurs over a scale of millimeters. This paper presents a physical
mechanism of nuclear lightning which is consistent with the physical
observables, i.e., propagation in low fields, velocity of propagation, and
observed retention of sharpness of the discharge tip.

The two parts of the model are described in successive sections in the
body of the paper. The first section describes a macroscopic model of the
focusing of the fields and currents from the EMP environment to a perfectly
conducting rod modeling the core and the current flow through the base of
the discharge. The next section describes a microscopic self-consistent
model of the tip growth. The model is steady state in the discharge tip

frame, is centered on the growing tip and covers a region of the order of 1
cm from the tip.
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II. PHYSICAL BASIS OF NUCLEAR LIGHTNING

Some time ago, Longmire and Wortman (unpublished) took up the problem
defined in the last paragraph of Section 1, i.e., they assumed a conducting
channel up to a height h and asked what would happen. They estimated the
field intensification at the tip from standard electrostatics formulae, and
looked to see if Joule heating near the tip would make the conducting chan-
nel grow upward at a rate comparable with the observed rate of about 105
m/s. They had two difficulties in getting the model to perform satis-
factorily. First, the Joule heating seemed insufficient to yield the
observed growth rate. Second, it was not clear that the tip would remain
sharp; i.e., it appeared that the tip might grow in all directions,
increasing its radius of curvature and decreasing the field and the Joule
heating rate.

The turning point came in the present work when we realized that
avalanching has a very beneficial effect on the field pattern near the
tip. To understand this effect, one first needs to be aware of the ambient

state of ionization.
Estimated ambient conductivities are about
-5
6 =0, * o, ~ 4.6x 107 S/m (1)

and the ambient electric field is

E, ~ 3.7 x 10" V/m (2)
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Near the tip of the discharge, the electric field can be very large.
If the field E exceeds the avalanche field

£, 2.1 x 108 v/m (3)

free electrons produce more free electrons faster than they attach. The
avalanche rate increases very rapidly with field strength. If E tried to

exceed E3, the electron density would exponentiate in times of the order
of 10-8 s or less, thus increasing the electron density and the conduc-
tivity. As the conductvity increases, the electric field decreases (to
carry the same current density) and avalanching stops. Thus avalanching
will 1limit the field to

E< Ea (4)
The 1imiting happens very rapidly compared with the observed growth rate of
the tip; in 10-8 s the height increases by only 1 mm. We may therefore
assume that wherever E tries to exceed Ey, it will be clamped at the

value Ez and the electron density and conductivity adjust to the values
needed to pass the required current density.

We visualize the clamping to be a deterministic, smooth process, rather
than stochastic or catastrophic. The fact that there are 7.5 x 1014
e]ectrons/m3 already in the ambient ionization makes this possible.

There is a difference here between nuclear lightning and ordinary light-
ning, where the free electron density is very small initially.

Now consider a thin, perfectly conducting channel extending to a height
h above a ground plane, in an ambient electric field E, that would be
vertical in the absence of the channel. The ambient conductivity is oq,

and for simplicity we take Ey and oy to be independent of time and

13




space. The effect of the conducting channel is to intensify the field near
it. There will be an envelope around the channel, of the general shape
sketched in Figure 2, inside of which the magnitude of the field E will be
clamped at Ey. Outside of the envelope, E < E; and ¢ = ¢4. Inside,

02_000

The beneficial effect of avalanching can now be seen. The condition
that E = E3 inside the envelope means that the equipotentials there will
have constant spacing. Since the channel is an equipotential, the other
equipotentials will consist of cylinders about the channel as axis, capped
by hemispheres centered about the tip, as indicated in Figure 1. (The
envelope is not an equipotential.) It follows that the end cap, the field
lines and the current flow are directed precisely into the tip, so that all
of the current collected by the end cap flows into the tip. Thus, the
result of avalanching is to focus current to the point where it is needed
to make the tip grow. We shall estimate the Joute heating from this
current-field pattern and show that it can account for the observed growth
rate. We shall also estimate the diameter of the tip and explain why it
remains sharp. (If it became blunt, Joule heating would fail to maintain
the observed growth rate.) Detailed calculations of growth rate will be
presented later in this note.

The electrostatics problem associated with determining the envelope can
be posed in a variety of ways. We describe one way here; others are

->
described in later sections. In the approximation that the current flow J
is static, conservation of charge outside the envelope gives

0=V+Jd=Veog E=0 ve+E (exterior) (5)
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End Cap

E < Ea E= Ea
o= % g> % Electrcn Flow Line
A \ ] Envelope
\
Cone
Equipotential
-5
Eo h Conducting Channel

Ground Plane

Figure 2. Conducting channel with tip at height h. Envelope
is the boundary of the region in which avalanching
occurs. The region called the cone is not exactly
conical, and the end cap is not exactly spherical.
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Thus there is no charge density outside the envelope, except for charges on
the ground plane, which terminate the field there. We can eliminate the
latter charges from consideration by including the image below the ground
plane of the charges inside the envelope. This interior charge density p
is determined by the model, from the equation

- -, La m
p = eov « E = € mar " Ea
r
Ea
= e M= (interior) (6)

Here r is the spherical or cylindrical radius in the end cap or cone
respectively and

3
]

-2 in end cap,

1 in cone. (7)

This charge density extends out to the radius r = R of the envelope. The
charge density is finite everywhere, except for the integrable singularity
at r = 0; it drops discontinuously to zero at the envelope. The electric
field is therefore continuous everywhere, except at r = 0; it is continuous
at the envelope.

The potential from this charge density can be written as an integral
over the interior of the envelope (including the image). The radius R of
the envelope, which is an unknown function of distance z above the ground
plane, occurs in the integral. Requiring that the potential from the
charge cancel the potential -Egz of the ambient field at all points along
the conducting channel gives an integral equation for R(z). The integral
equation can be written as

= R.(z2'
1 htR S m E /r
Eoz = 3?'.[ =T dz' > 21rrcdrC (8)
_(MR) 0 ~/c (z-2)
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Here rc is the cylindrical radius coordinate measured from the channel
axis, Rc is the cylindrical radius corresponding to R, and R is the dis-
tance from the chénnel tip at which the envelope cuts the axis (i.e., where
Re = 0). It is physically plausible that the equation has solutions. A
solution found numerically is presented in following sections. We have
some unresolved questions about uniqueness of the solution.

Since the integral equation is homogeneous in powers of the length
variables z, z', r and rc, it is clear that the height h can be scaled
out of the probem. It is clear also that the solution depends only on the
ratio of Eg to E3. The solution must be of the form

R
c . i Z and 0
ol function of B and Ea (9)
When Rc or R has been found, the total current collected by the
discharge can be calculated immediately. We know that |E| = E5 on the
envelope and is spherically or cylindrically radial over the end cap or
cone respectively. We know that ¢ = g, on the envelope, from the con-

tinuity of E and 3. Thus the total current I at the base of the channel is

h .
I-= °oEa [ J. 2nRdz + I den] : (10)
0 end
cap

Here dQ is the element of solid angle about the channel tip.
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IIT. NUCLEAR LIGHTNING ELECTROSTATICS

1. PROBLEM DESCRIPTION

a. Model--Our model is as shown in Figure 3. An electric field EoZ
is applied to the half space above a perfectly conducting plane at z = 0
out of which rises a straight, infinitely thin, perfect conductor of length
L. Surrounding it, there are two regions of distinctly different physics;
the avalanche or inner region separates the conducting core from the outer
region. The entire model is rotationally symmetric with respect to the
conductor.

The principal physical assumptions of the model are that
1) A1l quantities are time independent.

2) The electric field in the inner region points directly away from
the nearest point of the conducting core and has a magnitude equal
to Ea, the avalanche field strength.

3) The conductivity in the outer region is oa, a constant less than
the conductivity at any point in the inner region, and the electric
field strength in the outer region is not greater than Eq.

In both regions the relevant physical laws are Ohm's Law and Conservation

of charge. We seek a steady solution, so the latter is v . 3~= 0 in either
~ ->

region and n . 3buter = N « Jdipner on the avalanche boundary.

b. Conditions Along the Avalanche Region Boundary--The tangential com-

ponents of Elmust be continuous across the avalanche region boundary,
otherwise Vv x E would have a singularity there and would not be zero, as
required of any steady field. This fact along with |E6uter| 5-|E}nner|
implies that

> > > >
n* Eouter'_ﬁ Iﬂ * Einner (11)

18
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: Region
Avalanche Region Boundary

Ground >r

Figure 3. Cross section of cylindrically symmetric
Tightning stroke model.
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along the boundary. Conservation of charge, and Ohm's Law

+ > > >
°outer(n°Eouter) - °inner(n'Einner] (12)

and the conductivity assumption 0 < oguter < oinner imply that

> > > >
n* Eouterl 2—'" : Einner‘ (13)

Thus, from Equations 11 and 13, it follows that the normal component of the
electric field must also be continuous across the boundary. Hence, the

- - + + .
conditions o, 4o £ 04pne . and 'Eouterl-ﬁ |Einner| are equivalent to the
vector condition

> > ~
Eouter = Einner = EaR (14)
where R is the unit vector which points away from the nearest point of the

conductor.

c. Outer Region Problem--The governing equations in the outer region
are vV x E 0and v » (OOE) =gV E = 0. These may be solved by
letting E -V¢ and finding an appropriate solution to v2¢ = 0. The
boundary conditions

Vo > -E Z as 2+

¢=0at z=20

A

no. Vo = -Eaﬁ « R on the avalanche region boundary (15)

determine ¢ uniquely for a given boundary. The additional condition that
. Vo = -Ea? .« R for a tangential vector ?, serves to determine the

avalanche region boundary.
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Alternately, the problem may be stated with a Dirichlet condition (¢
given) at the avalanche region boundary instead of the Neumann condition
(n « v¢ given) above. In the inner region the potential must be o = -E3R
where R is the distance to the nearest point on the conductor. Then the
problem

V2¢ = 0 in the outer region

Vo » -EOE as 22 + r2 >

Dat z=0

¢

©
Ll

= 'EaR on the avalanche region boundary (16)

determines ¢ uniquely for a given boundary. And t . Vo = -Ea% . R on the
avalanche boundary is automatically satisfied. The boundary is then deter-
mined by imposing V. Vo = -EaV . R for any vector V not tangent to the
boundary. In particular, v may be chosen to be R so that the additional
condition is

R« vp = -Ea (17)
If we nondimensionalize by

¢ = LE

(r2) = L(r,2) (18)

these equations become

52$ = 0 in the outer region

21




Vo » (Eo/Ea)Z as 12 + 325 @

$=0atz=0
;- R
on the avalanche region boundary
R evp = -1 (19)

Eo/Ea is, therefore, the only relevant dimensionless parameter. Note that
the length of the conductor has scaled out entirely; it does not appear in
this dimensionless parameter.

The problem for the scattered potential

52& = 0 in outer region

$+0as? + 2>

p=0atz=0

v = (Eo/Eq)Z - R

ﬁ . (65 . ;) - .1 on the avalanche region boundary (20)

obtained by letting ¢ = ¢ - (Eo/Eg)Z defines the same avalanche region
boundary, and is slightly easier to deal with since it has an additional
homogeneous boundary condition.

d. Inner Region Problem and Partial Solution--In the inner region, E

>
is determined by assumption, and determines ¢ and J once the boundary shape
is known. These will be of critical importance for estimates of the growth
rate of this structure.
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For the coordinate system shown in Figure 4 we have

<
1

L

0 above z

<
n

0 below z

i
—
—
~nN
—
~~

and J¢ = 0 everywhere. Therefore,

13 fom -
V-J-RmaR(RJR)—O (22)
where
2 z>L
m = (23)
1 z<L
So
c.(2) m=1
R = ! (24)
cz(e) m= 2
or

J, = —'"‘: (25)

If the avalanche region boundary is R = Rz then ¢y may be determined

_ - m . . -
from JR Ra = oOEa cm/Ra where g, 18 the outer region conductivity. Thus,

R m
- a
Jg = o F, (R—) (26)
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Inner region coordinate system.
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and, of course,

R\
o =aq, (-Ri) (27)

This last equation implies a discontinuity in ¢ at z = L for R ¢ Ra
(since m changes from 1 to 2 there). This would not have to be if the con-
ductor were not assumed to be infinitesimal in size.

The total current in the conductor is equal to the total current
through the avalanche boundary

> >
1=j J + ndo (28)

Where S is the avalanche region boundary and n is the unit normal vector.
A [y . g A

If n~ R, as will be seen to be true, then since J = goE3R along the

boundary this current is

> a ]
I = I J ¢ Rdo = 9oEq j do = coEaA(S) (29)

S S _
Where A is the area of the surface.

2. METHOD OF SOLUTION FOR OUTER REGION PROBLEM

We solve the outer region problem for the avalanche boundary by an
iteration scheme involving the following steps:

1) Guess the boundary

2) Solve the potential problem expressed in the first 4 relations of
Equation 20

25
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3) Use the resulting E = vy to move the boundary toward satisfaction
of R« (V§ + 3) = -1

4) Test the degree of convergence and either stop or go back to 2
above.

In this section some of the details of these steps are discussed.

a. Potential Problem Solver--The basic approach used to solve the

potential problem of Equation 20 is to find a linear combination of ana-
lytic solutions to

7% = 0

\I;+0asr' +2° >
p=0atz=0 (30)

which as nearly as possible satisfies

v = (Eo/Ea)E - R on the avalanche boundary (31)

The analytic solutions used are the potentials due to charge distrib-
uted along the z-axis with a triangular distribution as shown in Figure 5
(for these potentials, see Appendix A). Any sum of these potentials is a
potential due to a continuous piecewise-linear charge distribution. And
since the triangular bases overlap, the potential due to any continuous
piecewise-linear charge distribution with discontinuities in derivative
only at end points of the specified segmentation can be written as a sum of
them. In addition, the potential due to a pair of point charges of oppo-
site sign, one at the top of the charge carrying segment and the other
oppositely located with respect to z = 0 is included. Since all these
solutions are dipole distributions, they satisfy Equation 30.‘ Because all
conditions of Equation 30 are homogeneous, any sum of these potentials must
also satisfy them. This is the reason for solving the scattered problem.

26
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Negative Charge

Figure 5. Charge distribution for analytic potential and field.
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The method of collocation is used to derive a system of equations for
the coefficients of the linear combination. That is, a set of points
{(rj,Zj)Ij = 1,...,m} is chosen to represent the boundary, and then
Equation 31 is applied to the linear combination at each of these points.
If the potentials are {¢1|1 = 1,...,n}, then the system

- R(rj,zj) i=1, «e.yom (32)

'M:s

ci¢i(rj,z.) = (E /E)z

= J J

results for the unknowns {cili =1,...,nl.

Finally, these equations are solved in a least square error sense. In
the results to be presented later, the number of equations (m, the number
of observation points) is approximately two and one-half times the number
of unknowns (n, the number of potentials). Some error in satisfying the
inhomogeneous boundary condition results; but the reduced error at inter-
mediate points on the boundary due to the superiority in numerical sta-
bility of least square solution (n < m) over exact solution (n = m) more
than compensates.

This method of solving the potential problem expressed in Equations 30
and 31 has several advantages. The most relevant of these is that since
the ¢4 are analytically known, so are the fields E} = -V¢j. Thus,
the field E = -vy can be computed from the cj by

m

i

1

<
<

]

1

M-

Civéi (33)
i=1

No numerical differencing need be done. This offers a substantial increase

in accuracy over grid methods. The fields -V¢1 are given in Appendix A.

Straightforward evaluation leads to loss of precision due to cancellation,

so a scheme for accurate evaluation is also discussed there.
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b. Boundary Mover--After the potential problem is solved for two
initial boundaries, each boundary point (rj,zj) is moved radially
(i.e., along R) an amount which would make R - (vy + Z) + 11(rj,z3) =
0 if this quantity were a linear function of (rj,zj) and did not depend
on (rg,zg) for k # j (secant method). The change in radial distance
R(rj,2j) is 1imited to a doubling or halving of the current distance.
The bottom point (ri,0) needs separate treatment since R e (vp +2) =0
there, but the position of this point has weak influence on the rest of the
problem and no physical interest. It is forced to lie on the cone
projected from the two points above it or to have half the radius of the
point above it, whichever is greater.

This relatively simple procedure works remarkably well. After only
eight iterations, the maximum relative change in position of the top 90
percent (well outside the influence of the bottom point) is less than
10-4 on the run for Ey/Ey = 0.001 reported below.

c. Initial Boundaries--The two initial boundaries are both cones
topped with ellipsoids. The first tapers from a radius of 0.01 m at the
z = 0 to approximately EgL/4E; at z = L. The half ellipsoid joins the

cone at z = L forming an ice-cream-cone-like structure. The semimajor axis
is vertical and 1.5 times the semiminor axis. The second initial boundary
is the first expanded by 10 percent in the R direction.

d. Discretization--The charge distribution extends approximately
1/3(EgL/4E;) above the end of the conductor. The spacing of both
boundary points and charge segment endpoints is smaller at the top, with
the latter being about 4 times the former at z = L. The results, to be
presented below, were generated using 201 boundary points with 25 on the
head (above z = L) and 80 charge segments.

e. Implementation--The algorithm described above was implemented in a

highly vectdorized Fortran computer code requiring approximately a half
second of CRAY-1 CPU time per iteration.
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3. RESULTS

Since the length of the conductor scales completely out of the problem,
we are free to arbitrarily fix it. The problems here all were solved with

L = 300 m, a representative length for a nuclear device lightning stroke at
30 ms after the detonation.

The avalanche boundary is shown for Eo/E5 = 0.001, 0.002, 0.005,
0.01, 0.02, and 0.05 in Figures 6, 7 and 8. In each of those figures (a)
shows the boundary below the top of the conductor with the axial scale com-
pressed greatly relative to the radial scale, and (b) shows the boundary
near the top of the conductor with equal axial and radial scales. The
radial scale on (a) and both scales on (b)‘change from figure to figure;
the size of the avalanche region increases with increasing E,/Ez. Note
that, except in the region just below the head, n is well approximated by
ﬁ; so Equation 32 gives a quite satisfactory approximation for the current.

The numerical results are given in Table 1. The current given here is
determined from Equation 29 using gq = 2.6 x 10-5 mho/m and Ey =
2.1 x 106 y/m. Thus, the current shown is 96 A/m2 times the area. The
field error shown is the maximum difference of the magnitude of the field
E=-vy-2Z from 1 at any point (rj,zj) along the boundary, excepting
the bottom point. It is the maximum relative error in satisfying the field
boundary condition. The potential error is the square error in solving
Equation 35 divided by the sum of the squares of the right-hand side of
that same equation, which is a measure of the relative error in satisfying
the potential boundary condition. There is no error in satisfying Equation
33 since our solution is a sum of exact solutions to these equations.

Longmire (unpublished) has shown that the area of the avalanche region
boundary should be approximated by an expression of the form
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Figure 6. Avalanche region boundary for EO/Ea = 0.001, 0.002, 0.005.
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Figure 7. Avalanche region boundary for EO/Ea
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Figure 8. Avalanche region boundary for EO/Ea = 0.05.
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TABLE 1. NUMERICAL RESULTS

Eo/Ea Area Current Radius of Head Field Error Potential Error
2
(m™) (A) (m) (%) (%)
0.001 28.9 2,800 0.0830 2.0 0.17
0.002 62.8 6,100 0.174 2.0 0.14
0.005 178.0 17,000 0.464 0.7 0.09
0.010 398.0 38,000 0.979 0.2 0.05
0.020 907.0 88,000 2.08 0.1 0.05
0.050 2820.0 272,000 5.72 0.1 0.05
nL2E [,
Area = (34)
C1 - C2 zn(Eo/Eé

Figure 9 shows the values of (Eo/Ea)/Area versus EO/Ea from Table 1 as dark
circles on a semilog plot. Also shown is a linear fit to those results
which gives

2
mb EO/Ea

Area = ToERT = T.I78 A (T, /E) -

This fits the results within one-half of one percent for E,/E; from

0.001 to 0.02. Figure 10 shows a similar plot of (Eq/Ez)/(Radius of
Head) from which

- L(E,/E,)
Radius of Head = T7973-0.238 an(E,/E, (36)
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IV. GROWTH OF THE DISCHARGE

We shall now discuss in a qualitative way the mechanisms of growth of
the conducting channel. Quantitative calculation of the growth rate is
presented in the remaining sections of this report.

Our supposition is that the tip of the conducting channel grows upward
by Joule heating of the air just above the tip to a temperature of the
order of 1 eV, at which point it becomes thermally ionized, so that a large
electric field is no longer needed to maintain a high electron density and
conductivity. We shall examine the Joule heating rate below in a typical
case.

We also need to explain why the tip remains sharp as it grows upward,
rather than become bulbous (which would reduce the Joule heating rate).
The reason is the parallel path Joule heating instability; if two (or more)
resistors in parallel are driven by a fixed total current, and if the
resistance decreases with increasing temperature, then one resistor will
become very hot and carry all the current. It is reasonably evident that
this instability will make the growing tip (and the channel) as small in
diameter as possible, with the smallness limited only by heat conduction.

Let us now examine the Joule heating rate, assuming that the electric
field is Ea = 2.1 x 106 V/m. Taking the ambient field E0 = 3.7 x 104 V/m
and assuming the channel height h = 334 m, we find from Equation 36 the
radius of the envelope head,

R=2m (37)
The current density at spherical radius r from the tip is therefore

2
R 400 ,, 2
J=oqf, 7" A/m (38)
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and the Joule heating rate is

9
_ 10 3
P=JE, = z W/m (39)

The energy required to heat air to a temperature of 11600 K (1 ev) is
7 3 .
Q=4x10" J/m” at normal density (40)

If the radius of the tip is a and the growth rate is v (m/s), then we must
have

Pa3 ~ Qazv
or
Pa ~ Qv (41)

From Equations 39 and 40, this becomes

9
lg— ~ 4 x 107V (42)

Taking the observed v = 105 m/s gives

9
a=—10 — =25x10tn (43)
4 x 10

This may seem like a very small radius. However, it is substantially
larger than the minimum radius allowed by heat conduction. The mean free
path of a molecule in air is
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A~3x107m (44)

and the thermal speed at a temperature of 11600 K (1 eV) is

u=3x10° m/s (45)

Note that the observed growth speed v is much larger than the thermal speed
u,

\4
> = 30 (46)

This means that the growth is supersonic, and neither molecular diffusion
nor hydrodynamics can play a strong role in the growth of the tip. We
presume that either electronic or radiative heat conduction limits the
smallness of the tip.

It appears that our model can account for the observed growth rate of
the discharges. The theory of the tip follows in subsequent sections.

Finally, we note that if a is known, Equation 42 determines the growth
speed,

2,2
P JEaa i ooEaR (47)
Q Q Qa

R depends on Ey and h through Equation 36.
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V. THE REGION NEAR THE TIP

After developing a suitable basis for the macroscopic behavior of
nuclear lightning we can concentrate on the region within several centi-

meters of the tip. At a radius of about 2 cm, the electron density becomes

high enough that dissociative electron-ion recombination becomes more
important than attachment and the electric field rises until a balance is
obtained between avalanche and recombination. As we approach the tip, the
Joule heating of the air by the conduction current causes dissocation of
the positive ions so that the dissociative recombination can no longer
occur and the electron density increases rapidly, combined with a decrease
in the electric field. At this point, the air within a few tenths of a
millimeter of the center line of the discharge has been heated to well

above 11600 K (1 eV) and thermal ionization is sufficient to keep the elec-

tron density high even though the electric field becomes small.

The two-dimensional variation in the conductivity near the tip requires

us to simultaneously solve the air chemistry equations, thermal rate equa-

tions and the electric field, which is determined by the steady state con-
tinuity equation

E N TS >
Ved=VegE=0 (48)

In order to use a finite difference grid with very small cells where
the Joule heating of the air is important and conserve computer resources
by using large finite difference cells elsewhere, the equations are trans-
formed into a frame moving upward so that the "tip" of the discharge
remains stationary in the moving frame. Convective derivatives resulting
from this transformation are very important in the thermal rate equations.
Hydrodynamic effects are unimportant near the tip because the tip growth
rate is much larger than the thermal speed of the molecules.
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The air density is calculated from a three species model with electrons
and positive and negative ions, with rate coefficients corrected for dis-
sociation. Physical processes included in the air chemistry model include:

1. Avalanche, (collisional ionization),
2. Dissociative (two body) attachment,
3. Ion-ion and electron-ion recombination,

4. Thermal detachment and detachment by collisions with free elec-
trons.

Physical processes in the thermal model include:
1. Joule (ohmic) heating

2. Separate calculation of molecular vibrational energy density
and energy transfer to the thermal pool,

3. Radiative cooling.

These processes are used with a reduced (molecular vibrational energy
removed), complex (internal energy and pressure contributions of ionization

and dissociation included) equation of state to determine the gas tempera-
ture.

The flow of conduction current is calculated by solving the continuity
equation on a prolate spheroidal mesh with the air chemistry and thermal
equations (which determine the conductivity variation in space and time).
The boundary conditions on the current are determined by the electric field
and total current in the avalanche region, as prescribed in the previous
sections. The calculational mesh is centered on the moving tip and the
equations are allowed to evolve in time until equilibrium conditions are
reached. There is only a narrow range of tip propagation velocities
centered around 1.2 x 109 m/s for which a steady state solution is

approached.
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The next section deals with a one-dimensional code which was written to
gain an understanding of the air chemistry processes and examine numerical
methods for solving these equations which involve rate coefficients dif-
fering by many drders of magnitude. In this code, the conduction current
is prescribed to have a 1/r2 convergence towards the tip so that no solu-
tion of the steady state continuity equation is required.

Section VII contains a description of the extension of the code to two-
dimensions in prolate spheroidal coordinates. The two-dimensional air-
chemistry code is also integrated with a two-dimensional solver of the
current continuity equation so that the currents and electric fields are
determined self-consistently. Finally, in the last section, the results of
the studies of the tip growth are discussed.
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VI. ONE DIMENSIONAL CODE

To provide a test bed for various air chemistry options and numerical
methods a one-dimensional code modeling a narrow cone above the tip of the
discharge was developed. Spherical geometry and a fixed converging current
density of 400/r2 A/m2 were used. The air chemistry and thermal equa-
tions were allowed to develop and determine the conductivity, electric
field and heating rates. Chosen reactions of the air chemistry are
described below.

1. CURRENT

A fixed, radially convergent, current was used in the one-dimensional
code so that it would not be necessary to solve the continuity equations
simultaneously with the air chemistry and thermal rate equations. This
limits the applicability of the one-dimensional solution to radii beyond
about 3 x 10-4 m. Inside this radius, the air is thermally ionized and
the current flow becomes primarily vertical rather than radial.

Estimated electronic and ionic conductivities are

oy ~ 32 x 1072 s/m

o, ~ 1.4 x 107° S/m

-5
Oyor ~ 4:6 x 1077 S/m (49)

The vertical electric field can be estimated assuming Eg >> Ep. From
Reference 2

E, ~ 3.7 x 10* v/m (50)
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With an avalanche electric field of

E, = 2.1 x 10° V/m (51)
the radius of the avalanche region around the tip can be obtained from Equ-
ation 36. For a height of 334 m, the avalanche region radius is 2 m and
the total current in the avalanche region is

—
1]

2
onr oEa

2400 A (52)

and the current density is 400/r2 A/m? with r in meters
2. AIR CHEMISTRY

The choices available for the particular set of reactions used in the
description of the air chemistry are far ranging. Examples of previous
calculations range from two species and one reaction to over 100 species
and 500 reactions. As discussed in the introduction to this section, a
one-dimensional code with a spherically converging current density of
400/r2 A/m2 was written to investigate the electronic and chemical
reactions. The various reactions were followed through the rate equations
to develop the appropriate species populations for a steady state solution,
for a gaiven velocity of tip growth. The reactions used are described
below along with methods used for calculating them. While the rate con-
stants show some time dependence at early times (Refs. 4 and 5), this vari-
ation was ignored for simplicity and becuase the time scales are somewhat
shorter than those considered here. Populations of three charged species,
(i.e., electrons, negative ions and positive ions) were tracked. This
choice is consistent with the work of E. Marode's group (Ref. 6), and that
of Gallimberti (Ref. 7) who have studied various discharge mechanisms. The
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choice does not allow complete consideration of the effects of dissociation
or variations in ionization energies or cross sections between different
molecular species in air.

These three species are allowed to interact through the following
processes. These results represent best values found for the particular
reactions.

a. Attachment

Formation of negative ions at high electric fields is primarily due to
the process of dissociative attachment. For the three body attachment rate
(Ref. 8):

0.62 + 800 EZ
8 * 0

3.2 2
1 + 10°ES| E (1+0.0367)]

-1
a3(s ) =10 173 (53)

and for the two body (dissociative) rate

1, g -42.3/E,

ay(s™7) = 1.22 x 10° e (54)

where Eg = 3.34 x 10-5 E, where E is the electric field in dry air at
atmospheric pressure in V/m. Dry air is assumed throughout. Finally, the
total attachment rate is

a = a, +ag (55)
Since the mechanism at the high electric fields near the tip is primarily

dissociative, the attachment rate is reduced by the fraction of ions which
have been thermally dissociated.
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b. Avalanche (Reference 8)

Electrons accelerated in large electric fields generate additional

electrons by collisions with neutral species. The rate used for that
mechanism is

8 b
G(S-l) = 507 X 10 Y

(56)
1+ 0.3 y2+5

where Y = 3.34 x 10-7 E, The rates for the curve fits for avalanche and
attachment were compared to recent experimental values reported by Phelps.*
The agreement is quite good as noted by the comparison in Figure 11.

c. Electron-Ion Recombination (Reference 6)
Assumed to have a constant rate
-13 m3

aei = 10

/s (57)

d. TIon-Ion Recombination (Reference 6)

This mechanism is assumed to be reduced by the gas temperature to 5/2
power.

) -6 2.5

where Ty = 300 K.

*Phelps, A. V., Private communication to C. L. Longmire, 1 December 1980.
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Figure 11. Two-body attachment rate and collisional ionization

rate as reported by Phelps (Private Communication)
and by Longley and Longmire (Ref. 6) compared.
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e. Detachment (Reference 9)

Negative ions detach electrons, which allows for an additional source
of electrons at high temperatures, primarily through collisions of negative
ions with gas molecules.

-19 12 16.2
D (s°1) = _8:97 x 1077 (3.53 x 10°° E/N)

eo 1+ 1.52 x 10°2° (3.53 x 1012 g/n)14+1

(59)

where E/N is in V-m2.
3. THERMAL BEHAVIOR
a. Energy Input

Gallimberti (Ref. 10) has described the way energy from an electric
field couples to a weakly ionized plasma. The electric field accelerates

the electrons and dissipates power, P=3-E into kinetic energy of the elec-
trons. That energy is transferred to the ions and neutral species by
inelastic and elastic collisions. The energy deposited in the gas is
initially partitioned into various forms of internal energy--translational,
rotational, vibrational, electronic exciations, dissociation and ioniza-
tion. Of these forms, all except the vibrational energy rapidly relax into
a thermal equilibrium with each other. The vibrational states come into
thermal equilibrium with the other forms of internal energy on a time scale
which cannot be ignored in the calculation--we are therefore led to con-
sider two temperatures for the gas. The first of these is the vibrational
temperature determined by the equation of state of the vibrational states
and the energy in the vibrational reservoir. The second is the "gas"
temperature which is determined by a reduced equation of state (the vibra-
tional degrees of freedom have been removed from the usual equation of
state) and the "thermal" reservoir which contains all the energy in the gas
except for that in the vibrational reservoir.
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The flow of Joule heating energy through the system is shown in Figure
12. A fraction of fy of this energy directly excites the vibrational
states, and the remainder goes into the gas thermal reservoir. The cal-
culations performed here use, for regions above the tip where Joule heating
is important,

fy = 0.56 (1-f,) (60)

where fp is the fraction of the gas molecules which are dissociated, as
determined by the gas temperature. This fraction is consistent with the
detailed calculations of Capitelli and Molinari (Ref. 11) who performed
detailed rate calculations of each of the vibrational states in molecular
hydrogen. Gallimberti (Ref. 10) used a value fy = 0.8 in his calcula-
tions of natural lightning leaders in air.

Rate equations for the collisional decay of vibrational states into the
thermal pool are given by Gallimberti (Ref. 10). These are:

ibi! —E> . 3. ) NV(TV) - wv(Tg)

= f
dt v Ty
and
W (Ty) - W, (T )
- fE.T_VY Vig
Sa = fTE J - (61)

g9

> >
where Ty is the vibrational temperature, Tg the gas temperature, E«J
the Joule heating rate, Sy is the rate at which energy is added to the
thermal pool, and Ty is the vibrational state decay time. Finally, the
equation of state used for the vibrational system is

Nev

i 3 (62)
e 9. 1
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Figure 12. Flow of heat through system.




where ey = 0.27 eV is a weighted average of the separation of the vibra-
tional levels of oxygen and nitrogen. The gas density is N and k is
Boltzmann's constant. A curve fit to Gallimberti's (Ref. 10) results is
used for the decay time Ty That curve fit is:

7 + -2.016

Ty = 6.779 x 10~ Tg (63)

where t is in seconds and Tg is in units of electron volts (11600 K).

As the gas is heated molecules thermally dissociate and transfer their
vibrational energy into the thermal reservoir. The thermal reservoir loses
energy by radiation. The gas is assumed to be optically thin and the rate
of loss of internal energy due to radiation is

5,4
3Q _ _ 8rk 4
T A Ty (64)

where Q is the gas internal.,energy, Tg the gas temperature, h Planck's
constant, k Boltzmann's constant, ¢ the speed of light, and kp is the
Planckian mean opacity, and is assumed to be the curve fit (Ref. 13)

5.14
T
9

k (Tg) = (65)
P79 14 0.0316 To"0

At this point we have established the need for and considered the behavior
of two energy reservoirs in addition to energy stored in the electrons, the
thermal and vibrational reservoirs, and the dynamic interplay between

them. Remaining is consideration of the cooling gas flow and the equa-
tions of state governing the various reservoirs.
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b. Gas Flow

As the tip propagates forward into a new region in space it meets new,
cooler air. This gas flow problem is properly handled in the gas and heat
flow continuity equations by the convective derivative term. For the gas
internal energy the continuity equation is

Mo g -, (66)

Since the flow of the gas (in the frame of the moving tip) is in the
opposite direction to that of the motion of the tip, Equation 66 becomes

3Q 3Q _
3t " V2 3z " Sa (67)

where vz is the tip velocity in the laboratory frame. This equation may

be coupled into the remaining equations and solved by finite difference
methods. However, the system evolves slowly. Since we are looking for a
steady state solution, the differential equation may be integrated under
steady state conditions (i.e., 3Q/3t assumed O in Equation 67) to derive an
equilibrium internal energy. The steady state internal energy is used
throughout for the gas temperature because its use greatly speeds conver-
gence of the calculations. The steady state internal energy is given by

zl
0y (2") %Z— | s (212 (68)
z outer

This form of accounting for gas flow is used for both the vibrational and
thermal reservoirs.

¢. Equations of State
There are now three temperatures to be considered, electron, vibra-

tional, and gas. Once the appropriate internal energy is established the
corresponding temperature is needed.
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The electron velocity distribution is considered to be solely deter-

mined by the electric field. A curve fit to results of Baum (Ref. 12) is
used.

T, = 2.98 x 1073()0+4 (69)

where E is in V/m. This temperature is used when considering reactions
which depend on collisions with electrons.

The equation of state for the vibrational states is given by
Gallimberti (Ref. 10) and stated earlier in Equation 62. For the gas, the
situation is more complex, since the contributions to the inernal energy
due to dissociation and ionization must be considered. A reduced equation
of state for a hot gas, (which has vibrational degrees of freedom removed)
is described by Plooster (Ref. 15). For this equation of state populations
of molecules, atoms, singly ionized, and doubly ionized species are cal-
culated using the Saha equation. Dissociation and ionization energies are
computed from weighted averages of the values for nitrogen and oxygen. For
reference, the constants used are given in Table 2. The fraction of mole-
cules which are dissociated, Ag, is

>
n

2/[1 + (1428 ) /2]

where

B = CopT'l/zexp(Io/RT) (70)

The fraction of atoms which are once ionized, Aj, is

>
1

1 = 2/[1+ (1+281)1/2]

where

3/2

@
|

= CoT "> Cexp(1,/2RT) (71)
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TABLE 2.

(AFTER PLOOSTER!S).

PHYSICAL CONSTANTS AND PARAMETERS USED IN COMPUTATIONS

Symbol Specific second ionization Value Units
P Gas constant 2.87096 J kg-! k-1
Iy Specific dissociation 2.92013 x 107 J kgt
energy
L Specific first ionization 9.53764 x 107 J kg-!
energy
I, Specific second ionization 2.05472 x 108 J kg-!
energy
CO Constant in Saha equation 0.331131
for dissociation
Cy Constant in Saha equation 1.09763 x 107
for first ionization
C, Constant in Saha equation 2.06082 x 107
for second ionization
T0 Ambient temperature 300 K
Po Ambient pressure 1.01325 x 10° N m-2
°o Ambient density 1.17681 kg m-3
The fraction of singly ionized atoms which are doubly ionized is
A, = 2/[1 + B, + (1+68,+8,7) /2]
= -3/2
B, = CopT ™ “exp(1,/2RT) (72)
The internal energy of the gas is then computed from:
Q = p(RT[5(5+A,) + 3(A;*A,)] + AT, + ATy + AL,) (73)
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where

p is the gas density
I4(i=0,2) are the energies of dissociation or ionization
R is the gas constant

T is the gas temperature (Kelvins if the values in Table 1 are
used).

It is assumed that the reactions take place serially, that is, all
molecules are completely dissociated before ionization begins, all dissoci-
ated molecules are ionized once before second ionization begins. This
technique allows two-species solution of each Saha equation rather than
simultaneous solution of all species. Further, local thermodynamic equili-
brium is assumed for calculation of the equation of state. Each of the
Aj are calculated from the Saha equation and are therefore complex func-
tions of temperature. Finding the temperature for a known internal energy
density requires numerical solution of Equation 29. To minimize computa-
tion a table was generated and solutions to Equations 29 were found by
Tinear interpolation of table values. Comparison of this equation of state
for temperatures between 1200 and 12000 K with the perfect gas law and a
commonly used curve fit (Ref. 14) are shown in Figure 13.

4. SOLUTION OF THE CONTINUITY EQUATIONS

Using the above set of equations for the rate constants, the equations
of continuity may now be solved to calculate the populations of the three
species of charged particles. Each species obeys a continuity equation
assuming a constant growth velocity of the tip as did the thermal con-
tinuity equation and reflects the mobility in the electric field. The
three continuity equations are where the radial convection has been
neglected.

an an
e

ot~ Vz3z Sy * Gne - aeinenp * Deonn - ang (74)
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Figure 13. Comparison of various equations of state.
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an an
Ly P - -
at Yz 32 SY + Gng 2iiM"p %eifeMp (75)
on on
n n_ _ _
5t - Y23z - Y " Peo™ 455" "p (76)

where, Ngs np, and n, are the respective electron, positive ion, and nega-
tive ion densities and the rate coefficients are as defined above. The

source Sy is the ion source from the background radiation. This source
of electrons is negligible for the channel once established.

The geometry of the one-dimensional code is a narrow cone in spherical
coordinates as shown in Figure 14. Spherical coordinates are necessary to
insure the 1/r2 focusing of the current. It must be noted that the
1/r2 terms that would normally occur in the convective derivative do

Current Focusing

1/r2
Velocity v, (17r2)

of Grid

Figure 14. Geometry used in one-dimensional
code.
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not occur since the gas flow velocity field is uniformly z-directed and
does not focus as does the current onto the tip of the lightning channel.
These equations may be solved by explicit finite difference techniques.

a. Conductivity

The conductivity of the gas, which provides coupling between the elec-
trical part of the problem and the air chemistry, is given by
Gg = (neue + npup + nnun)e (77)
where Mo and ”p are the respective ionic mobilities, Me is the electronic
mobility and e is the electronic charge. The mobilities of the heavy ions

are relatively constant, much smaller than the electron mobility and are
approximated by (Ref. 6)

=
n

8 x 1017/Ng me V-5

and

H

5 = 6.7 x 1017/Ng me/V-s (78)

Since the conductivity is more sensitive to the electronic mobility it is
calculated by more precise means. Curve fits to data provided in a review
paper by Dutton (Ref. 17) provided the following estimates for the drift
velocity of the electrons, for resistivity due to collision with neutral
atoms alone. The Dutton values have been augmented using the Landshoff-
Spitzer plasma electrical conductivity relation to account for the added
resistivity due to collisions of electrons with ions.

1 E E ~3/2
s = = +65.3n_ InA T
Me  Vde 3.73 x 10°(g/N)0-707 e e
for E/N < 100 Tq
and
1 E E -3/2
e 0973 * 65.3 0, Tn A T (79)

e Yde 1.63 x 105(E/N)
for E/N > 100 Tq
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where E/N is in T (10'% von?), v is in m/s and T, is in units of 11600 K
and

3,373 1/2

€

A = lgﬂ on e (80)
e e

k is the Boltzmann constant, To is the electron temperature, me is the

electron mass and ng is the electron density.
b. Linearized Calculation of ne and E

Early in the study it became clear that stability of this coupled set
of nonlinear differential equations was going to be a problem. The reason
for this is that the electron density is a very sensitive function of the
electric field--the avalanche and attachment rates are much larger than
other rates involved in the caicu]ations. To improve the stability at that
point in the calculation an implicit linearized solution to the equations
are inserted. In functional form Equation 74 may be writtén

5{:—- = f(ne,E) (81)

and since the electric field is a function of conductivity which is also a
function of ng and E, the electric field may be expressed as

E = g(n,E) (82)
In the following, the new value of a quantity has superscript n and the
corresponding previous time step (or old) values have superscript o. Dif-
ferences between the two have a preceding A (e.g., Ang). Expanding Equa-
tions 81 and 82 in a first order Taylor series in ne and E results in the
following linearized equations in Ang and AE.
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_ ae(£0 of , g of

an_ = At(f tan, oo+ AE 55) (83)
and

AE = AE %%—+ An %%- (84)

These two equations are then solved simu]tanéously for the appropriate

Ane and AE. It became necessary later, in some calculations, to limit AE
and Aneg to 20 percent of the old values, each time step.

c. Completed One-Dimensional Model

In the last few sections we have gathered those tools necessary to com-
plete the determination of species populations and other quantities as a
function of radius and time, as we approach the hot tip of the channel. As
a review, the calculation of the environment proceeds as in the flowchart
in Figure 15. Initial conditions are first specified with the avalanche
field value for E and consistent values for the charged particle den-
sities. The various temperatures are set to ambient values, since the code
is somewhat insensitive to them on the first time step.

The simultaneous solution of the linearized equations for ng and E is
then performed, followed by calculation of the rate coefficients as func-
tions of the newly calculated ng and E as well as the thermodynamic vari-
ables. After the new rates are established the continuity equations for
all three charged particle densities are advanced. It is important to
solve for all three, including ng, to maintain charge neutrality.

After the population of the various species is known along with their

mobilities, the gas conductivity and the ohmic heating rate Q may be cal-
culated.
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Current Density Specified as
-> A
J = 7 400/r2

Initial Conditions Determined

Tg = 300 K

T, = T

T =2 eV

< 6
E=2x10"V/m

ng = 1.69 x 10]6/r‘2 m™3
n, = 1020 m'3

n, = N +n

Simultaneous Solution

Repeat for Next Time Step

of "e’ E

Calculation of Rates
from Te ,ne,E,Te
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Figure 15. Flow chart of one-dimensional code.
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6 = oE2 (85)
The energy input to the system is then partitioned into the vibrational and
thermal reservoirs. The thermal reservoir is allowed to radiate as noted
in the section on thermal behavior. Internal energy of the gas is con-
verted to temperature via the equations of state. An equilibrium tempera-
ture is calculted using the new heating rate.

5. RESULTS OF ONE-DIMENSIONAL CALCULATIONS

Evolution of three important quantities to their equilibrium values as

a function of radius are shown in Figures 16, 17 and 18. 1In Figure 16 the
electron density is shown. Its variation from the original 1/r2 form is
not large. Gas temperature is the slowest quantity to evolve and generally
determines the total time to evolve to steady state. In Figure 18 the
electric field evaluation is shown. An important feature is the maximum of
the electric field near the tip. That maximum denotes the beginning of the
tip region and is an indicator used in determination of the tip velocity.

For these one-dimensional calculations a value of v = 105 m/s has
been assumed for the tip velocity. This value correspond to the observed
value of the discharges on the MIKE shot (Ref. 1). For the value of the

velocity the calculations reach a steady state value as noted in Figures
16, 17 and 18.
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VII. TWO DIMENSIONAL CODE

After it was determined that the one-dimensional test bed was working
properly and predicting the behavior close to the tip in a way consistent
with the basic physics of the regime, the test bed was expanded to two
dimensions and converted to prolate spheroidal coordinates. In addition,
the current was determined by a solution to Poisson's equation so that the
current could also adjust to the tip conditions. The prolate spheroidal
coordinates used for the axially symmetric tip is shown in Figure 19. Zone
sizes, as shown in the figure, were nonuniform and chosen to maintain maxi-
mum detail in the calculation near the hot tip.

1. SOLUTION TO POISSON'S EQUATION

Rather than specifying the current density as was done in the one-
dimensional test bed, the current density is determined so that it obeys

> .
Ved=0 (86)

since there is no net sink or source of charge (i.e., 3p/at = 0). Applying

Ohm's law and the definition of the static potential, ¢, Equation 86
becomes

v+ (oV) = 0 (87)

Except for the spatially dependent conductivity, this is just Poisson's
equation and this equation and Equations 74 through 76 may be solved
simultaneously using an iterative technique.

a. Solution Technique

Equation 74 may be expanded into prolate spheroidal coordinates (Ref.
18)
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9 2 ) ] 2 ]
3 (£°-1)a(g sn) 5§-+ 57 (1-n%)o(g.n) g% (88)
A mesh end is formed using coordinates g,n defined on an unequally spaced
grid £, nj. Within that grid a Tinearly centered set of difference
equations is formed by differencing Equation 88, where the potential at
coordinates £4, nj is expressed as

S WY PO 5 W It AT W Bl
Siel 7 By | M2 2 Si41 7 84o1
GRPRE E R R B )
i-1/2 2 (&5 - &5_1)
N 1 2(1-n2. ) Oij+1 T %45 ®ij+1 " ¢4y
T'lj+1 - nj_l J+1/2 2 nj+1 - nj
2 %ij Y 94j-1 %93 " %ig-1 ]
- z(l-nj-l/Z) 2 n =0 (90)

i~ Nj-1

At the centerline bottom half, £=1 and, i=I the limiting value at the cen-
terline must be used.

.+ .
S ¢ Rl © ¥ S
AE | 2 Ij I-1,3
1 2 91541 T 949 1417 01
+ n - N 2(1'“j+1/2) 2 n. - TN
j+1 J j+l J
g,. vt o.. G . = bo
2 1j I[j-1 "1j Ij-11 _
2(1'"j-1/2) ? 0 (91)

'ﬂj - 'ﬂj_l
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On the centerline top-half, n=1, j=J.

1 [2(g? Jq) Zi#1,0 %59 $iv1,9 7 $4
Eiv1 - 81 i+1/2 2 Eip1 ~ &y

2 %9 * %10 %49 T ®i-19

- 2085 _4,,)
i-1/2 2 Ei - Ei-l

o.., + 0.

id id-1 _

+ 2 ZATIJ (¢1J - ¢J_1)] =0 (92)

And finally at the last point, £=1, n=1, which is the center of the grid or
the tip of the channel.

(o1.1,0 * o1gd(opg - ¢11g) N (opg * o1g-1)(81g - ¢19.1)
AEI AT\J

=0 (93)

For boundary conditions the potential is specified around the outside of
the tip geometry and will be described in detail later.

The solution of the set of simultaneous linear equations is accom-
plished by the method of successive over-relaxation (Refs. 20 and 21). In
this method the matrix representing the above difference equations may be
solved by introducing a pseudo-time and allowing the system to relax to a

static equilibrium. In matrix form the "time dependent" solution may be
written

3+ > RN
ek 37 (94)
-

The equation & - 3 = §, may be reformed as

>
>
A

> >
e =g (95)

69




>
>
to that A' may be written

vy
—¥ ¥

> >
> >
+ L'+ U (96)

-> ->
—). . . I3 .+ 3 3 . -
where I is the unit matrlx, L' is a triangular matrix with zeros on and

above the diagonal, and U is a triangular matrix with zeros on and below
the diagonal. If a pseudo-time step (w) is assumed in an explicit form of
Equation 94 and a superscript p is used to denote the value of the quantity
at the pth time iteration then a method of solving Equation 94 is by
iteration of the equation

>
LRI GRS T (97)

In Figure 20 the particular form of the equations approximating Poisson's
equation on the mesh is evident. The potential at the central point is
only dependent on the potentials at the four corners, i.e., at the north, N

. .N .
M .C .E
. .S .

Figure 20. Local grid for Poisson's equation.

south, S, east, E, and west, W, points. For a particular sweep of the
grid, two of the points S and W, say, have been determined by the time the
equations for the central point C are solved. The updated points then form
a better approximation to the potential at those points and so should be
used. An improved equation then is

s S
3P -l U e (1 (98)
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For w < 1, this is the Gauss-Seidel iteration procedure. For » > 1 it is
known as the Successive Over-Relaxation method. For rectangular geometry,
there is an optimum value for w. However, for the prolate-spheroidal coor-
dinates in this problem a value had to be determined by trial and error

solution of a test problem for solution in the minimum number of itera-
tions. The results were

w=1 for 1st 7 iterations

and

€
1]

1.55 thereafter. (99)
b. Boundary Conditions
As noted earlier, the potential on the boundary was forced to a par-

ticular solution consistent with the results of Reference 3. To form the
boundary equations, Equations 90 were written in the form

955 = %j (100)
on the boundary. The values used are shown in Figure 21.
c. Current From the Potential
The current on the mesh was determined by:
J = oV (101)

and the total current found from the vector sum of the two orthogonal com-
ponents. In the center of the mesh a centered differencing scheme is used
with the value of the potential at the centralmesh point ignored. For the
boundary values, the nearest two grid points to the boundary were used in
noncentered form.
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2. CONVERSION OF THE AIR CHEMISTRY EQUATIONS TO TWO-DIMENSIONS

After the current is determined from the solution to Poisson's equation
the solution to the air chemistry problem near the tip proceeds in much the
same way as for the one-dimensional case. Conversion to two-dimensions is
aided by the fact that, with the exception of the convective derivatives in
the continuity equations, all of the physical interactions are local. For
example, the reaction rates at a given mesh point depend only on the elec-
tric field and temperature at that point.

The continuity equations vary from the one-dimensional case but are
similar to each other. For electrons, Equation 74 in one-dimension
becomes, since v is -Z directed

an 2v
e Y4 ) 2 9 2
= 57 (E°-1)an_ + =— [(1-n")gn ]}
at a(EZ_nZ) {3§ e an e

SY + Gne - aei"enp + Deonn - ang (102)
where a is a parameter in the coordinate system such that a/2 is the height
of the tip. The remaining variables are as they are defined in the one-
dimensional case. Continuity equations for np and np follow in the

same form,

3. SOLUTION OF THE TWO-DIMENSIONAL EQUATIONS
A11 of the parts of the two-dimensional model have been described. All
that remains is to review the way these parts fit together to model the

behavior of the tip region. The flowchart in Figure 22 shows the sequence
of calculation.
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Initial Conditions From
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Equations for ne,np,nn

Heating Rate Determined
and Partition into
Energy Reservoirs

Calculation of W, and Q

Repeat for Next Time Step

frog r €9
.._1.. in
Qeq = VZ Q dz
out

Calculation of

Te’ Tv’ Tgas

from Equations of State
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Figure 22. Flow chart of two-dimensional model.
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Initial conditions are provided by separate application of solutions to
the 1-D model using 1/r2 fixed current for the region ahead of the tip,
1/r fixed current along the sides, and a smooth variation between the two
extremes. The conductivity from the 1-D models is then used as input to
calculate the initial current density throughout the region of the tip. In
the same way as in the 1-D solution, the local air chemistry near the tip
for the 2-D model is determined from that current density. That is ng
and E are found simultaneously from the implicit solution described in the
1-D model. Al1l rate coefficients are then found locally from Teqs E, and
Te and inserted into the continuity equations. New particle densities
for the three species result from solutions to the three appropriate con-
tinuity equations and are then used in the determination of a new conduc-
tivity profile. A new conductivity allows computation of the heating rate,
less radiation losses, and therefore the internal energy in the vibra-
tional, thermal, and electronic reservoirs. Calculation of the equilibrium
internal energy is accomplished by the same z-path integrations as was used
in the one-dimensional calculation. Various equations of state are used to
calculate the temperatures associated with those internal energies. How-
ever, the line integration is made much more complex by the deviation of
the constant coordinate lines in prolate spheroidal coordinates from a z =
constant surface.

Finally, the conductivity profile is used to generate a new current
density and the entire process is repeated. Time histories of all the
thermodynamic variables, rates, and populations are then generated.

4. RESULTS OF 2D CODE

Although a run which was stable for indefinite run times was never
achieved, that stability is very sensitive to the magnitude of the velocity
of propagation of the tip. The most stable velocity was 1.2 x 105 m/s in
agreement with the observed discharge seen on MIKE (Ref. 1).
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Further, it was found that the two dimensional calculations lead to a
tip which remains sharp, as observed, rather than expanding into a bulbous
form and dissipating. The shape of the sharp temperature profile may be
seen in the contour plot of temperature in Figure 23. The high thermal
gradient is evident near the core. This thermal gradient leads to hydro-
dynamic expansion of the channel at some distance below the local diagram
in Figure 23. Figure 24 is the analogous contour plot for electric field
magnitude. The electric field reaches a maximum around 40 kV/m and rapidly
goes to a very small field near the highly conducting core.
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CONTOUR PLOT OF ELECTRIC FIELD

‘VVV""Yﬁ'j'WWIUIIl'f""ﬁv

« & &

Z-axiS (CN)
= b5

s

&

A A ‘4 4 4 I’y l A a4 4 A l

1 .0€+00
1.0€+01
10€+02
10€+03
1.0E+04
3.0€ +04

Rallnl -1 B

AllAlAll AAAAlAAA_AlAAA

“l‘l,ll“Al‘lll'll

4 4 A A

°'°0-0

Figure 23.

1.0 1.5 20
R-AXIS (CM)

Contour plot of the interior field.
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The field in the

highly conducting region near the tip is quite small.

Contours are in units of 100 V/m.
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CONTOUR PLOT OF TEMPERATURE
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‘showing the narrow tip formation. Contours are in
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VIII. CONCLUSIONS

The tip model discussed in this note represents a model of the charac-
teristics of a nuclear lightning discharge. While this model is consistent
with many of the observed details of nuclear lightning, natural lightning
and laboratory sparks, many questions remain unanswered.

The air chemistry in the model is simplified and glosses over a number
of important details of real air. For example, consideration of additional
species in the air chemistry model would allow treatment of the different
ionization, dissociation and attachment potentials of nitrogen and oxygen
as well as species such as NO formed by atomic recombination. Chemical
reactions in the air, particularly those involving vibrational states take
time. Time dependent rate equations or complete solution of the master
equations for the populations of the vibrational states should be accom-
plished to correctly treat dissociations.

The model presented here is steady state, while the actual nuclear
lightning distance growth may well occur as a series of short bursts--the
photographic evidence is not conclusive on this point. Some of the dis-
charges observed split into several branches and there presently is no
theory of this phenomena. If this bifurcation were extensive, it would
lead to a substantial increase in the current at the base of a discharge.
Further study of the stabiity of the solution for the discharge tip is
extremely desirable.

A final subject in which further study would appear to be useful is the
channel behind the tip. The model presented in this report assumes that
the axial electric field within the discharge is much less than the ambient
vertical electric field. The behavior of the channel behind the tip is
determined by radiation transfer and hydrodynamic expansion which are rela-
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tively unimiportant in the tip growth. The channel behavior is simplified,

however, because the electron and ion densities should be in thermal equi- &
1ibrium so that it would not be necessary to solve electronic rate equa- -
tions. Based on experience with long sparks in air, the high currents are i

expected to produce a low channel resistance per unit length, but the simu-
lation of channel behavior would yield a luminosity which could be cor-
related with photographic evidence.

In summary, the model presented here predicts a sharp, self-sustaining
tip for the nuclear lightning discharges which propagates with the velocity

observed photographically and provides the first quantitative solutions for
the discharge currents.
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APPENDIX A
POTENTIAL AND FIELD USED AS KERNEL IN POTENTIAL SOLVER

The potential at (r,z) due to the charge distribution shown in Figure Al is a

sum of the potential due to the four segments with 1inear charge density. Each
of those has the form

\
1 [ (At + B)dE

4 (e o)

v
_ A [ - 2)d (Az + B) d
0 2(g . g 5 ﬁneo _[ 2 : 2\* (A1)
J (r + (&-2) ) d (r + (§-2) )

These integrals are straightforward

M 2 oyt
Hy(r,2z,u,v) = [ dg A (r * (v-2) )% tv-z (A2)
2 12 2 -\ -
J (r + (&-2) ) (r + (u-2) ) +u -z
[ - 2\t (.2 2\?
Hz(r,z,u,v) = (£-2)df L~ (rz + (v-2) ) - ( + (u-2) ) (A3)
(rz + (E-Z)z)

e

Summing up the four contributions yields
¢(r,z,a,b,c) = 1%33»35—%—3 [(z-a)Hl(r,z,a,b) + (z+a)Hy(r,z,-b,-a)
+ Hy(r,2,a,b) + Hy(r,2,b,a) |
- E'%;E [(z-c)Hl(r,z,b,c) + (z+c)H1(r,z,-c,-b)

+ Hy(r,z,b,c) + Hz(r.z,-c,-b)] z (A4)
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