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Abstract

All antennas, being limited in their low-frequency response, cannot radiate only an approximate delia
function. The remaining part(s) of the pulse (to give net zero area, or complete time integral) can appear before
and/or after the delta function. For late-time target identification we find here that these other parts are better placed
before rather than after the approximate delta function.
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1. Introduction

An antenna is required to send an interrogating electromagnetic wave at a target. An antenna (a different
antenna or the same antenna) is required to receive the scattered wave from the target. In both cases the antenna
characteristics mix with the target response function to complicate the target identification. What, then, can we do
to simplify this problem? The antennas can be designed to give the best possible transient response (or,
equivalently, transfer function).

As we know, antennas cannot radiate DC (to the far field). As such, within physical limits [2] an antenna
cannot radiate a pure delta function (impulse). Exciting the radiating antenna with a step function, the antenna will
radiate a wave with at least one zero crossing. The area (complete time integral) of the radiated waveform must be
zero [1]. In reception, the antenna response is the time derivative of its response in transmission [3]. Thus in
reception the response to a delta-function wave must also have at least one zero crossing.

An important class of antennas for use with transients is that of impulse radiating antennas (IRAs) [2],
which come in at least three types: reflector, lens (including small-angle TEM horns), and array. An important
characteristic is that they radiate an approximate delta function when driven by a step-function voltage. Even then,
however, the foregoing limitations concerning zero area still apply. The same applies to their receiving response to
a delta function.

This leads to the question discussed in this paper. Which of these types of IRAs is most suited for use in
late-time target identification?

While the antenna chamacteristics are, in peneral, vector-valued convolution operators, and the scafierer
(target) characteristics are, in general, dyadic-valued convolution operators, let us simplify the problem for our
analysis. Consider only a single polarization in radiation, scattering and reception. This simplifies the problem to a
scalar one. Let the target delta-function response be

7)) = fe () + 1.0

0 for £ <0
fe(1) = {n for ';L (early-time response, entire function, temporal form) (LD

Jp(t) = 0 for t < t; (late-time response)

The late-time is characterized by the ability to describe the response by a set of damped sinusoids (only) [7, 8]. For
present illustration we take a single damped sinusoid for the late-time response as



fu(t) = | Ry el L] 4 R ’;["'L]]w(f-rL) (12)
While R, isin general a complex number, this can be considered as a phase factor and we might take

J1(6) = 2Ry RN cog (tm (s [t -1, Ju(t-11.) (13)
For illustration, but sin{fm(s,[f-1t;]) would do as well.

While (1.1) characterizes the target response to a delta-function wave, it has been shown that it applies to
the time integral (step response) and second time integral (ramp response) as well [9]. This results from the fact that

ﬂwmrgatdﬂlm-ﬁlmﬁmgocsassz as 5 =0 where

~ =two-sided Laplace transform
5 = {1 + jo =Laplace-transform variable or complex frequency
g = natural frequency
* = complex conjugate
Ry = pole residue
This assures that

Ji(t)=0 a5 t > (1.5

For delta, step, and ramp responses. The entire-function fz (f), being time-limited must go to zero as  —
faster than any exponential (including, in general, a step to zero).

For later use we can write (1.1) as
15(1) = fse + fo(t) (1.6)

As the target delta-function response. We then also have
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as the step-function response (also going to zero at late time).



¢ Ideal Reflector- and Lens-IRA Temporal Responses

Figure 1.1 illustrates the ideal reflector- and lens-IRA responses which are described mathematically by

£.(0) = 8(f) -%[H{I+T) —u(t)]  (reflector IRA)

£ ~
main prepulse (2.1)
event
5t = 5(1) —%[u(:) - u(t-T)]  (GensIRA)
% P g
main postpulse
event

Here, for convenience, the main event (the delta-function part) has been placed at = 0. The reflector IRA then also
has a prepulse [2, 4], and the lens IRA has a postpulse [5], both consisting of a difference of step functions, The
complete time integral of both functions in (2.1) is zero. For present purposes these functions are for step response
in transmission and impulse response in reception.

The widths of both prepulse and postpulse are taken as the same T for convenience, but they need not be
the same. For the reflector IRA T is 2 F/c where F is the focal length of the paraboloidal reflector and ¢ is the speed
of light. For the lens IRA (including small-angle TEM horns) T is twice the transit time on the TEM hom. Array
IRAs are similar to lens IRAs in that the delta function comes first [6]. To give zero area, then a postpulse is
required, but the details of this waveshape have not been studied.

One way to remove the effects of the prepulse and postpulse is deconvolution. This can be accomplished in
various ways, such as by transformation into frequency domain, division of the target scattering by the antenna-
response spectrum, and inverse transformation back to time domain. Suppose, however, that one does not use such
deconvolution, for whatever reason, such as simplicity, or the presence of nonlinear elements (such as a TR. switch)
in the system, How, then, do the prepulse and postpulse affect the late-time target identification?

While both transmit and receive antennas enter into the total system response, let us consider just one of
these antennas. Applying the results twice accounts for both.
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Fig. 2.1 Ideal IRA Responses
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i Convolution of Target Response with Reflector IRA
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» = convolution with respect to time, t

Here we see the desired response f5(f). At the same time its integral 77, () appears. In the late time, ¢ > 17 ,
both terms have the same damped sinusoid with complex frequency s, . The residue (amplitude) is changed but the
8, isunchanged

The next term —T ' f, (¢+T) begins at t = T and the late-time portion begins at f = —T+1; . The
late-time portion of this waveform begins a time T before that of the previous two terms.

Let us now consider what happens after the “main event”, namely the delia-function part. Going out to
time f; for late-time identification we have three terms to consider. The first two (considered above) give a single
damped sinusoid with the same s, . The third term has its late-time start at T +f;. At time ¢y this term
contributes also a damped sinusoid of the same natural frequency s, , but reduced in amplitude and shifted in phase
by the factor

el = Feltall [cos(@,T) + jsin(wgT)] (3.2)
Together with the conjugate. Since Re[s,|T <1 the amplitude is significantly reduced at time #; afier the main

event. If we begin our late-time identification at this time the third term does not interfere with the identification,
merely adding some small contribution to the residue.



4. Convolution of Target Response with Lens IRA
Convolving the lens-IRA response with the target delta-function response gives

Tse(®) = 12 (0) = f5(2)
= 750) - 2 Aul) - 5u(-7)] @1
= fse(f) + fae() - %I:qu(t} + fur () = £ (-T) - fur(t-T)]

Now the desired response fs,(f) appears at the same time as its integral 7, (f) appears. This part is not a
problem,

The next term T f,, (t—T') begins at t = + T and the late-time portion begins a time T affer that of the
previous two terms. This is a problem.

MNow after the main event, if we begin our late-time identification at time 77 , we have the third term
mixing into the time window we are trying to analyze in an undesirable way. First T~ f,zz (1—T) intrudes into this
window from time 7j to 7y +7T, confusing the identification since we have more than our original damped
sinusoid during this part of the late time. Second T~ f,; (t~T') begins a damped sinusoid of complex frequency
Sq atatime 77,7 , mixing with the “main” damped sinusoid beginning at time Ty . If one attempts to match these
two damped sinusoids with a single damped sinusoid beginning at time T, then error is introduced in the
estimation of s, .

To estimate this latter error let us consider the combination
e M TLly(e-11) + a & UL Tyt -17 -T) @.2)
At £ =Ty this has amplitude 1. At ¢ =T; +T this has amplitude

e’ + g (ain general small and complex) (4.3)

Attempting to fit this with a damped sinusoid of complex frequency at the two points gives
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= g, T a eal for small ae e (4.4)

However, e 2! can be quite large, in which case

a

r
£, T = f.n{a)frr(l+gxﬂ ] = Eiglesar for large ae %al (4.5)

Thus significant errors can occur. Of course, the situation is more complicated since one is attempting to fit (4.2)
over an interval, not just two points.

To avoid these errors, one can redefine the target-identification window to begin at (=T +T . Hwoever,

the response to the main event has decayed to smaller values at this later time, leading to potential signal-to-noise-
ratio and signal-to-clutter-ratio problems.



5. Comparison of Responses

Figure 5.1 gives a graphical depiction of the responses which we have previously discussed. This shows
the damped simisoid with complex frequency s, being the only signal for analysis for ¢ = 17 in the case of the ideal
reflector IRA_

For the lens IRA, on the other hand, we have a portion of the late-time window (the mixing time) from
Ty to Ty +T with other signals, confusing the identification. The example has T <T; . For T >T; we still have

the problem, except more severely due to the extention of unwanted signals yet more into the late time response
from the main event.
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Fig. 5.1 Comparison of Responses
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6. Concluding Remarks

The analysis here is somewhat simplified due to the ideal-antenna assumptions. Furthermore, the
parameter, T, need not be the same for the various aniennas one might consider.

While the discussion here is in terms of a single antenna (in transmission or reception), the results apply to
the combination of transmission and reception, whether with two antennas (bistatic) or a single antenna

(monostatic). Merely apply the previous analysis twice.

The basic lesson here is that, for late-time target identification, it is better to have the “bad” or “unwanted™
parts of the antenna response before instead of after the main event (approximate delta function).
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