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Abstract 
 
 
The homogeneous problem of current propagation along a thin wire of arbitrary geometric 
form near ground is reduced use of the Full-Wave Transmission Line Theory [8-10] to a 
Schrödinger-like differential equation, with a “potential” depending on both the geometry of 
the wire and frequency. The “potential” is a complex – valued quantity that corresponds to 
either radiation losses in the framework of electrodynamics or to the absorption of particles in 
the framework of quantum mechanics. If the wire structure is quasi periodical, i.e., it consists 
of a finite number of identical sections, the “potential” can be approximately represented as a 
set of periodically arranged identical potentials. We use the formalism of transfer matrices 
and find an analytical expression for the transmission coefficient of the finite number of 
periodically located non-uniformities which also contains the scattering data of one non-
uniformity. The obtained result yields the possibility to investigate forbidden and allowed 
frequency zones which are a typical feature of periodic structure. 
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I. Introduction 
 
An analysis of propagation of current waves along periodical structures in different radio-
technical and electro-technical applications becomes necessary.  These periodical structures 
show non-trivial electrodynamical properties and sometimes can be used to build filters, 
antennas and HPM sources. Moreover, because of the simplicity of building periodical thin-
wire structures, they can serve as elements for the design of meta-materials.   
 
The periodical infinite structures are studied in a number of papers [1,2] from an 
electrodynamical point of view. The propagation of current along infinite periodical 
transmission lines also can be applied to the periodical excitation of mechanical systems 
(parametrical resonances) [3]. However, in real life one deals with quasi-periodical systems: 
systems, which consist of a finite number of identical sections. 
  
In the previous papers [4,25] we investigated the propagation of current waves along a wire 
without any losses (radiation, ohmic, dielectric, etc.). We transformed the equations of non-
uniform transmission line theory (with length dependent inductance and capacitance per-unit 
length) to a second order differential equation for some auxiliary function, which is simply 
connected with the current. The equation looks like a usual one-dimensional Schrödinger 
equation in quantum mechanics, which potential can be calculated using the per-unit length 
transmission line parameters. The “potential” decays to zero at plus and minus infinity and the 
“energy” of the “particle” is positive, thus we deal with a one-dimensional quantum 
mechanical scattering problem [5] and can apply powerful and well-developed mathematical 
methods to investigate such problems. For the quasi-periodical wiring system the potential is 
also quasi-periodical. Using the formalism of the transfer matrix [6] we find an analytical 
expression for the transmission coefficient of the finite number of periodically located non-
uniformities which also contains the scattering data for one non-uniformity. Depending on the 
frequency the absolute value of the transmission coefficient oscillates. This corresponds to 
forbidden and allowed frequency zones which are typical for periodical structures [7]. 
 
However, the usually used wiring systems have different kinds of losses: dielectric losses, 
ohmic losses, and radiation losses. In the present paper, we generalized the formalism [4,25] 
for such systems. We consider quasi-periodical structures, which consist of a wire with finite 
conductivity coated by lossy dielectric insulation. For  this system, for high frequencies, when 
radiation losses can become substantial, the simple approach to a non-uniform transmission 
line used in [4] is not applicable, and we have to apply a general Full Wave Transmission 
Line theory (FWTL) [8,9,10], which has to be modified for the case of dielectric and ohmic 
losses.  
From the first step in the second Section of this report, we obtain boundary conditions for the 
first and second Mixed Potential Integral Equation (MPIE), as for the potential, as well as for 
the tangential electrical field on the boundary of the wire. Then we use the obtained MPIE and 
general techniques described in [11] to derive simple analytical expressions for the global 
parameters of the Full-Wave Transmission Line theory. Using the global parameters the 
FWLT equations are reduced to the Schrödinger-like equation for some auxiliary function 
connected with the current in a simple way.  
However, now the potential in the Schrödinger-like equation is, in contrast to the lossless 
case, complex-valued. The explicit connection between the losses and the imaginary 
component of the potential is established at the beginning of the third Section. Hereafter, we 
generalize the formalism of the transfer matrix for lossy systems and derive an analytical 
expression for the transmission coefficient of the finite number of periodically located lossy 
non-uniformities, which also contains the scattering data for one non-uniformity. Next, the 
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connection between the transformation parameters of quasi-periodical systems and parameters 
of corresponding periodical systems (quasi-pulse) is established.  
 In the fourth Section, we consider a numerical example of the quasi-periodical line with 
ohmic, dielectric and radiation losses. It will be shown, that the zone structure, which exists in 
the lossless case holds also for the lossy case. Again, in dependence on the frequency the 
absolute value of the total propagation coefficient through the chain oscillates. That 
corresponds to forbidden and allowed frequency zones. For the considered example, both 
dielectric and ohmic losses are negligible; however, the radiation losses decrease essentially 
the propagation coefficient through the chain for the allowed frequency zones.  
In conclusion, we formulate some directions for future investigations. 
 
 
 
2. Equation for the current in a wiring system with losses. 
 
2.1. Mixed-Potential Integral Equations (MPIE) for the wiring system with losses. 
 
In this Section, we obtain the Mixed-Potential Integral Equations (MPIE) for the coated wire 
with ohmic losses, which later will be a basis for the evaluation of the FWLT equations with 
global parameters. The system of MPIE for a perfectly conducting uncoated thin wire consists 
of two integral equations [11] which couple the total tangential current induced in the wire, 
and the potential (we use the Lorenz gauge) on the boundary of the wire. The first equation is 
a zero boundary condition for the tangential component of the total electric field (exciting 
external field plus the scattered field generated by the induced current). The second one is just 
an integral expression for the scalar potential in the Lorenz gauge in terms of the total 
tangential current induced in the wire. It is obvious, that both of them have to be changed for 
the coated wire with finite conductivity. Because these effects turn out to be small, we will 
treat them separately: i.e., for the first equation we consider an uncoated wire with a finite 
conductivity, and for the second one we consider the coated perfectly conducting wire. 
 
 
2.1.1 The second MPIE equation: Boundary condition for the coated wire. 
 
In this Section, we would like to obtain an expression for the potential on the boundary of the 
metallic kernel of the coated wire if the potential on the boundary of the uncoated wire is 
known. Let us consider the scattering by a thin dielectrically coated wire. A uniform coating 
of thickness )( ab −  is placed over a perfectly conducting wire with radius a . We assume, 
that the wire is thin and smooth, namely that K/1,λ<<b , where λ  is the wavelength of the 
exciting electromagnetic field and K  is the curvature of the line along the wire axis. Under 
such conditions to establish the connection between potentials on the boundary of coated and 
non-coated wires within the neighborhood of the wire ( K1,||, λρ <<′− ll , where ρ  is the 
distance from the wire in the local coordinate system, l  is the length along wire axis), one can 
consider an electrostatic problem for the straight wire (see Fig. 1). 
 This electrostatic problem can be formulated as follows. There is a distributed charge 
on the boundary of the wire (with density per unit square aqqs π2=  which corresponds to 
the density per-unit length q ). In the first case, the wire is uncoated, in the second case the 
wire is coated by a dielectric layer with dielectric permittivity ε . The task is to find the 
difference between the potentials on the boundary of the wire 0ϕ  and εϕ . 
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Fig. 2.1: The electrostatic problem for a coated wire. 
 
This problem can be solved using Gauss´ theorem in electrostatics. We consider a section of 
the cylinder with length d  and some auxiliary cylindrical shell with radius ρ . According to 
Gauss´ theorem (where Vq  is the volume density of charge)  
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V S

πρ2==∫ ∫
rrr

    (2.1.1.2) 

(where an obvious cylindrical symmetry of the electrical field distribution is used) one can 
obtain an equation for the electrical displacement 
 

πρ2
qD =           (2.1.1.3) 

 
and for the electrical fields, both, in the first and second case: 
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If now we choose as reference point for the potential some point R  ( K1,λ<<<< Rb ) we 
can write for the potentials on the boundary of the wire in both cases and for their difference: 
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If we now return to the initial electrodynamic case, we can consider the potential 0ϕ  as the 
potential of the uncoated wire, and use the expression for the charge per-unit length which 
follows from the continuity equation 
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we can obtain the desired connection between the potentials: 
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where some auxiliary capacitance is introduced  
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Now we consider a thin wire of arbitrary geometric form, )(lrr  (where l  is the coordinate of 
the wire’s axis), near the perfectly conducting ground, which is excited by an external field 

)(rE i rr
. Assuming, as usual in the thin-wire approximation, that the current )(lI flows along 

the wire axis, and using the continuity equation (2.1.1.10) we can obtain the following 
equation for the scalar potential (in the Lorenz gauge) on the boundary of the uncoated wire: 
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Here ∫ ′= ldL 21  is half of the length of the complete closed loop. The function ),( llg I

C ′  is 

the Green’s function along the curved line for the scalar potential, which takes into account 
the reflection of the ground plane:  
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Here r
r~ is the radius vector of the axis mirrored by the ground plane, and a  is the radius of 

the wire. 
Using (2.1.14) and (2.1.1.11) we can write the desired second MPIE equation for the potential 
of the coated wire 
 

0)(4)(
~

4)(),( 0
0

0

=+
∂

∂
′

−′
′∂
′∂′∫ lj

l
lI

C
ld

l
lIllg

L
C
I

εωϕπεπε     (2.1.1.15) 

 
Here the auxiliary capacitance C ′~  is defined by eq. (2.1.1.12) and contains the dielectric 
permittivity ε . If the lossy dielectric is considered, the second term in equation (2.1.1.15) is 
responsible for the dielectric losses. 
 
 
2.1.2 The first MPIE equation: Boundary condition for the finite conductive wire. 
 
 Again we consider a thin wire of arbitrary geometric form near the perfectly 
conducting ground. It is excited by an external field )(rE i rr

. In the previous consideration for 
the perfectly conducting wire [11], we assumed that the total (initial plus scattered) tangential 
electrical field on the boundary of the wire is zero, which lead to the first MPIE equation 
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where i
lE  and lA  are tangential components of the exciting fields and vector potential 

respectively. Using the expression for the vector potential one can re-write (2.1.2.1) as  
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where the function ),( llg L

I ′  is the Green’s function for the tangential component of the 
vector potential in the Lorenz gauge along the curved line, which takes into account the 
reflection of the ground plane: 
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The unit tangential vector llrlel ∂∂= )()( rr

 of the curve is taken along the wire axis, )(~ lr
r

 is 

the radius vector mirrored by the ground plane, and llrlel ∂∂= )(~)(~ rr
 is the corresponding 

unit tangential vector. 
 
 If the transmission line is not perfectly conducting, the total tangential electric field on 
the conductor in not zero. In this case the boundary condition (2.1.2.1) (or the equation 
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(2.1.2.2)) can be modified to take into account the presence of a finite electrical conductivity 
of the wire. This is done by introducing a surface impedance approximation, which relates the 
total local electric field on the surface of the wire to the total tangential current flowing on the 
wire at the same point [1]. This relationship is expressed as 
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Here )( ωjZ w′ is the per-unit-length impedance of the wire[12,13]: 
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In eq. (2.1.2.5) the functions )(0 xI and )(1 xI  are modified Bessel functions, cwZ  is the wave 
impedance in the conducting composition of the wire given by  
 

w
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and the term wγ  is the propagation constant in the wire material, 
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The electrical conductivity of the wire is denoted by wσ . In this discussion, the wire is 
assumed nonmagnetic, with unit permittivity.  
 Various approximations to this wire impedance are possible [14]. At low frequencies, 
where 1|| <<awγ , this impedance is given by 
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and at high frequencies, where 1|| >>awγ , this impedance becomes 
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 With the introduction of the wire impedance in the expression for the tangential 
electrical field (2.1.2.4) and applying the same steps as done previously, the following first 
MPIE for the lossy wire results:  
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These two MPIE (2.1.2.10) and (2.1.1.15) are the main results of the two first sub-Sections.  
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It is possible to show, that for the partial case – a straight finite wire in the free space, the 
second order Pocklington-like integro-differential equation for the induced current, which can 
be derived from (2.1.2.10) and (2.1.1.15) for the case wZ ′ , coincides with results of papers 
[15], [16] for the coated thin straight wire. 
 
 
 
2.2 Full-Wave Transmission Line (FWTL) equations for the wiring system with losses. 
Iteration approach for the global parameters.  
 
The two MPIE obtained in the previous sub-Sections are a starting point for the derivation of 
the global parameters in the Full-Wave Transmission Line Theory (FWLT). In this Section 
we shortly outline the derivation, referring the reader to [11],[17],[18].  
Let us consider again the system of MPIE for the thin coated, lossy wire of arbitrary 
geometric form (2.2.1 a,b) 
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In order to define the global generalized transmission line parameters, we consider an 
excitation of the transmission line by point sources with arbitrary dimensionless amplitudes 

1U  and 2U  located at the beginning and at the end of the line, which corresponds to the 
tangential component of the exciting electrical field:  
 

VLlUlUlE i
l 1))()(()( 21 ⋅+−+−= ∆∆ δδ  with  0→∆  (2.2.2) 

 
It is possible to show, that the excitation field for the loaded line formally can be reduced to 

the same equation [11,17,18]. For example, when the system is loaded by the impedance 2Z  
at the right terminal, then the corresponding constant is  
 

VZLIU 1/)( 22 −=          (2.2.3) 
 
Let now the functions )(1 lI , )(2 lI  and )(1 lϕ , )(2 lϕ  be solutions of the system (2.2.1 a, b) 
for the current and the potential with sources with of amplitude 1 V: )( ∆−lδ , )( ∆+− Llδ  
located in the points ∆  and ∆−L , correspondingly. Due to the linearity of the considered 
problem we can write the solution for the total induced current as  
 

)()()( 2211 lIUlIUlI +=         (2.2.4) 
 
For the potential )(lϕ  along the wire we find a similar equation:  
 

)()()( 2211 lUlUl ϕϕϕ +=         (2.2.5) 
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Now we are ready to look for the system of differential equations (Full Wave Transmission 
Line equations, FWTL) for the potential and current outside the source region in the 
Transmission - Line - Theory - like form.  
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To do that, we begin to use a matrix notation (this way of solution can be generalized for the 
multiconductor case). We introduce a column-vector 

↓
x , which components are potential and 

current, as for the partial, as well as for the general solution : 
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Now the equations (2.2.4) – (2.2.5) can be written in the following form:  
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and, instead of (2.2.6) we have: 
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Eqs. (2.2.9 a) and (2.2.8) mean that  
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since the 1U  and 2U  have arbitrary values in (2.2.10) we derive  
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After an introduction of a matrix notation for the partial solutions  
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eq. (2.2.11 a,b) can be written as 
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[ ] [ ] [ ] 0=⋅+ XPjX
dl
d ω         (2.2.13) 

 
If the matrix of partial solutions x)  is non-degenerated, i.e.  
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than the solution for the matrix [ ]P  can be written in the following form 
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In the usually used scalar notations  (2.2.15) can be written as 
 

ϕ

ϕϕ
ω ,

2121
11

)()()()(1)(
I

llIlIl
j

lP
∆

′−′
=       (2.2.16 a) 

 

ϕ

ϕϕϕϕ
ω ,

2121
12

)()()()(1)(
I

llll
j

lP
∆

′−′
−=       (2.2.16 b) 

 

ϕω ,

2121
21

)()()()(1)(
I

lIlIlIlI
j

lP
∆

′−′
=       

 (2.2.16 c) 
 

ϕ

ϕϕ
ω ,

2121
22

)()()()(1)(
I

lIlllI
j

lP
∆

′−′
−=       (2.2.16) 

 
It is easy to show, that if we do not start the calculation from the functions )(1 lI , )(2 lI , 

)(1 lϕ , )(2 lϕ , but from some non-degenerated linear combinations of them: )(~
1 lI , )(~
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[ ] [ ] [ ]α⋅= XX~ , where [ ] 0det ≠α        (2.2.17) 
 
the result for the matrix [ ])(lP  will be kept the same 
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Thus, we have shown that the system of MPIE (2.2.1), the solution of which is defined by two 
independent constants can be explicitly reduced to the differential equations (2.2.6), (2.2.9 a) 
with parameters (2.2.15), (2.2.16). These parameters (global parameters in the Full-Wave 
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Transmission Line Theory or the parameters of “Maxwellian circuits”) are complex valued, 
and describe the radiation of the system [11]. They depend on the geometry of the system, and 
therefore on the local parameter l  along the line. This fact was established earlier in [8-10] 
with the method of the product integral, and (up to notation) in [19] by processing the 
numerical solution for the current and potential with the Method of Moments. 
 
 The solution of the system (2.2.6) with parameter matrix )(lP

)
 (2.2.16) and usually 

used boundary conditions for the currents and voltages (differences of potentials for the small 
∆ ) in the points ∆=l  and ∆−= Ll  yields the current and voltage distributions along the 
line for arbitrary given values of the terminal sources and/or loads. The procedure is 
convenient, when the exact values of the functions )(1 lI , )(2 lI , )(1 lϕ , )(2 lϕ  are known, 
from analytical [11,18] or numerical [19] solutions.  
 Another way to obtain the matrix of global parameters apriorily is to organize some 
iteration procedure for this matrix. Generally, at the zero steps, the approximate solution of 
the system (2.2.6) is defined. Then this solution is used to find the corresponding parameters, 
etc. In [8-10] as zero iteration the static distributions for the current and potential are used, 
and the first iteration for the parameters was obtained after some numerical procedure.  
 Another procedure, which is based on the thickness of the wire, was proposed in [11], 
where, at the zero step the MPIE (2.2.1) (within the logarithmical accuracy) was reduced to 
the classical TL system with constant parameters. The solution of this system with sources 
(2.2.2) yields the current of the first iteration, )(1 lI  and )(2 lI , the linear combination of 
which (up to the constant factor) can be represented as forward and backward propagating 
waves 
 

)exp()()1(
1 jkllI −=     )exp()()1(

2 jkllI =    (2.2.19) 
 
However, for the scalar potential in the first iteration and for its derivative, the exact equations 
(2.2.1 a,b) are used. After some straightforward calculations, we obtain the global parameter 
matrix in the first order approximation: 
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ClClC

lClC
c
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′
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+

′

′
−

′
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−+

~
2
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1

)(
1

)(
1

)(
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1)()1(
22        (2.2.20 d) 

 
In eqs. (2.2.20) we have used the following expressions for the “forward” and “backward” 
inductance and capacitance of the first order, respectively:  
 

( ) ldlljkllglL
L

L ′−′′=′ ∫±
0

0
0 )(exp),(

4
)( m

π
µ       (2.2.21) 

 

( ) ldlljkllg
lC L
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∫
±

0
0

0
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4)(
m

πε       (2.2.22) 

 
For the low-frequency case ( )0→k  we find 
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The quantities )(0 lL′  and )(0 lC′  constitute the real, low-frequency length dependent 
inductance and capacitance per unit length for the lossless uncoated transmission line [9]. 
Then, using (2.2.20) for our case we obtain the parameter matrix in the classical anti-diagonal 
form for the coated wire with losses. 
 

[ ] 





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′

′+′
=
→ 0

)(0
)(

0

0

0

)1(

ε

ω
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jZlL
lP w

k
      (2.2.25) 

 
where we have introduced the per-unit length capacitance for the coated wire 
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3. Propagation of Current Waves along Quasi-Periodical Wiring Structures: a Quantum 
Mechanical Analogy. 
 
3.1 FWTL and Schrödinger-like equations 
 
 We consider a long lossless thin conductor of arbitrary geometric form above a 
perfectly conducting ground, where the non-uniformities are located in the central part of the 
conductor. We assume, that the sources are located at the left end of the wire (at minus 
infinity) and that the reflection is absent from the right end of the wire (plus infinity). As was 
shown in the Section 2, the current and potential along the line are described by the FWTL 
(2.2.6) with the matrix of global parameters [ ])(lP . In our consideration the Lorenz gauge for 
the potential is used, but, of course, we can use any another gauge, for example, the Coulomb 
gauge. However, for the current we obtain a gauge independent differential equation of 
second order [19,11]: 
 

0)()()()()( =+′+′′ lIlTlIlUlI MM        (3.1.1) 
 
Here l  is the length-parameter of the curve taken along the wire axis, )(lUM  is the complex 
damping function, )(lTM  corresponds to the square of the propagation constant. These 
parameters are connected with the global parameters of the MPIE [11] and they also depend 
on frequency and on the geometry of the system.  
 

( ) ( )221121ln)( PPjP
dl
dlU M ++−= ω

      (3.1.2) 

[ ]P
P
P

dl
dPjlTM det)( 2

21

22
21 ωω −








=       (3.1.3) 

 
To reduce eq. (3.1.1) to the form convenient for further analysis, we eliminate the first 
derivative by introduction of a new unknown function )(lψ : 
 

)()()( llflI ψ=          (3.1.4) 
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
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
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
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)()(
2

exp
)(

)()(
2
1exp)( 2211

21

21 lPlPj
P

lPldlUlf
l

M
ω  (3.1.5) 

 
The function )(lψ  satisfies the differential equation of second order (3.1.6) 
 

0)()()( 2 =+′′ llkl ψψ ;        (3.1.6) 
 

4
)()(

2
1)(:)(2 lU

dl
ldUlTlk MM

M −−=       (3.1.7) 

 
To consider the wiring structure at the uniform ends we introduce a “potential” function 

)(lu as follows  
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( ) 0)(lim 2

2
22 >==

±∞→ c
klk

l

ω         (3.1.8) 

 
)()( 22 lkklu −=          (3.1.9) 

 
( ) 0)(lim =

±∞→
lu

l
         (3.1.10) 

 
( ) 0)()(2 =−+′′ lluk ψψ         (3.1.11) 

 
Eq. (3.1.11) looks like a Schrödinger equation in non-relativistic quantum mechanics with the 
“potential” u(l) [5]. As well as the parameters )(lTM  and )(lU M  the “potential” )(lu  
depends on the geometry of the wire and on the frequency. For low frequencies, 1≤kh  
(where h  is the height of the wire at ±∞=l , using  (2.2.23)-(2.2.25) and (3.1.2)-(3.1.7)) one 
can show, that the “potential” can expressed as  
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ε

ε

ε

ε
εωωω  

(3.1.12) 
 
From (3.1.12) it is obvious that for the lossless line the “potential” is real and eq. (3.1.11) 
describes the one-dimensional scattering of a quantum mechanical particle, when the number 
of particles is kept constant [5].  
In the general frequency case, when we have to use in (3.1.2), (3.1.3), (3.1.7) the results of 
eqs. (2.2.20), the “potential” becomes:  
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P
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dPPjPP
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PdP

P
P

dl
dPjklu

ωω

ωω
)

   (3.1.13) 

 
Now (as well as for the low frequency case with ohmic or dielectric losses) the “potential” is a 
complex-valued quantity that corresponds to losses in the initial electrodynamics problem and 
corresponds to absorption of the particles in the quantum mechanical analogy.  
 
 
3.2 One-dimensional scattering problem. Reflection and transmission coefficients for the 
lossy systems.  
 
 
 In the previous sub-Section we have shown, that the homogeneous electrodynamical 
problem is equivalent to the one-dimensional quantum mechanical scattering problem, where 
the particle comes from minus infinity, scatters at the potential, becomes partially absorbed in 
the potential region, propagates partially through the potential and also is partially reflected 
by the potential. The complex quantum mechanical amplitudes of these processes are 
described by the complex reflection R  and transmission D coefficients (see Fig. 3.1) 
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Fig. 3.1: One-dimensional quantum-mechanical scattering problem 
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

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∞→−
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=

ljklD

ljklRjkl
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for)exp(

for)exp()exp(
)(ψ     (3.2.1) 

 
These coefficients become very important in this report and we now describe their properties 
in more detail.  
For symmetrical scattering “potential”, )()( lulu =− , these coefficients are the same for the 
left and for the right scattering problem.  
It is possible to show that for the low-frequency lossless case (where the “potential” )(lu  is 
real) these coefficients satisfy the following equations [4]: 
 

122 =+ DR          (3.2.2) 
 

{ } 0Re * =RD           (3.2.3) 
 
 However, for the complex “potential” corresponding to radiation and (or) ohmic and 
dielectric losses the equations (3.2.2)-(3.2.3) are not valid. The imaginary part of the 
“potential” now is responsible for the losses. Let us establish this dependence.  
 If we have a uniform line with current waves propagating in both directions (and the 
field around wire is a TEM wave)  
 

)exp()exp()( 21 jklIjklIlI +−=        (3.2.4) 
 
the time averaged power propagating along the uniform line in the positive direction can be 
written as  
 

( )2
2

2
12

IIZW C −=         (3.2.5) 

 
Eq. (3.2.5) can be represented as  
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∂
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l
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4

)( *
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      (3.2.6) 
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Let us now define the value )(lW  by eq. (3.2.6) not only for the two asymptotic regions 

)( ±∞→l  but also for the intermediate region (region of interaction). Now we can express 
the energy losses of the current during the scattering process (caused by radiation, ohmic or 
dielectric losses) using the law of energy conservation 
 

( ))()( −∞−∞−= WWWloss         (3.2.7) 
 
Using the representation of the current through the ψ -function (3.1.4) we can write for the 
quantity )(lW : 
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4

)( llU
l
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jk
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l

M
C ψψψψψ  

           (3.2.8) 
 
For a symmetrical wiring system, for example for the wire with vertical coordinate )(lx  and 
horizontal coordinate )(lz , which are given by the relations  
 

( ))(,0),()( lzlxlr =v ;   )(,0),(()( lzlxlr −=−
r )   (3.2.9 a,b) 

 
We find after some combersome calculation with the aid of the technique from Section 2, the 
following symmetry properties for the global FWTL parameters:  
 

)()( 1111 lPlP −=−         (3.2.10 a,b,c,d) 
 

)()( 1212 lPlP =−  
 

)()( 2121 lPlP =−  
 

)()( 2222 lPlP −=−  
 
Now, using the definition of the parameter )(lU M  (3.1.2) and eq. (3.2.10) we can find that  
 

0)()( =∞=−∞ MM UU ,    0)( =′′∫
∞

∞−
ldlU M    (3.2.11 a,b) 

 
For eq. (3.2.8) we then obtain  
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and, consequentely 
 

( )222
0 1

2
DRIZW C

loss −−⋅=        (3.2.13) 
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For the lossless case we obtain the obvious answer: 0=lossW . We will make some standard 
manipulation with the Schrödinger equation (3.1.11) for the lossy case to obtain the term in 
the bracket (3.1.13).  
 
Let us consider the Schrödinger equation (3.1.11) for the function )(lψ  and for the complex 

conjugate function *ψ . Multiply them, correspondingly, by *ψ  and by ψ , then subtract the 
second from the first equation: 
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*222

lllukdlld

lllukdlld

ψψψ
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As result, we have   
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  (3.2.15) 

 
Integrating (3.2.15) from ∞−  to ∞  and using (3.2.1) yields:  
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           (3.2.16) 
Taking into account (3.2.16) and (3.2.13), we finally have 
 

( ) ( )dllul
k

IZDRIZW CC
loss )(Im)(1

2
1

2
22

0
222

0 ∫
∞

∞−

=−−= ψ   (3.2.17) 

 
The equation (3.2.17) gives the desired connection between the imaginary part of the 
“potential” and the losses in the wire. 
 
 
3.3 Transfer matrices for the one-dimensional scattering problem.  
 
 
 In this sub-Section, we consider another, more general approach to describe one-
dimensional scattering, which is given by the method of transfer matrix [6]. In this method, 
we consider waves propagating in positive and negative directions with different amplitudes, 
both from the left and right sides of the potential (3.3.1) (see Fig. 3.2) 
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Fig. 3.2: On the definition of the transfer matrix S
)

. 
 
Because the considered problem is linear, there exists a linear connection between the 
asymptotic amplitudes of the potential. This connection is realized by 22×  transfer matrix  
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which links the column vectors of the wave amplitudes: 
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Let us now express the transfer matrix in terms of reflection and transmission coefficients R  
and D , respectively. For the left side scattering problem (Fig. 3.1), have the following 
components: 
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Similarly, for the right hand side scattering problem, when the particle incidents from plus 
infinity, we have 
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Substitute (3.3.5) into (3.3.3), and find two components of the matrix S

)
: 

 

D
RS =12   and  

D
S 1

22 =      (3.3.6 a,b) 
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Equations for the two other components of the transfer matrix are obtained after substitution 
of the (3.3.4) into (3.3.3) 
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(3.3.8) and (3.3.6) yield the desired equation for the matrix S
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One can easily check that  
 

1det =S
)

          (3.3.10) 
 
 For a real potential (which corresponds to a lossless system) we use the properties of 
the reflection and transmission coefficient (3.2.2)-(3.2.3) to show, that [4,25]  
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   (3.3.11) 

where DjeDD ϕ= , and the numbers K,2,1,0=n correspond to the number of bounded 
energy states in the potential (3.1.12). 
 
Also, for the lossless system we have 
 

1* −= SS
))

          (3.3.12) 
 
The properties of the transfer matrix for the lossless case can be written in different ways: 
 

*
2211 SS = ;  *

2112 SS = ;  1det 2
21

2
11 =−= SSS

)
 (3.3.13 a,b,c) 

 
Therefore, the transfer matrix S

)
 in this case belongs to the )1,1(SU  group of matrices [6,20]. 

During multiplication this matrix keeps the value  
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constWCCCC =−=− ~~~ 2
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2
2

2
1       (3.3.14) 

 
constant, which physically corresponds to the “particle flux” (power) conservation along the 
line. 
 For the free “particle” (current wave) propagation without any scattering, we also can 
introduce the transfer matrix. In this case the translation reduces to the change of the 
coordinate l . To see this we consider the free propagation waves for two origins of 
coordinates 1l  and 2l  (see Fig. 3.3):  
 

 
Fig. 3.3: Free propagation of the current wave 
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From the (3.3.15) the transfer matrix for the free propagation is derived as: 
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Of course, the transfer matrix for the free propagation also belongs to the SU(1,1) group of 
matrices. 
 
 
 
3.4 Transfer – matrix formalism for the quasi-periodical system with losses. 
 
 Let us now assume that the quasi-periodical wiring structure is formed by a finite 
number of identical sub-elements (see Section 4). We assume that the corresponding potential 
in equation (3.1.11) can be represented as a set of periodically arranged identical potentials1 : 
 We now consider the propagation through a chain, consisting of N potentials, 
separated by asymptotic regions, where the potential is approximately zero (see Fig. 3.4).  
Let us assume that the column vector on the right side of the quasi-periodical system (we 
assume now, that the beginning of the coordinates is in the center of the first potential) is 

↓
C . 

After the first scattered the column vector becomes 
↓
CS1

)
. Changing the coordinate origin by 

                                                 
1 It is possible to show, that this assumption better satisfies for the case of low frequencies, but also for high 
frequencies, when radiation does not dominate, this assumption is also approximately valid. Moreover, the more 
sub-elements are considered the better satisfies this assumption. 
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the free propagation transfer matrix ),(: 1221 llTT
))

=  to the right side of the second potential, 

we have a column-vector 
↓
CST 121

))
. Repeating this process up to the last potential, we can 

write for the total transfer matrix, with the beginning of coordinates in the center of the last 
potential 
 
 

 
Fig. 3.4: Propagation through the quasi-periodical chain of potentials 5=N . 
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After the return to the beginning of the coordinates to the center of the first potential we have 
for the corresponding transfer matrix2 
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Σ        (3.4.2) 

 
For the case of periodically arranged identical potentials eq. (3.4.2) can be re–written in the 
following form 
 

( )NN SLTNLTS
))))

)0,(),0()( =Σ        (3.4.3) 
 
Now, it is more convenient to remove the coordinate origin in the centre of the quasi-
periodical system. This can be done if the corresponding total potential is symmetrical, and 

                                                 
2 The matrix (3.4.1) is connected with an explicit form of the so-called product integral [9] (which yields the 
solution of the second order – differential equation (3.1.11)) for the case when the regions of interaction are 
divided by the regions of zero potential. 
We mention here that the set of transfer matrices of the form (3.4.1) form a group: 
 There is defined a product operation ),(),(),( 131223 llTllTllT ttt )))

=⋅ ; 

 There exists a unit element IllT t ))
=)( 1,1 ; 

 Each element has inverse element ( ) )()( 2,1
1

1,2 llTllT tt ))
=

−
; IllTllT tt )))

=)()( 2,11,2  
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left and right reflection and transmission coefficients are the same. In this case, eq. (3.4.3) can 
be re-written as 
 

( ) )0,2/)1(()0,()2/)1(,0()( LNTSLTLNTS N
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)))))
Σ     (3.4.4) 

 
or, using (3.3.2) and (3.3.9)  
 





















−

−

=

)()(

)(

)(

)(

)(

2
)(

2
)(

)( 1
NN

N

N

N

N

NN

N

DD
R

D
R

D
RD

S

ΣΣ

Σ

Σ

Σ

Σ

ΣΣ

Σ
)

       (3.4.5) 

 
The knowledge of the total transfer matrix gives us the possibility to obtain an equation for 
the total transmission coefficient in explicit form, expressed by the scattering data for one 
potential. To calculate the total transfer matrix, we would like to obtain a simple analytical 
expression in the thN  power in eq. (3.4.4). For this purpose, it is enough to find an 
exponential representation of the matrix SLT

))
)0,(  with some additive parameter 3.  

 
Let us begin with the case of a lossless potential [4]. In this case, one can observe that the 
matrix SLT

))
)0,( , as well as both of the factors belong to the )1,1(SU  group.  

Now, one may remember that for the matrix of finite rotation for the spin of particles with 
spin 2/1 , which belongs to the )2(SU  group  
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the exponential representation becomes [5]4:  
 

( ) ( ) ( )2/sin2/cos2/exp ϕσϕσϕ
r)r))rr)

njInjU +==     (3.4.7) 
 
where ϕ  is a real additive parameter – the angle of rotation around the unit vector nr  ( nr  has  

real components and 12 =nr ). σ
r) is one vector of the Pauli matrices, which form together with 

the unit matrix I
)

, a basis for 22×  matrices 
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3 The parameter χ , which is the argument of the group element )(χg , is called an additive parameter, if for 
any two elements of this group )()()( 2121 χχχχ +=⋅ ggg .  
4 The second equality in (3.4.7) for the unit vector n

r
 can be obtained, using the anti-commutation properties of 

the Pauli matrices: jiijji ,δσσσσ =+ ))))  and the definition of the matrix exponent from the series. 
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The properties of the group )2(SU  are similar to the properties of the group )1,1(SU , with 
the exception that a )2(SU  transformation keeps the following value constant:  

constCCCC =+=+
2

2
2

1
2

2
2

1
~~ ,      (3.4.9) 

 
instead of (3.3.14) 
Therefore, we look for an exponential representation of the matrix SLT

))
)0,(  with different 

values of the parameters. In [4] it is shown that this approach is successful, however, the 
“angle of rotation ϕ ”, as well as some components of the “unit vector” nr  can be complex-
valued. 
Now we apply the same approach to the general case of a transfer matrix for the lossy system 
(not the )1,1(SU  case!). We try to look for the representation of the matrix SLT

))
)0,(  in the 

form (3.4.6), namely 
 

( ) ( ) ( )ϕσϕσϕ sincosexp)0,(
r)r))rr))

njInjSLT +==      (3.4.10) 
 
(in the eq. (3.4.10) we use the parameter ϕ  instead 2/ϕ  for convenience).  
Now we try to extract the parameter ϕ  and zyx nnn ,,  from the eq. (3.4.10). 
The left side of (3.4.10) is  
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The right side of (3.4.10) can be written as 
 

( ) ( ) ( ) =+= ϕσϕσϕ sincosexp
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( ) ( ) ( ) ( ) =+++ ϕσϕσϕσϕ sinsinsincos zzyyxx jnjnjnI ))))

   (3.4.12) 
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We can find parameters of the exponential representation by comparison of (3.4.11) and 
(3.4.12). The additive parameter ϕ  can be found by taking the sum of the diagonal elements: 
 

( ) ( ) αϕ =+−=+= − :)(
2
1)0,()0,(

2
1cos 22

2211
jkLjkLtt eRDe

D
LTLT   (3.4.13) 

 
The coordinates of the “vector” xn  and yn can be found by summation and subtraction of the 
non-diagonal elements, correspondingly: 
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( ) kL
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The z -component of the “vector” nr  can be found by subtraction of the diagonal elements: 
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We note that different from the lossless case, where the parameter ϕ  is real or pure 
imaginary, in the lossy case this parameter is complex in any case (see also the Section 3.5). 
As in the case of a lossless potential [4], the vector nr  now is complex–valued5 and (it is 
possible to show) it squared value becomes one: 
 

12 =nr .          (3.4.17) 
 
 Now, having the matrix SLT

))
)0,(  in the exponential form with additive parameter ϕ , 

we can easily write for the thN  power of it:  
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were we have introduced the notation  
 

( ) ( )jkLjkLtt eRDe
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And, after simple matrices multiplications, we have for the transfer matrix (3.4.4)  
 

( ) =−−+= )0,2/)1(()0,()2/)1(,0()( LNTSLTLNTS N
N

)))))
Σ  

 

                                                 
5 The complexity of the components of the unit vector n

r
, in contrast to the real unit vector for the operation of 

finite rotation, is caused by the fact that the transfer matrix )0,(LT t)  now is not hermitian. 
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Comparing (3.4.18) with the equation for the total transfer matrix, expressed through the total 
reflection and transmission coefficients (3.4.5), we can find for these coefficients: 
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Eq. (3.4.21) can be rewritten in another form using the definition of Chebyshev polynomials 
of the first, )(xTN , and second, )(xU N , kind [21].  
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Using the definition of the auxiliary values α  (3.4.13) and β  (3.4.19) we can rewrite the 
equations for the total reflection and transmission coefficients of the periodical chain of one-
dimension scatterers in the explicit form: 
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           (3.4.24) 
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The equations (3.4.24) –(3.2.25) are very important results of the present report. 
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 We note, that the eq. for the Nth power of the matrix )0,(LT t)  (3.4.18) and all 
formulae following for the reflection and transmission coefficient can be also obtained if one 
uses the standard methods to diagonalize matrices [22], for matrices with unit determinant. 
The present way, however, is clearer and can be a basis for future generalization in the case of 
multiconductor wires. 
 Let us now shortly investigate some special cases of eqs. (3.2.24)-(3.2.25). 
For the case of a real potential (lossless line), using eqs. (3.2.2) and (3.2.3), we can write 
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and, hereafter, (3.24)-(3.25) are reduced to the result of previous report [4]: 
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 For the case of one scatterer 1=N  (potential of general view), we use the values of 
Chebyshev polynomials ( xxT =)(1 , 1)(0 =xU ) and find from eq. (3.4.22) an obvious result 
 

DD =)1(Σ ;   RR =)1(Σ ;      (3.4.29 a,b) 
 
 
 For the case of two scatterers 2=N  using the values of the Chebyshev polynomials 
( 12)( 2

2 −= xxT , xxU 2)(1 = ) it is possible to find 
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which can also be obtained by the application of Feynman diagrams for the one dimensional 
scattering6. 

                                                 
6 During this calculation we use the facts that the coefficients R  and D  are quantum-mechanical complex 
amplitudes of the reflection and transmission events of  one-center scattering. The complex amplitude of the free 
propagation between points 2l  and 1l  is given by the exponent function ))(exp( 12 lljk −− . After that one can 
consider different quantum mechanical processes, which lead to the propagation through or reflection from the 
chain of two potentials (penetration through the first potential, propagation between potentials, propagation 
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 If the potential, which corresponds to one separate non-uniformity, is not easy to 
penetrate, 1≈R , 1<<D  one can observe a resonance scattering. To make a short quality 
investigation of this phenomena we consider the eq. (3.4.30a) and note that the one-potential 
reflection and transmission coefficients D  and R  have more slowly frequency dependence in 
comparison with the exponential function )2exp( jkL− . Let us investigate now the frequency 
dependence of the transmission coefficient )2(ΣD . For the main frequency region, when 

1~222 nkL R πϕ −−  (where Rϕ  is a phase of the transmission coefficient R , ..3,2,1=n ) 
the denominator in (3.4.27) has an order of magnitude one, and, by this way, the penetration 
through the two-potential chain is small 1||~|| 2

)2( <<DDΣ . However, in the narrow 

frequency bands, when 1222 <<−− nkL R πϕ , one can observe a resonant scattering. By the 
introduction of the detuning nkLk Rn πϕ 222 −−=∆  of the nth resonance one can write for 
the frequency dependence of the transmission coefficient in the neighborhood of this 
resonance the next equation: 
 

22

2

)2( ||2||1 RkjR
DD

n∆Σ +−
≈        (3.4.31) 

 
The eq. (3.4.31) describes a typical resonance frequency curve. For the zero value of the 
frequency tuning a value of the propagation coefficient strongly increases  
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For the case of the lossless potential 22

)2( ||)( DDD res ≈Σ  and it absolute value is one. 
 
 One can show [23] that in the case of resonance scattering the particle is “jammed” 
between these potential pits (barriers), and has multiple re-reflections. It spends a long time 
inside the chain of potentials that leads to the increase of the wave function amplitude inside 
the chain. In the electrodynamics language, during the resonant scattering, the current 
amplitude between two scatterers increases. If we deal with lossy systems, the losses of any 
nature (ohmic, radiation, etc.) have to increase. This, for example, can be important for the 
intensity of radiation of the system and for the resistance of the system with respect to ohmic 
heating.  
 
 
 
 
 
 
 

                                                                                                                                                         
through the second potential, reflection from the first and second potential) and use the quantum mechanical 
axioms, which state: 
 1. The amplitude of two independent events is the sum of their amplitudes; 
2. The amplitude of two events in sequence is a product of their single amplitudes. 
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3.5 Allowed and forbidden frequency zones. Connection of the parameters of quasi-
periodical and periodical systems. 
 
 In the present Section, we use the obtained results to investigate the transmission 
coefficients and to establish a connection between parameters of quasi-periodical and 
periodical systems. 
 First, we consider the lossless case. For such systems the equation of the “rotation 
angle” ϕ  (main branch) can be written ((3.4.26 a)) for  different magnitudes of the value α  
as 
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If the wave number (frequency) is such, that the parameter 1)Re(cos1 1 ≤=≤− −De jkLϕ , 
we have in the denominator of (3.4.21 b ) oscillating functions, and the total propagation 
coefficient is of the order of magnitude one. In the opposite limiting cases 1)Re( 1 ≥−De jkL  

or 1)Re( 1 ≤−De jkL , we have the hyperbolical function in the denominator and the 

propagation coefficient is exponentially damped )exp(~)( ϕND N −Σ  (for 1>>N ), and the 

reflection coefficient is about one. Thus, we have shown that allowed and forbidden zones 
appear for the finite chain of potentials. These frequency zones are called allowed and 
forbidden, correspondingly, because in the allowed zone for ∞→N  the particle can 
penetrate inside the semi-infinite chain and cannot be in the forbidden zone. The existence of 
the allowed and forbidden zones is well known in solid-state physics for an infinite periodical 
potential [7].  The good penetration through the finite chain of potentials for the allowed zone 
can be physically explained as a resonance scattering on the quasi-stationary energy levels of 
the chain of potentials, which appear because of the splitting of the quasi-stationary energy 
levels in the system of two potentials pits (barriers) (see the end of the previous Section). In 
this case, again one has 1≈R , 1<<D , the particle is “jammed” between these potential 
pits (barriers) and has multiple re-reflections. Again, the wave function (current amplitude) 
strongly increases, but for the chain the increase can be much stronger in comparison with the 
case of two potentials. This phenomena, numerically was investigated in [4] and can serve as 
basis to construct radiating devices, as well as to investigate the resistance of a periodical 
system with respect to ohmic heating. 
 
 It is possible to show that the inclusion of radiation losses reduces the penetration in 
the allowed zones, (see Section 4 of the present report), but the structure of the allowed and 
forbidden zones remains valid.  
 
 Now we establish the connection between the parameters of the propagation of the 
particle through the infinite chain and investigate parameters of one-center scattering. 
If the particle propagates through the infinite chain of potentials with period L ,  
 

)()( LuLlu =+          (3.5.2) 
 
It´s wave function can be represented as [7] (Floquet theorem): 
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)()exp()( ljKll Ψ⋅−=ψ ,        (3.5.3) 
 

)()( lLl ΨΨ =+          (3.5.4) 
 
where the function )(lΨ  is periodical with period L , and the parameter K , called quasi-
pulse (more exactly quasi-wave number), characterizes the translation properties of the wave 
function (it may be positive as well as negative). 
 

)()exp()())(exp()( ljKLLlLljKLl ψψ −=+⋅+−=+ Ψ    (3.5.5) 
 
Remember that in our case of periodical potential pits (barriers), separated by asymptotic 
regions, the wave function can be represented in the asymptotic region as  
 

)exp()exp()( 21 jklCjklCl +−=ψ       (3.5.6) 
 
The transfer matrix )0,(LT t) for the column vector 

↓
C  for one period translation is given by 

eq. (3.4.1). On the other hand, eq. (3.5.5) yields the following expression for the one-period 
transfer matrix 
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Equalizing the transfer matrices (3.4.1) and (3.5.7) leads to a homogeneous linear system for 
the column vectors:  
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which is solvable, if 
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This equation yields as a result for the quasi-pulse 
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The equation (3.5.10) establishes the connection between the quasi-pulse (quasi-wave 
number) K and the usual wave number ck /ω= . It is the so-called dispersion equation [7]. 
 From the (3.5.10) and (3.5.1) one can observe, that for the allowed zones the quasi-
pulse is real (for the lossless potential) and the particle can propagate along the infinite chain. 
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For the forbidden zones the quasi – pulse is imaginary and the propagation disappears. In case 
of a lossy potential the imaginary part of the propagation constant influences the partical 
propagation through the allowed zones by some decrement. 
 
 Now we want to add a few words about the propagation of energy in the infinite 
periodical system. Using the formulae from Section 3.2, one can obtain the following 
equation (in the asymptotic regions) for the averaged power propagating along the line 
 

( )2
2

2
1

2
0

2
CC

IZ
W C −=         (3.5.11) 

 
Hereafter, it is necessary to use the connection of the coefficients 1C  and 2C from eq. (3.5.8). 
Omitting quite awkward investigations, we formulate here the finite results: for some (even) 
allowed zones the direction of the propagation of the phase – the sign of the quasi-pulse K  
coincides with the direction of the propagation of the energy – have the sign of (3.5.11). For 
other (odd) allowed zones, these directions are opposite. It seems to be that this fact is 
connected with the experimentally established [24] connection of the phase and group 
velocity of periodically loaded transmission lines, when, for the some frequency bands, they 
have opposite directions. 
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4. Numerical example. Relative importance of different lossy mechanisms.  
 
 In this Section, we consider a specific example and apply the developed method. We 
consider a wire of radius 1=a  cm, which came from minus infinity at a height of 1=h  m, 
experiences several oscillations, and runs to plus infinity. The non-homogeneous part of the 
wire consists of 5 identical sections of a Gaussian form (4.1) (see also Fig. 4.1).  
 

( )∑
−=

−−−=
2

2

2
0 )(exp)(

n
nLzkbhzx        (4.1) 
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Fig. 4.1: Geometry of the quasi-periodical wiring structure: 1=h  m, b=0.75 m, 

1
0 75.0 −= mk , 01.0=a  m, 8=L m, 5=N . 

 
 First we consider a perfectly conducting uncoated wire, where only radiation losses are 
possible. The elements of the matrix of the corresponding global parameters [ ]),( lkP of the 
Full-Wave Transmission Line can be calculated using of our perturbation theory (eqs. 
(3.2.20)-(3.2.22)). These parameters are complex-valued and coordinate-dependent (see Figs. 
4.2 a,b,c,d). To check our calculation, we compare the results for k=0 with the static results 
for )(),( 000

12 lLlkP
kk

′=
→→

 and )(),( 000
21 lClkP

kk
′=

→→

 obtained by eq.(3.23)-(3.24) (see Fig:4.3 a,b). 

Since the considered wire system is symmetrical around the origin of coordinates, one can 
observe that the diagonal parameters are symmetrical and the anti-diagonal parameters are 
anti-symmetrical around the origin of the coordinates (see eq. 3.2.10). 
Hereafter we calculate Mei’s parameters )(lU M  and )(lTM  in the second order differential 
equations (see Fig. 4.4 a,b) (3.1.1). We note that for the symmetrical wire )(lU M  is an anti-

symmetrical function of l  ( )()( lUlU MM −=− ) and the integral ∫
∞

∞−
= 0)( dllU M , which 

confirm the reasoning at the end of the sec. 3.2 (eq. 3.2.11).  
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Fig. 4.2 b 
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Fig. 4.2 c 
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Fig. 4.2: Matrix of the global parameters for the Gaussian-chain wiring structure: 
a - ),(11 ljP ω , b - ),(12 ljP ω , c - ),(21 ljP ω , d - ),(22 ljP ω . 
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Fig. 4.3 a 
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Fig. 4.3: Comparison of the inductive and capacitive coefficients for 0=k  with static 
inductance and capacitance for the quasi-periodical wire structure: 
a - ),0(12 lkP =  and )(

0
lL′ , b - ),0(21 lkP =  and )(0 lC′ . 
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Fig.4.4: Mei’s global parameters for the periodical wiring structure: a - ),( ljU M ω , b - 
2/),( kljTM ω . 
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 The total potential ),( lku  for the quasi-periodical wiring system, which is calculated 
with the help of global parameters [ ]),( lkP  is presented in Fig. 4.5. Note, that the imaginary 
part of the potential is not exact periodical. In addition, it is important to note, that the real 
part of the “potential” practically does not depend on the frequency (at least for 5.10 ≤≤ k  
m-1) (see Fig. 4.6 a), but the imaginary part, which defines radiation, is frequency – dependent 
(see Fig. 4.6 b). This frequency dependence can be roughly approximated by a quadratic 
frequency function 2~),( klku . This approximation for different points (central maximum 
point of the real part of the potential and a relative minimum point of the real part of the 
potential) is presented in Fig. 4.7. It is interesting that the imaginary part of potential is 
positive in one point and is negative in another. The explanation, in our opinion, is that this 
complex wiring structure in some points radiates energy, but in some other points absorbs 
energy.  
 Now, with the knowledge of the potential we can obtain the total transfer matrix of the 
system and, after that obtain a transmission coefficient of the current wave through the 
system. To do that, simple numerical methods have been developed (see Appendix).  
 To check our calculation, we use the well-known MOM code CONCEPT. The 
configuration of the wire structure, which was used to model the infinite quasi-periodical 
structure, is shown in Fig. 4.8. The infinite quasi-periodical system was finished at some 
distance from the periodical part and was supplemented by the vertical risers loaded by the 
characteristic impedances of the line ( ) Ω7.317/2ln2/ ≈= ahZC πη . The system is 
excited by the unit voltage source 10 =U  V at the left terminal. Under such condition it is 
possible to show,  that the voltage on the right load is connected with the value of the transfer 
function. Of course, this connection is valid, if the Transmission Line approximation can be 
applied to the asymptotical and near – terminal regions of the line. 
 In the Figure 4.11 there are important results of the present report. The black curve 
presents the result of the CONCEPT code calculation for the configuration of Fig. 4.8, when 
the doubled voltage on the matched load with unit voltage excitation is approximately the 
transmission coefficient of the current wave through the system. On this curve, we can 
recognize the allowed and forbidden zones. However, in contrast with results of previous 
modelling with a real potential (red curve) [4] we can see the decrement of the transmission 
coefficient, which is caused by radiation. The green curve is the result of calculation with the 
potential from Fig. 4.5 by the matrix method. A quite good agreement with CONCEPT is 
observed (before the fourth allowed zone). However, because we have to calculate the 
potential in each frequency point (different from the low-frequency case) the calculation time 
is very long and we have to use a quite rough division of the interval. (We divided the 50 m 
distance interval into 1000 subintervals and used 100 frequency points. Moreover, for this 
rough approximation the calculation time was about 30 hours!). The difference of the two 
methods can be explained by the strong radiation near the vertical elements.  
On the other hand we used our analytical formulae for the propagation coefficient of the 
chain. First, we define by the matrix method the reflection and transmission coefficients (see 
Fig. 4.10) through one partial (central) potential of the Gaussian chain (see Fig. 4.9). This 
calculation is 5 times faster than the transfer matrix calculations for the total system. After 
that, we used our analytical formulae (with Chebyshev’s polynomials). The result is presented 
by the blue curve. The agreement with the previous curve is quite good. The difference again 
can be explained by two reasons: in reality, the potential is not periodic and the division is 
quite rough. 
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Fig. 4.5: “Potential” ),( lku  for the periodical wiring structure. a – real and imaginary parts, 
b – imaginary part. 
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Fig. 4.6: Spatial dependence of the real and imaginary part of the partial “potential” for the 
quasi-periodical Gauss system (the central period, 0=n , 44 ≤≤− z ) for different 
frequencies. 
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Fig. 4.7: Frequency dependencies (exact and approximation) of the imaginary part of the 
partial “potential” for the quasi-periodical Gaussian system (the central period, 0=n ) for 
different spatial points: a - 0=l ; b - 13.1=l  m. 



 41

 
 
 
 
 
 
 
 
 
 
 

0 10 20 30 40 50
0.0

0.2

0.4

0.6

0.8

1.0

∆h

ZC ZC

U0

x,
 m

z, m

 The investigated "Gaussian pit" wiring system 
h=1 m, ∆h=0.05 m
U0=1 V, Zc=317,7 Ω
|D(k)|=~2UZC

|y=50/U0

 
 

Fig. 4.8: Geometry of the quasi - periodical wiring structure for the CONCEPT simulation. 
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Fig. 4.9: One partial “potential” (central) of the Gaussian wiring chain ( 44 ≤≤− z ). 
 

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

0.0

0.2

0.4

0.6

0.8

1.0

R
ef

le
ct

io
n 

an
d 

pr
op

ag
at

io
n 

co
ef

fic
ie

nt
s

k, m-1

 |R(k)| -  reflection coefficient
 |D(k)| -  transmission coefficient

 
 

Fig. 4.10: Reflection and transmission coefficients for the one partial “potential” (central) of 
the Gaussian wiring chain. 
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Fig. 4.11: Transmission coefficient for the considered periodical structure calculated by 
different methods. 
 
 
 
 Now we consider ohmic losses and dielectric coating on the propagation of current 
waves through the quasi-periodical wiring structure. First, we consider the ohmic losses 
without radiation (when the potential is defined by the eq. (3.1.12) ). The numerical 
calculations have shown that the real part of the potential (3.1.12) practically coincides with 
the lossless case (see Fig. 4.6 for 0=k ). The imaginary part of the potential for the different 
conductivities of the wire is shown in Fig. 4.12. The corresponding propagation coefficient is 
displayed in Fig.4.13. One can observe that the influence of ohmic losses is small in 
comparison with radiation losses.  
 Second, we investigate the influence of the dielectric coating of the wire on the 
transfer coefficient. We consider a perfectly conducting wire with radius 1=a  cm coated by 
a dielectric layer with thickness 5.0=∆  cm and dielectric permittivity of 3=ε . The 
corresponding potential for one section calculated by 3.1.12 (in comparison with the uncoated 
case) is presented in Fig. 4.14, and the propagation coefficient is presented in Fig. 4.15. 
Again, one can observe that the influence of the dielectric coating on the propagation of the 
current wave is quite small.  
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Fig. 4.12: Imaginary part of the “potential “ ),( lku  for one “section” ( 44 ≤≤− z ) of the 
periodical structure for different conductivities of the wire. 
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Fig. 4.13: Propagation coefficients through the periodical structure for different conductivities 
of the wire. 
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Fig. 4.14: The “potential “ ),0( lu  for one “section” ( 44 ≤≤− z ) of a perfectly conductive 
coated and uncoated periodical wiring structure. 
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Fig. 4.15: Propagation coefficients through the perfect conductive coated and uncoated 
periodical wiring structure. 
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5. Conclusion 
 
 We have reduced in an exact way a homogeneous electrodynamical problem for 
current waves propagating along non-uniform coated wires with finite conductivity to a 
transmission line – like system of differential equations of first order (Full-Wave 
Transmission Line equations - FWTL) with global parameters. We applied a simple 
perturbation theory to define these parameters, which is based on only the thickness of the 
wire. These FWTL equations, in turn, can be reduced to a second order Schrödinger-like 
equation with complex “potential”, the imaginary part of which defines radiation, ohmic or 
dielectric losses.  
 Using the obtained Schrödinger-like equation the propagation of current waves along 
quasi-periodical thin-wire structures has been considered. Under the hypothesis that the quasi-
periodical wiring system corresponds to the quasi-periodical “potential” we have applied the 
method of transfer matrices, which was generalized to the case of complex potentials, and 
obtain an explicit form for the reflection and transmission coefficient through such a chain of 
potentials. The analysis of the formulae obtained has shown that for some frequencies the 
penetration through the chain is practically free, but for some frequencies it is suppressed. It 
was established a connection between the frequency regions with allowed and forbidden 
zones, which are well known from solid-state physics. The accounting for losses leads to the 
decreasing propagation in the allowed zones, but the effect does not disappear. It was shown 
that both the ohmic losses and coating effect are negligible in comparison with radiation 
losses. 
 Two other effects were noted which are connected to the penetration of the current 
wave through a quasi - periodical chain. The first effect appears if the potential, which 
corresponds to one separate non-uniformity, is not easy to penetrate. In this case for allowed 
zones the current strongly increases inside the structure, what can be a cause, for example, of 
strong radiation or heating inside the structure. The second effect appears for the infinite 
periodical chain. In this case it is possible to have opposite directions of phase penetration 
(direction of the quasi-pulse) and power penetration. 
 In the future we intend to use group theoretical analogies to consider propagation 
problems. Also we plan to consider the current propagation along multi-conductor periodical 
wire structures using one of the methods described in this report for the one-wire case: group 
theory (transfer matrices) method, standard matrix theory method, or the method of Feynman 
diagrams. Moreover, we will try to apply the considered method to a stochastically installed 
wire. 
 Finally, we note that the developed mathematical apparatus can be applied to other 
physical and engineering problems, for example, to the penetration of electromagnetic waves 
through composite materials with lossy sandwiched components.  
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Appendix. Numerical solution of the Schrödinger-like equation using the method of 
transfer matrices. 
 
 In this Appendix we shortly describe the procedure of the numerical solution of the 
Schrödinger-like equation with the aid of the method of transfer matrices. The method has 
some differences if compared to the method of transfer matrices for potentials (scatterers) 
with the same asymptotic values at the left and right asymptotes of the wire, which was 
described in Section 3.  
 First let us consider the scattering of a quantum mechanical particle at a potential step 
(see Fig. A.1).  

 
Fig. A.1: Potential step. 
 
The propagation of the particle is described by the one-dimensional Schrödinger equation:  
 

0))(( 2
0 =−+′′ ψψ luk          (A.1) 

 
This potential can be approximately replaced by the rectangular potential step function (see 
Fig.A.2) [5], and the solution of the Schrödinger equation can be written in the general form 
of  forward and backward running waves on the left and right sides of a specific point .0=l  
 

 
Fig. A.2: Penetration of the particle through the rectangular potential step. 
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where the wave numbers k  and k~   of the potential step function can be written as 
 

1
2
0 Ukk −=  and   2

2
0

~ Ukk −=     (A.3a,b) 
 
Note that, in contrast to Section 3, these wave numbers are different. Moreover, one or both of 
them can be complex-valued. Physically this corresponds to the decrease of the wave function 
of the particle during the penetration through the potential. However, as in Section 3, there is 
a linear connection between the components of column-vectors before and after the step 
barrier, which is realized by the transfer matrix ),~( kkS

)
: 

 

↓↓
⋅= CkkSC ),~(~ )

         (A. 4 a,b) 

 
The components of the transfer matrix can be found in a standard way solving the 
Schrödinger equation [5] (as the wave functions as well as their derivatives have to be 
continuous at the point of the step potential 0=l ). Merging of the solutions yields 
 










+−
−+

=
2/)~/1(2/)~/1(
2/)~/1(2)~/1(),~(

kkkk
kkkkkkS

)
      (A. 5) 

 
 Let us consider now a potential of arbitrary form (see Fig. A.3). We can break down  
 

 
Fig. A.3: A break-down of  an arbitrary potential )(lu  into rectangular step potentials for a 
numerical solution. 
 
 
the potential function  )(lu  (in the points Nn llll ......, ,21 ) into N rectangular step potentials (in  
Fig. A.3, 6=N ). (For practical purposes it is convenient to consider a regular discretization). 
The value of the potential on the left side of the first barrier and on the right side of the last 
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barrier is assumed to be zero. The value of constant potential in the interval between nl  and 

1+nl  is taken as a value of the potential function )(lu in the central point of the interval,  
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This value defines the propagation constant along the interval,  
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2
01 ++ −= nn Ukk           (A.7) 

 
Then, using the analogue of the consideration in the Section 3, one can now write for the 
transfer matrix along the interval ( )1, +nn ll  
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Formally, this equation looks like eq. (3.3.16) for the transfer matrix for free propagation; 
however, in contrast to (3.3.16) the constants nk  can be complex-valued for the under-barrier 
propagation. 
 
 Now, using the general approach of the transfer matrix method (as in the Section 3.4), 
we can write for the total transfer matrix with coordinate origin in the centre of the potential 
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            (A.9) 
 
Using the general relations (3.4.5) one can pick up the total reflection and transmission 
coefficients from the transfer matrix.  
 
 The set of formulae (A.5-A.9) and (3.4.5) allows to write a simple algorithm and 
computer program to calculate the reflection and transmission coefficients for the potential of 
arbitrary form. 


