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Abstract

We study fundamental issues in electromagnetic scattering the-
ory, with an emphasis on pole behaviors of a lossless sphere arising
from the singularity expansion method (SEM). We use Mie Theory to
solve the electromagnetic scattering problems for spheres with lossless
boundary conditions and an incident plane wave. We show that for
certain lossless impedance boundary conditions there exist second or-
der poles. Our general procedure to directly construct lossless sheet
impedance boundary conditions which will produce high order poles
is discussed as well as the difficulties to which it leads. Foster’s The-
orem is imposed on the impedance condition for the electromagnetic
scattering to ensure that a lossless scattering problem is obtained.
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1 Introduction

The singularity expansion method (SEM) [1] was introduced in 1971 as a
way to represent the solution of electromagnetic interaction or scattering
problems in terms of the singularities in the complex-frequency (s of two-
sided-Laplace-transform) plane. Particularly for the pole terms associated
with a scatterer (natural frequencies), their factored form separates the de-
pendencies on various parameters of the incident field, observer location,
and scatterer characteristics, with an equally simple form in both frequency
(poles) and time (damped sinusoids) domains.

Although in practice, we only encounter the first order scattering poles,
an interesting question concerning the SEM concerns the existence of higher
order scattering poles. Carl Baum showed that 2nd order poles can be con-
structed for a transmission line problem [4]. Since the transmission line
problem is finitely dimensioned, we can actually use the scattering matrix to
find the poles (i.e. the eigenvalues). However, in general the problem is in-
finitely dimensioned. Thus, we consider a classical model problem, scattering
from a sphere with an incident plane wave. We compute the exact solution
using Mie Theory. In [1], Carl Baum showed that for a perfectly conductor
sphere, there only exist first order poles. Sancer also proved some similar
results for a general shape perfectly conductor scatterer in [5]. Those works
give a closer simulation of the electromagnetic-scattering case and contribute
to the discussion concerning 3-dimensional electromagnetic scattering from
lossless, as well as perfectly conducting targets.

In [3] we show that for the acoustic scattering problem high order poles
can be constructed for certain impedance boundary conditions, while for
hard and soft spheres there only exist first order scattering poles. The gen-
eral procedure to construct arbitrary order poles is also discussed. In this
paper, we show that the electromagnetic scattering from a surface impedance
loading sphere can be reduced to the acoustic scattering case (scalar wave
equation). Thus, all the results from the acoustics scattering in [3] will follow.
We also show that there exist 2nd order poles for electromagnetic scattering
from a sheet impedance loading sphere. Foster’s Theorem is imposed on the
sheet impedance condition to ensure the scatterer is lossless. The notes we
mentioned above are available at [7].
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2 Scattering from a lossless electromagnetic

sphere

2.1 Introduction

We are considering the problem of a plane wave incident on a sphere (with
perfectly conducting surface and lossless sheet impedance loading respec-
tively) as illustrated in Figure 1. An E wave has been chosen as an incident
electromagnetic plane wave propagating in ~11 direction. The scattered so-
lution as well as the surface current density can be written explicitly using
vector spherical harmonics. In the case 1, a perfectly conducting surface,
we will briefly summarize the work done by Carl Baum, which shows that
there exist only first order scattering poles. In the case 2, a lossless sur-
face impedance loading sphere, we can derive the same results as those in
the acoustic scattering. In the case 3, a lossless sheet impedance loading
sphere, there exist 2nd order scattering poles for some mathematically cho-
sen boundary conditions. Foster’s Theorem is enforced on the impedance
function Ẑs(s) to guarantee it is a realizable physical boundary condition.

2.2 Formulation of the electromagnetic scattering prob-
lem

Define a set of orthogonal (right-handed) unit vectors by

~11 = sin(θ1) cos(φ1)~1x + sin(θ1) sin(φ1)~1y + cos(θ1)~1z

~12 = − cos(θ1) cos(φ1)~1x − cos(θ1) sin(φ1)~1y + sin(θ1)~1z

~13 = sin(φ1)~1x − cos(φ1)~1y

As shown in Figure 2, ~11 is the direction of propagation and ~12 and ~13 are mu-
tually orthogonal unit vectors, each orthogonal to ~11 to indicate the polariza-
tion of the electromagnetic fields in the incident plane wave. For convenience
~12 is chosen in a plane parallel to ~11 and the z axis (E or TM polarization if
the electric field is parallel to ~12) while ~13 is parallel to the x, y plane (H or
TE polarization if the electric field is parallel to ~13). In free space, electro-
magnetic plane waves have both electric and magnetic fields orthogonal to
~11. Thus only ~12 and ~13 are concerned. This removes the ~L functions (details
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Figure 1: Spherical coordinate system with EM incident wave
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Figure 2: Spherical coordinate system with polarization
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are shown later) in the expansion (plane waves have zero-divergence fields).
We can use the relations between Cartesian and spherical coordinates

x = r sin(θ) cos(φ)

y = r sin(θ) sin(φ)

z = r cos(θ)

~1x = sin(θ) cos(φ)~1r + cos(θ) cos(φ)~1θ − sin(φ)~1φ

~1y = sin(θ) sin(φ)~1r + cos(θ) sin(φ)~1θ + cos(φ)~1φ

~1z = cos(θ)~1r − sin(θ)~1θ

to express the incident-wave unit vectors in terms of (θ1, φ1) and (θ, φ) as

~11 = [cos(θ1) cos(θ) + sin(θ1) sin(θ) cos(φ− φ1)]~1r

+ [− cos(θ1) sin(θ) + sin(θ1) cos(θ) cos(φ− φ1)]~1θ

+ [− sin(θ1) sin(φ− φ1)]~1φ

~12 = [sin(θ1) cos(θ)− cos(θ1) sin(θ) cos(φ− φ1)]~1r

− [sin(θ1) sin(θ) + cos(θ1) cos(θ) cos(φ− φ1)]~1θ

+ [cos(θ1) sin(φ− φ1)]~1φ

~13 = − sin(θ) sin(φ− φ1)~1r

− cos(θ) cos(φ− φ1)~1θ

− cos(φ− φ1)]~1φ

Having the direction of incidence and two polarizations expressed in spher-
ical coordinates we can go on to express the response to some delta plane
wave functions. For an incident delta function plane wave we need spherical
harmonics and vector wave function in which to express the expansion in
spherical coordinates. In spherical coordinates we have the common differ-
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ential operators as

∇F = ~1r
∂

∂r
F +~1θ

1

r

∂

∂θ
F +~1φ

1

r sin(θ)

∂

∂φ
F

∇ · ~F =
1

r2

∂

∂r
(r2Fr) +

1

r sin(θ)

∂

∂θ
(sin(θ)Fθ) +

1

r sin(θ)

∂

∂φ
Fφ

∇× ~F = ~1r[
1

r sin(θ)

∂

∂θ
(sin(θ)Fφ)−

1

r sin(θ)

∂

∂φ
Fθ]

+~1θ[
1

r sin(θ)

∂

∂θ
(sin(θ)Fr)−

1

r

∂

∂r
(rFφ)] +~1φ[

1

r

∂

∂r
(rFθ)−

1

r

∂

∂θ
Fr]

∇sF = ~1θ
∂

∂θ
F +~1φ

1

sin(θ)

∂

∂φ
F

∇s · ~F =
1

sin(θ)

∂

∂θ
(sin(θ)Fθ) +

1

sin(θ)

∂

∂φ
Fφ

∇s × ~F = ~1r[
1

sin(θ)

∂

∂θ
(sin(θ)Fφ)−

1

sin(θ)

∂

∂φ
Fθ] +~1θ[

1

sin(θ)

∂

∂φ
Fr]

Spherical Harmonics

The scalar spherical harmonics can be written as

Yn,m,eo(θ, φ) = P (m)
n (cos(θ))

{
cos(mφ)
sin(mφ)

}
where P

(m)
n (x) is the Legendre function defined as

Pm
n (x) = (−1)m(1− x2)m/2 d

m

dxm
Pn(x), Pn(x) = P 0

n(x) =
1

2nn!

dn

dxn
(x2 − 1)n

Vector spherical harmonics are defined as follows

~Pn,m,p(θ, φ) = Yn,m,p(θ, φ)~1r

~Qn,m,p(θ, φ) = ∇sYn,m,p(θ, φ) = ~1r × ~Rn,m,p

~Rn,m,p(θ, φ) = ∇s × ~Pn,m,p(θ, φ) = −~1r × ~Qn,m,p

They also are mutually orthogonal in an integral sense on the unit sphere.
The spherical scalar wave functions are defined as

Ξ(l)
n,m,p(γ~r) = f (l)

n (γr)P (m)
n (θ, φ)

7



where f
(1)
n (γr) = in(γr) , f

(2)
n (γr) = kn(γr) are modified Bessel functions.

They satisfy the Wronskian relation

W{λin(λ), λkn(λ)} = λin(λ)[λkn(λ)]′ − [λin(λ)]′λkn(λ) = −1

γ = [sµ(σ + sε)]1/2 with µ, σ, ε are permeability, conductivity, permittivity,
respectively. s is the variable of the two-sided Laplace transformation. Co-
efficients times the scalar wave function Ξ

(l)
n,m,p(γ~r) when summed over all

possible indices, satisfy the scalar wave equation. For each function we can
write in operator form as

[∇2 − γ2]Ξ(l)
n,m,p(γ~r) = 0

From the solution of the scalar wave equation one constructs as usual the
solutions of the vector wave equation of three kinds.

L̂(l)
n,m,p(γ~r) = 1

γ
∇Ξ

(l)
n,m,p(γ~r)

M̂ (l)
n,m,p(γ~r) = ∇× [~rΞ

(l)
n,m,p(γ~r)]

N̂ (l)
n,m,p(γ~r) = 1

γ
∇× M̂ (l)

n,m,p(γ~r)

Note that all three kinds of vector wave functions satisfy the vector wave
equation in Laplacian form which we can summarize as

[∇2 − γ2]


L̂

(l)
n,m,p

M̂
(l)
n,m,p

N̂
(l)
n,m,p

 = 0

We can also write a curl curl wave equation for only the second and third
kinds of vector wave functions as

[∇×∇+ γ2]

{
M̂

(l)
n,m,p

N̂
(l)
n,m,p

}
= 0

The three kinds of vector wave functions have some interrelations as

M̂ (l)
n,m,p(γ~r) = −γ~r × L̂(l)

n,m,p(γ~r)

M̂ (l)
n,m,p(γ~r) = − 1

γ
∇× N̂ (l)

n,m,p(γ~r)

N̂ (l)
n,m,p(γ~r) = 1

γ
∇× M̂ (l)

n,m,p(γ~r)

8



It is also useful to write them as

L̂(l)
n,m,p(γ~r) = [f (l)

n (γr)]′ ~Pn,m,p(θ, φ) + [f (l)
n (γr)] ~Qn,m,p(θ, φ)/γr

M̂ (l)
n,m,p(γ~r) = [f (l)

n (γr)]~Rn,m,p(θ, φ)

N̂ (l)
n,m,p(γ~r) = {n(n+ 1)[f (l)

n (γr)]~Pn,m,p(θ, φ) + [γrf (l)
n (γr)]′ ~Qn,m,p(θ, φ)}/γr

Plane wave in spherical coordinates

As shown in Figure 1, the delta function plane waves (transformed) can be
written as

~12e
−γ ~11·~r =

∞∑
n=1

n∑
m=0

∑
p=e,o

[a′n,m,pM̂
(1)
n,m,p(γ~r) + b′n,m,pN̂

(1)
n,m,p(γ~r)]

~13e
−γ ~11·~r =

∞∑
n=1

n∑
m=0

∑
p=e,o

[b′n,m,pM̂
(1)
n,m,p(γ~r)− a′n,m,pN̂

(1)
n,m,p(γ~r)]

where

a′n,m,p = [2− 10,m](−1)n+1 2n+1
n(n+1)

(n−m)!
(n+m)!

mP
(m)
n (cos(θ1))

sin(θ1)

{
− sin(mφ1)
cos(mφ1)

}
b′n,m,p = [2− 10,m](−1)n 2n+1

n(n+1)
(n−m)!
(n+m)!

dP
(m)
n (cos(θ1))

dθ1

{
cos(mφ1)
sin(mφ1)

}
Note that we have

1

γ
∇× [~12e

−γ ~11·~r] = ~13e
−γ ~11·~r

1

γ
∇× [~13e

−γ ~11·~r] = −~12e
−γ ~11·~r

which is associated with the curl relations between the M̂
(l)
n,m,p and N̂

(l)
n,m,p

functions. Furthermore any divergenceless electric field expansion ( ~E) can

be converted to a magnetic field expansion ( ~H) by dividing by the wave

impedance Z of the medium and changing M̂
(l)
n,m,p to −N̂ (l)

n,m,p and N̂
(l)
n,m,p to

M̂
(l)
n,m,p. To go from ~H to ~E multiply by Z and change M̂

(l)
n,m,p to N̂

(l)
n,m,p and

N̂
(l)
n,m,p to −M̂ (l)

n,m,p.
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Solution of the scattered field

Define our incident plane wave as an E wave (TM wave)

~̃Einc(~r, s) = E0
~12e

−γ ~11·~r

~̃Hinc(~r, s) =
E0

Z0

~13e
−γ ~11·~r

Expand the fields for r < a as

~̃Ein(~r, s) = E0

∞∑
n=1

n∑
m=0

∑
p=e,o

[a′′n,m,pM̂
(1)
n,m,p(γ~r) + b′′n,m,pN̂

(1)
n,m,p(γ~r)]

~̃Hin(~r, s) =
E0

Z0

∞∑
n=1

n∑
m=0

∑
p=e,o

[b′′n,m,pM̂
(1)
n,m,p(γ~r)− a′′n,m,pN̂

(1)
n,m,p(γ~r)]

The solution of the scattered fields for r > a can be written as

~̃Esc(~r, s) = E0

∞∑
n=1

n∑
m=0

∑
p=e,o

[a′′′n,m,pM̂
(2)
n,m,p(γ~r) + b′′′n,m,pN̂

(2)
n,m,p(γ~r)]

~̃Hsc(~r, s) =
E0

Z0

∞∑
n=1

n∑
m=0

∑
p=e,o

[b′′′n,m,pM̂
(2)
n,m,p(γ~r)− a′′′n,m,pN̂

(2)
n,m,p(γ~r)]

2.3 Perfectly conducting sphere

Carl Baum showed in [1] that there only exist simple poles for a perfectly
conductor sphere. Here we will just briefly repeat the same argument in our
context. Constrain the tangential electric field to be zero on r = a, we have

~1r × [ ~̃Einc(~r, s) + ~̃Esc(~r, s)] = 0. Then we get

~1r × [a′n,m,pM̂
(1)
n,m,p(γa~1r) + a′′′n,m,pM̂

(2)
n,m,p(γa~1r)] = ~0

~1r × [b′n,m,pN̂
(1)
n,m,p(γa~1r) + b′′′n,m,pN̂

(2)
n,m,p(γa~1r)] = ~0

This give equations for the coefficients as

a′′′n,m,p = − in(γa)

kn(γa)
a′n,m,p

b′′′n,m,p = − [γain(γa)]′

[γakn(γa)]′
b′n,m,p
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To see that the poles must be simple poles we just need to show that all the
zeros of kn(s) and skn(s) are simple zeros. Since kn(s) is a spherical Bessel
function we have

s2 d
2

ds2
kn(s) + 2s

d

ds
kn(s)− [s2 + n(n+ 1)]kn(s) = 0

Suppose the zero is higher than first order, say a 2nd order zero at sα 6= 0.
Since both kn(s) and k′n(s) have to be zero at sα, so does k′′n(s). Thus, the
zero must be at least a third order zero. Repeat the same process, we will
eventually have all the derivatives at sα to be zero, thus the function must
be identically zero. So there exist only simple poles for a′′′n,m,p. The argument
for b′′′n,m,p is similar as [skn(s)] satisfies the Riccati-Bessel equation

s2

s2 + n(n+ 1)

d2

ds2
[sf (l)

n (s)]− sf (l)
n (s) = 0

For more details of the perfectly conducting sphere including surface current
and charge densities please see [1].

2.4 Surface-impedance-loaded sphere

Assume we choose the following surface impedance boundary

~̃Etan =
←→
Z (s) · ~̃Js ,

←→
Z (s) =

(
0 ± Z̃s(s)+2/a

s

± Z̃s(s)+2/a
s

0

)

where ~̃Etan = ~1r× ~̃E, ~̃Js = ~1r× ~̃Htan, Z̃s(s) is the scalar impedance function,
a is the radius of the sphere, the ± sign is determined by the choice of
the coordinate system. Use the standard spherical coordinate system as
illustrated in the Figure 1, the above surface impedance boundary condition
is equilvalent to

Ẽθ =− Z̃s(s) + 2/a

s
H̃φ

Ẽφ = +
Z̃s(s) + 2/a

s
H̃θ (1)

∇ · ~̃E = 0 can be expressed in the spherical coordinate system as(
∂

∂r
+

2

a

)
Ẽr = − 1

a sin θ

∂

∂θ
(Ẽθ sin θ)− 1

a sin θ

∂Ẽφ

∂φ
(2)
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Consider the ~1r component of the the equation s ~̃E = ∇× ~̃H, which is

sẼr =
1

a sin θ

(
∂

∂θ
(H̃φ sin θ)− ∂H̃θ

∂φ

)
(3)

Apply the boundary condition (1) to (2)(3), we derive

∂

∂r
Ẽr = Z̃s(s)Ẽr

Thus Ẽr satisfy the exact impedance condition as appears in acoustic scat-
tering problem in [3]

n · ∇u =
∂u

∂n
= α(s)u

Since Ẽr also satisfy scalar wave equation, the component Ẽr shares all the
results we derived in [3]. Therefore, we are able to construct arbitrary order
of scattering poles for the surface impedance loaded sphere.

2.5 Sheet-impedance-loaded sphere

2.5.1 Lossless sheet impedance

Spherical coordinates (r, θ, φ) as in Figure 1 are one of the few coordinate
systems in which solutions of Maxwell’s equations are separable. In partic-
ular let us assume a sheet impedance Z̃s(s) (a scalar) which is located on a
spherical surface given by r = a and which is independent of θ, φ. This sheet
impedance relates tangential electric field and surface current density as in
[2], we have

←→
1 t · ~̃E(a, θ, φ, s) = Z̃s(s)J̃s(θ, φ, s)
←→
1 t =

←→
1 −~1r

~1r = transverse dyad
←→
1 ≡ identity dyad

∼ stands for the two-sided Laplace transform. The surface current density
is in turn related to the magnetic field via

~1r × [ ~̃H(a+, θ, φ, s)− ~̃H(a−, θ, φ, s)] = J̃s(θ, φ, s)

The sheet impedance function Z̃s(s) also has to satisfy Foster’s Theorem to
guarantee lossless boundary conditions.
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Foster Theorem

In [6], a positive real function F(s) is an analytic function of the complex
variable s = σ + jω, which has the following properties:

1.F (s) is regular for σ > 0
2.F (σ) is real
3.σ ≥ 0 implies Re[F (s)] ≥ 0
A reactance function is a positive real function that maps the imaginary

axis into the imaginary axis.
Theorem: A real rational function of s is a reactance function if and only

if all of its poles and zeros are simple, lie on the jω-axis, and alternate with
each other. In other words

ψ(s) = K
s(s2 + ω2

1)(s
2 + ω2

3) · · · (s2 + ω2
2n−1)

(s2 + ω2
0)(s

2 + ω2
2) · · · (s2 + ω2

2n)

is a reactance function with positive residues, where k = 2n − 2 or 2n,
K > 0, 0 ≤ ω0 < ω1 < · · · < ω2n−1 < ω2n <∞

Theorem: A rational function of s is a reactance function if and only if
it is the driving-point impedance or admittance of a lossless network.

2.5.2 Solving the scattering problem

Matching the boundary condition on r = a, with the sheet impedance and
continuity of the tangential electric field gives

←→
1t · [ ~̃Einc(a+, θ, φ, s) + ~̃Esc(a+, θ, φ, s)] =

←→
1t · ~̃Ein(a−, θ, φ, s)

= Z̃s(s)J̃s(θ, φ, s)

= Z̃s(s)× [ ~̃Hinc(a+, θ, φ, s) + ~̃Hsc(a+, θ, φ, s)− ~̃Hin(a−, θ, φ, s)]

Plugging in the expansion we derive a system of equations involving a′′n,m,p,
b′′n,m,p, a

′′′
n,m,p, b

′′′
n,m,p. Solve for a′′n,m,p and b′′n,m,p we get

a′′n,m,p =
a′n,m,p

1 + Z0

Z̃s(s)
(γa)2in(γa)kn(γa)

b′′n,m,p =
b′n,m,p

1− Z0

Z̃s(s)
[γain(γa)]′[γakn(γa)]′
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Now the surface current density is

J̃s(θ, φ, s) =
1

Z̃s(s)

←→
1t · ~̃E(a, θ, φ, s)

=
E0

Z̃s(s)

∞∑
n=1

n∑
m=0

∑
p=e,o

[a′′n,m,pin(γa)~Rn,m,p(θ, φ) + b′′n,m,p

[γain(γa)]′

γa
~Qn,m,p(θ, φ)]

2.5.3 Existence of 2nd order poles

The coefficients we care about concerning the existence of a second-order pole
are c1 = in(γa)

Z̃s(s)
a′′n,m,p and c2 = [γain(γa)]′

Z̃s(s)γa
b′′n,m,p. Let’s give a simple example

showing that a second-order pole does exist for coefficient c2. For simplicity,
let’s assume γa = s. Consider the sheet impedance function

Z̃s(s) =
(1

2
e2 + e+ 1

2
)s

s2 + 1
2
e+ 1

4

Clearly Z̃s(s) satisfies Foster’s Theorem with K > 0 and ω0 > 0. The
expansions of in(s) and kn(s) are

kn(s) =
e−s

s

n∑
j=0

(n+ j)! 2−js−j

j! (n− j)!

in(s) =
1

2
[(−1)n+1kn(s)− kn(−s)]

For n = 0, the denominator of c2 is

De(s) =
(
4 e−2 s + 4

)
s2 +

(
4 e2 + 8 e+ 4

)
s+ 1 + 2 e1−2 s + 2 e+ e−2 s

It is easy to see that De(−1
2
) = 0 and d

ds
De(s)|s=− 1

2
= 0 or in Taylor expan-

sion around −1
2

De(s) = (
(
16 e+ 4 + 4 e2

)(
s+

1

2

)2

+

(
−56

3
e− 8

3
e2
)(

s+
1

2

)3

+O

((
s+

1

2

)4
)

)

Thus we derive a second order pole at s = −1
2
.
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In general, we want to construct a sheet impedance function Z̃s(s) =
Ks

(s2+ω)
such that c2 have a second order pole in the left half plane of s mean

while K > 0 and ω > 0. The denominator of c2 has the following form

De(s) = Ks+

(
−s2in (s)− s3 d

ds
in (s)− ω in (s)− ω s d

ds
in (s)

)
kn (s)

+

(
−s3in (s)− s4 d

ds
in (s)− sω in (s)− s2ω

d

ds
in (s)

)
d

ds
kn (s)

We want to solve De(s) = 0 and d
ds
De(s) = 0 for K, ω in terms of s. The

solution sα must satisfy sα < 0, K(sα) > 0 and ω(sα) > 0. For n = 0, that
is to solve

2Ks+ s2e−2 s + s2 + ω e−2 s + ω = 0

2K + 2 se−2 s − 2 s2e−2 s + 2 s− 2ω e−2 s = 0

The solutions are

K =− s (e−4 s + 2 e−2 s + 1)

2 se−2 s + e−2 s + 1

ω =− s2 (−e−2 s + 2 se−2 s − 1)

2 se−2 s + e−2 s + 1

From Figures 3,4, approximately when s is chosen from −0.64 to 0, both K
and ω will be positive. Pushing the poles to even a higher order is not done
here. In order to construct a higher order pole (including the 2nd order case),
a transcendental equation has to be solved analytically which in general is
not possible. This is different from the perfectly conductor sphere case, where
only a system of linear equations need to be solved.

Remarks

Due to the symmetry of the expansions of the scattered solutions, there exist
2nd order poles for both E modes and H modes. The above procedure only
works for coefficient c2 with n = 0. For n > 0, We find no region in the
left half plane of s where all of our assumptions can be satisfied. A rigorous
proof has not been accomplished. We have tested with many different n, K
and ω. K and ω will have either different signs or both will be negative.
It doesn’t work for the coefficient c1 either. We have also tried to include
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Figure 3: The plot of the function K in the expansion of Z̃s(s) when n=0

Figure 4: The plot of the function ω in the expansion of Z̃s(s) when n=0
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more terms (introduce more freedom) in the Z̃s(s) expansion according to
Foster’s Theorem (i.e. more ωi) with larger n. However, it is not helpful for
this case, which is different from the surface-impedance-loaded sphere case
(acoustic scattering case). Figures 5, 6 show some results of different cases
with different n, K and ωi. There are no regions where both K and ω are
positive simultaneously. It is likely that for lossless sheet-impedance-loaded
boundary condition, most scattering poles are first order.

3 Conclusions

We show that for the electromagnetic scattering problems for spheres with
lossless sheet-impedance-loaded boundary conditions, 2nd order scattering
poles can be constructed. For the surface-impedance-loaded sphere, arbitrary
order of scattering poles can be derived with less restriction than the sheet
impedance loading sphere case. There only exist first order poles for the
perfectly conductoring sphere.
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Figure 5: The plots of the function K in the expansion of Z̃s(s) with different
n for c1 and c2
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Figure 6: The plots of the function ω in the expansion of Z̃s(s) with different
n for c1 and c2
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