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Abstract 

 
 
For a thin wire model we establish a connection between the global (physical) 
representation of the parameters for a generalised (full-wave) transmission line theory, 
investigated earlier, and the modal representation of the parameters, which are contained 
in the coupling equations for each mode. These parameters are complex-valued, 
frequency- and gauge-dependent, and they depend on the local coordinate or on the modal 
number, respectively. With the concept of generalised transmission-line (TL) parameters 
it is shown that a thick wire can be treated as a multiconductor transmission line. 
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I. Introduction 
 
Linear structures constitute an essential part in electrical and electronic circuits, switch- 
boards, devices, systems and buildings. Therefore, it is unavoidable to treat the 
electromagnetic interaction of electromagnetic fields with these structures, and in recent 
days this interaction has to take into account higher and higher frequencies, currently 
reaching up to several GHz. Thus the usual, classical transmission line theory does no 
longer cover modern requirements for complex systems and the need for a great accuracy 
has led to the need for better models. Such models have to be capable to model very 
complex geometries, like finite lines, nonuniform line conditions with curvature and 
torsion, including periodic structures. They have to include radiation losses and non-TEM 
coupling at higher frequencies. Even for thick cables or cable-bundles at high frequencies 
azimuthal current distributions will became of remarkable amplitude and have therefore 
also to be treated in an extended new transmission-line theory.  
In the present paper we describe a new model which is based on the exact system of the 
electric field integral equations for the “current and potential” pair, which can be cast in 
the form of telegrapher equations. Therefore, most of the existing techniques to solve 
such equations can be applied. In general, the new theory is computationally more 
efficient than other full-wave methods in certain applied problems. Other advantages are 
the possibilities to derive a physical interpretation of the new line parameters and to 
establish a relation between thick wires and multiconductor lines. The new line 
parameters become complex-valued, gauge-dependent, and they depend on the local 
coordinate and on frequency. In the modal representation of these parameters their 
imaginary parts are related to the modal radiation resistances. They can be transformed 
into their global (physical) representation with the aid of lengthy (mathematical) 
expressions. 
New results are also presented for a thick transmission line above perfectly conducting 
ground. In this case the usual telegrapher equations are completed by an additional (third) 
equation for the angle-component of the current. The inductance per unit length and the 
capacitance per unit length become matrices of (in general) infinite dimensions. Besides 
the “longitudinal” inductance matrix we also obtain an “azimuthal” one. The three 
coupled telegrapher equations for the longitudinal component of the current, the 
azimuthal component of the current, and the scalar potential can be reduced to the usual 
two equations. In these equations, however, the line matrices become modified again. 
Another interesting result deals with the proximity effect. Evaluating this effect we can 
show, that a thick wire formally can be described by multiconductor TL equations. A 
short comparison with the result of Sommerfeld [19] will be performed.  
 
 
II. Global Parameters of the Generalised TL Theory in the 
Thin-Wire Model 
 
We consider a thin wire of arbitrary geometric form, )(lrG , near the perfectly conducting 
ground (see, for example, a semi-circular loop in  Fig. 1 a ), which can be loaded and 
excited by an external field )(rEi GG

 as well as by point sources 0
1U . It is assumed that the 

line is connected with the ground plane at both ends. Using the reflection principle in 
electrodynamics it is possible to show, that the problem of “half-loop” excitation is 
equivalent to the problem of excitation of the complete “closed loop” in the entire space, 
but with the sources and loads symmetrized with respect to the ground plane (see Fig.1 b). 
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This corresponds to a change )()()()( rErErErE riei GGGGGGGG
+=→ , where )(rEi GG

 and  )(rEr GG
 

are the incident and reflected electric fields, respectively. )(rEe GG
is the exciting electric 

field. All fields are continued into the entire space. To facilitate our calculation we will 
consider the symmetrized problem. 
 
 
 
 
 
       
 
 
 
 
           
 
 
Fig.1a: Excitation of a semi-circular loop.  Fig.1b: Equivalent symmetric  
       excitation of a complete circular loop. 
 
The induced current )(lI and the charge density )(lq  are sources of the scattered electric 
field, )(lEsc

l

G
. The tangential component of the total electric field sce

tot EEE
GGG

+=  on the 
surface of the wire has to be zero. As usual in the thin-wire approximation, we assume 
that the current and charge are distributed along the wire axis and consider the current 
tangential component only. This yields the boundary condition: 
 

0)()( =+ lElE e
l

sc
l                    (1) 

 
Here )()()( lElelE sc

l
sc
l

GG ⋅=  and )()()( lElelE e
l

e
l

GG ⋅= , where llrlel ∂∂= )()( GG  is the unit 
tangential vector of the curve which describes the wire axis. 
The scattered tangential electric field is calculated with the aid of the scalar potential 

)(lΦ  and the tangential component of the vector potential )(lAl : 
 

lllAjlE l
sc
l ∂∂−−= )()()( Φω                  (2) 

 
with (in the Lorenz gauge): 
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The function ),( llg ′  is the scalar Green’s function along the line, a  the radius of the 
wire, and ∫ ′= ldL  is the length of the complete closed loop. 
Using the continuity equation for the linear charge density and the total tangential current  
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0)()( =∂∂+ llIlqjω                   (5) 
 
we can rewrite equations (3 a,b) into a system of integro-differential equations for the pair 
of  functions “current and potential”: 
 

⎪
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=+′
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Now, in order to define the global generalised transmission line parameters, we consider 
an excitation of the transmission line by a point source 1

0U , located at the beginning of the 
line. The line is assumed to be loaded by a lumped impedance, 2Z , at the far end. Then the 
source )(lEi

l  can be written as [1] 
 

)2/()()()( 2
0
1 ΔΔ +−−−= LllIZlUlE l

i δδ   where 0→Δ             (7) 
 
The corresponding symmetrized exciting tangential electric field looks like 
 

)2/()2/(2)(2                                                                                 
)2/()()2/()()()()(

2
0
1

22
0
1

0
1

LlLIZlU
LllIZLllIZlUlUlE l

e

−−
≈−−−+−−++−=

δδ
δδδδ ΔΔΔΔ     (8) 

 
Let now the functions ),( llY ′ , ),( llK ′  ( [ ] 1−= ΩY , [ ] 1=K ) be solutions of the system (6 
a,b) for the current and the potential with the δ (l-l´)-source of unit amplitude located in 
the point l′ . 
Then it is possible to show that  
 

),(),( llYllY ′=′ ,                                        ),(),( llKllK ′−=′             (9) 
Due to the linearity of the considered problem we can write a solution for the total 
induced current as 
 

)2/,()2/(2)0,(2)( 2
0
1 LlYLIZlYUlI −=              (10) 

 
Having this, it is easy to find the unknown current in the point 2/L  from eq. (10): 
 

( ))2/,2/(21)0,2/(2)2/( 2
0
1 LLYZLYULI +=             (11) 

 
With that we write for the total current:  
 

)2/,(~)0,(~)( 0
2

0
1 LlYUlYUlI +=                (12) 

with 0
1

0
1 2~ UU = , )2/(2~

2
0
2 LIZU −=               (13) 

 
It is obvious that any other solution with voltage-like lumped non-uniformities in the 
termination points (with excitation in point 2 and lumped load in point 1, or with voltage 
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sources located in the points 1 and 2) can be presented in the form (12). For the potential 
)(lΦ  along the wire we find a similar equation:  

 
)2/,(~)0,(~)( 0

2
0
1 LlKUlKUl +=Φ                (14) 

 
Now we are ready to look for a system of differential equations for the potential and 
current in TL-like form: 
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Substitution of (12) and (14) into (15) and setting the factors in front of the independent 
constants 0

1
~U  and 0

2
~U  to zero yields the elements of the parameter matrix [ ])(lP : 

 
( )( ) 11

11 )0,()2/,()2/,()0,()2/,()0,()2/,()0,()()( −− −′−′= lKLlYLlKlYLlKlYLlYlKjlP ω      (16) 
( )( ) 11

12 )0,()2/,()2/,()0,()2/,()0,()2/,()0,()()( −− −′−′−= lKLlYLlKlYLlKlKLlKlKjlP ω       (17) 
( )( ) 11

21 )0,()2/,()2/,()0,()2/,()0,()2/,()0,()()( −− −′−′= lKLlYLlKlYLlYlYLlYlYjlP ω      (18) 
( )( ) 11

22 )0,()2/,()2/,()0,()2/,()0,()2/,()0,()()( −− −′−′−= lKLlYLlKlYLlYlKLlKlYjlP ω      (19) 
 
The prime at the capital letters Y and K indicates differentiation with respect to l. Thus we 
have shown that the system of integro-differential equations (6 a,b) with lumped 
excitation can be reduced to the differential equations (15) with parameters (16)-(19). 
These parameters (global parameters in a generalised TL theory or the parameters of 
Maxwellian circuits) are complex-valued and also describe the radiation of the system. 
They dependent on the geometry of the system and therefore on the local parameter l 
along the line. This fact was established earlier in [2, 3] with the method of product 
integrals and (up to a notation) in [4], by processing the numerical solutions for current 
and potential with the Method of Moments. We note that in the early seventieths it was 
suggested to describe the insulated dipole antenna in a relatively dense medium as a 
section of a transmission line with distributed radiation loss appearing as a part of the 
series impedance per unit length [5]. 
Also the parameter matrix [ ])(lP  in (15) depends on the gauge of the potentials. For the 
Coulomb gauge, e.g., it has a different form (because in this case the function ),( llK ′  is 
different). One of the ways to obtain gauge-independent parameters is to consider a 
second order equation for the current )(zI  (in [4] this form was given and the parameters 
were defined on the basis of the analysis of numerical solutions).  
 

0)()()()()( =+′+′′ lIllIllI TU               (20) 
 
The l -dependent coefficients )(lU  and )(lT  can be found by substitution of eq. (12) into 
eq. (20) and by setting the factors in front of the independent constants 0

1
~U  and 0

1
~U equal 

to zero. A simpler derivation for them follows from eq. (15). In both cases we obtain the 
result:  
 

( ) ( ) ( ) dllWdlPlPjldlPdl )(ln)()()(ln)( 221121 −=++−= ωU           (21) 
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[ ]
)(

)2/,()0,()2/,()0,()(det
)(
)()()( 2

21

22
21 lW

LlYlYLlYlYlP
lP
lP

zd
dlPjl

′′′−′′′
=−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
= ωωT        (22) 

 
where the function )(lW  is a Wronskian-like determinant  
 

)2/,()0,()2/,()0,(
)2/,()2/,(

)0,()0,(
)( LlYlYLlYlY

LlYLlY
lYlY

lW ′−′=
′

′
=          (23) 

 
Observe that the parameters in eq.(20) solely can be expressed by the function Y and its 
first and second derivatives. 
 
 
III. Modal Parameters in the Thin-Wire Model 
 
By virtue of the fact that all functions in equations (6 a,b) are periodic (with period L) 
with respect to the distances l  and l′ , we can solve this system by a Fourier series 
expansion using the complete function system { }ljkme−  , 
where Lmkm π2⋅= ,  …… ,2,1,0,1,2 −−=m          (24 a) 
We use the matrix notation  
[ ] )exp(

11
ljke mm

ljkm −=− ,   [ ] 11
1

=m             (24 b) 
and introduce modal amplitudes and modal functions for the exciting field and the 
induced potential and current:  
 

[ ] [ ] [ ] [ ])(1)( ,,, lEEeeElE e
ml

Te
ml

Tljk

m

ljke
ml

e
l

mm ⋅=⋅== −
∞

−∞=

−∑             (25) 

[ ] [ ] [ ] [ ])(1)( leel m
T

m
Tljk

m

ljk
m

mm ΦΦΦΦ ⋅=⋅== −
∞

−∞=

−∑              (26) 

[ ] [ ] [ ] [ ])(1)( lIIeeIlI m
T

m
Tljk

m

ljk
m

mm ⋅=⋅== −
∞

−∞=

−∑              (27) 

[ ]
11 mmm ΦΦ = ,  [ ] )exp()(

111
ljkl mmmm −= ΦΦ               (28) 

[ ]
11 mmm II = ,  [ ] )exp()(

111
ljkIlI mmmm −=               (29) 

 
Also for the integrals containing the scalar Green’s functions we write the expansions: 
  

[ ] ξξξξ 111

1
),()()(1),()()(1

0 0
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0 0
,

mmmmm jk
L
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L
lkkjljkljk

L
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L
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L ellgleleddle

L
ellglelelddl

L
G −−−+′−

∫ ∫∫ ∫ ++⋅=′′⋅′= GGGG          (30) 

[ ] ξξξ 111

1
),(1),(1

0 0

)(

0 0
,

mmmmm jk
L L

lkkjljkljk
L L

mm
C ellgddle

L
ellglddl

L
G −−−+′−

∫ ∫∫ ∫ +=′′=           (31) 

 
Applying the orthogonality property of the functions ljkme−  we derive a system of first-
order differential equations for the modal column-matrices of the potential and the 
current: 
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[ ] [ ] [ ] [ ]
[ ] [ ] [ ]⎪⎩

⎪
⎨
⎧

=⋅′+∂∂

=⋅′+∂∂

0)()()(

)()()()( ,

llCjllI

lElIlLjll

mm

e
mlmm

Φ

Φ

ω

ω
        (32 a,b) 

 
Formally these equations look like a classical system of Telegrapher equations for a non-
uniform multiconductor transmission line, and each mode corresponds to one “wire”.  
In eqs. (32 a,b) we have introduced per-unit length matrices (of infinite dimension) for the 
inductance and capacitance and their modal functions [ ])(lL′ , [ ])(lC′ , and modal 
amplitudes [ ]L′ , [ ]C′ : 
 

[ ] [ ]LGL
π

μ
4

0=′ ,  [ ] [ ] ))(exp(
4

)(
111 ,

0
, lkkjGlL mmmm

L
mm −−=′

π
μ   (33 a,b) 

[ ] [ ] 1
04

−
=′ CGC πε , [ ] [ ] ))(exp(4)(

1
1

1 ,

1
0, lkkjGlC mm

mm

C
mm −−⎟

⎠
⎞⎜

⎝
⎛=′ −πε   (34 a,b) 

 
Different from the classical line parameters, these parameters depend on the mode 
indices, they are complex-valued and frequency and gauge dependent (here the Lorenz 
gauge is used). Their connection with radiation phenomena is analysed in a subsequent 
section.  
Equations (32 a,b) can be combined into one second order differential equation for the 
column matrix of the modal current [ ])(lIm  (Pocklington equation). Its solution is 
obtained as: 
 

[ ] [ ]m
Tljk IelI m ⋅= −)( ,      [ ] [ ] [ ]e

mlm EZI ,
1 ⋅′= −    (35 a,b) 

 
Here 

[ ] [ ] [ ] [ ] [ ]
ω

ω
j

kCkLjZ mm ⋅⋅+′=′
−1'

, [ ] [ ] [ ]{ }
1111 ,

2
,

0
, 4

1
mm

L
mm

C
mmmm GkGkk

j
Z ⋅−⋅=′

ωπε
,  [ ]

11 ,, mmmmmm kk δ⋅=  

                     (36 a,b,c) 
[ ]Z ′  is the per-unit length impedance matrix (for modal amplitudes) which relates the 
current column matrix with the column matrix of the scattered field 
 
[ ] [ ] [ ]m

sc
ml IjZE ⋅′−= )(, ω , [ ] [ ]sc

ml
Tljksc EelE m

,)( ⋅= −       (37 a,b) 
 
With this field and the current )(lI  we can present the differential-(complex) power 
density along the line by virtue of the induced-EMF (IEMF) method (in analogy to [6], 
where the time averaged real part of this value was considered): 
 

[ ] [ ]{ } [ ] [ ]{ }∗
−−∗ ⋅⋅⋅=−= m

Tljksc
l

Tljksc
lIEMF IeEelIlElP mm)()()(            (38) 

 
The total radiated energy W  (time averaged) can be obtained by integration of (38) along 
the wire from 0  to 2/L . Using the symmetry property of the current )()( lIlI −=  (which 
is caused by the symmetrical reflection of the semi-loop and the symmetrization of the 
sources and loads) and the orthogonality property of the functions ljkme−  we find: 
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[ ] [ ] [ ]{ }m
T

m IjZILW ⋅′⋅= )(Re
4

* ω              (39) 

 
On the other hand, the power which is radiated by the current distribution (27) in the loop, 
can be evaluated in the standard way: Calculate the vector potential for the far field and 
the corresponding electric and magnetic fields, their Poynting vector, and, finally, 
integrate over angles. After a lengthy and cumbersome calculation one can show that the 
total radiation from current (27) is expressed by the same equation (39) (in the thin-wire 
approximation). 
 
Now we establish the connection between the modal and global parameters, investigated 
in the previous Section. To do that we consider a lumped δ - source with unit amplitude 

0V  located in the point with coordinate 1l . For such a source the exciting tangential field 

)(, lEe
l

δ  and its Fourier transform can be calculated as 
 

)()( 10
, llVlEe

l −= δδ ,  [ ] [ ]1

2
0,

,
ljke

ml
meVE

π
δ =   ,10 VV =           (40 a,b,c) 

 
Using eqs. (32 a,b) and (35 a,b) the corresponding functions for the current and the 
potential along the wire then become: 
 

[ ] [ ] [ ]110
1 2
),( ljkTljk mm eZeVllY ⋅′⋅= −−

π
,    [ ] [ ] [ ] [ ] [ ]1110

1 2
),( ljk

m
Tljk mm eZkCeVllK ⋅′⋅⋅′⋅= −−−

ωπ
 

           (41 a,b) 
 
The substitution of these functions into (16)-(19) yields the desired matrix for the global 
parameters [ ])(lP  and establishes the connection between the modal and global 
parameters. 
 
For the case of a finite closed wire with high symmetry (e.g. circular loop in space, 
horizontal loop parallel to the ground [7], vertical semi-loop near a  perfectly conducting 
ground [1]; for all these curves the curvature constK = , and torsion 0=b ) the scalar 
Green´s function ),( llg ′  and the scalar product of the tangential vectors )()( lele ll ′⋅ GG  only 
depend on the difference ll ′−  of their arguments:  
 

)(),( llgllg ′−=′ ,    ))(cos()()( lllele ll ′−=′⋅ ϕGG      (42 a,b) 
 
This leads to a diagonal matrix representation of modal parameters.  
 

[ ] ∫
−+⋅=

L
jk

mmmm
L mellgdG

0
,,

1

11
),())(cos( ξξξϕξδ  [ ] ∫

−+⋅=
L

jk
mmmm

C mellgdG
0

,,
1

11
),( ξξξδ    (43 a,b) 

 
For example, in the case of a vertical semi-loop near a perfectly conducting ground eqs. 
(43 a,b) together with (33),(34) yield: 
 

( ) πμ 8),,(),,( 110 aRkgaRkgRL mmm −+ +=′   ( )),,(4 0 aRkgRC mm πε=′    (44 a,b) 
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Using (44) together with (35) and (36) we obtain the well-known modal solution for the 
current distribution in a vertical semi-loop [8, 9]. The function mg in (44) corresponds to 
the known function in the analytical solution of the diffraction problem for the circular 
loop in free space ([10], [11], [12]). 
 

( )∫∫
∞ −−+−

−
=

+
=

0

2
22

2

0
222

)2(sin4 22222

2
)2(sin4

),,( ρρρ
ρ

π ϕϕ ρ

πϕ
ϕ

dkRkJk
kk

ed
aR

eaRkg m

kkaaRjkjm

m         (45) 

( )( ) ( )dxxjJxERmaRRaRkg
kR

mmm ∫ −+−−−≅
2

0
22 )()()2/1(2ln2),,( πψγ        (46) 

)(2 xE m  is the Lommer-Weber-function [11,13]. 

 
In Figs. 3a and 3b the spatial dependence of two global parameters is shown for this 
configuration: )(12 lP  - the global “inductance” and )(21 lP  - the global “capacitance”. 
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Fig. 3: Distributed global parameters for the semi-circular vertical loop terminated at both ends. 
 
The method of modal parameters can also be applied to the case of an infinite wire of 
arbitrary form. However, in this case we have to integrate over all the modal states instead 
to summarize. One example of a system of high symmetry (translation symmetry) is an 
infinite straight wire parallel to the ground (for this case the curvature 0=K , torsion 

0=b ). For this configuration the corresponding TL-like equations decouple. We studied 
the modal inductances and capacitances in different gauges in detail [14, 15]. There, the 
method of modal parameters (which are connected with radiation) allowed us to establish 
a physical meaning of the global parameters. In the cases of high symmetry the method 
gives us the possibility to obtain simple analytical equations for the induced currents and 
potentials. In addition, this method is efficient for lower frequencies, when L~<λ , and 
we have to use only a few number of modes to get very satisfying results.(Further 
simplification is possible, for example, for smooth wires [16].) Also, the modal approach 
can be generalized for an important practical system: A horizontal thick wire near the 
ground which is considered in the next Section.  
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IV. Modal Parameters for the Horizontal Thick Wire 
 
In this section we consider a thick, lossless, cylindrical, and horizontal wire near the 
perfectly conducting ground which is excited by a plane electromagnetic wave (see Fig. 
4).  The exciting electromagnetic field induces a surface current density ),( zi ϕ

G
 on the 

surface of the wire with two components: the axial current density, ),( ziz ϕ , and the 
azimuthal current density, ),( zi ϕϕ ,   
 

),(),()(),( zieziezi zz ϕϕϕϕ ϕϕ
GGG

+= ,  where )0,cos,sin()( ϕϕϕϕ −=eG , )1,0,0(=zeG        (47) 
 
It depends on two variables of the surface of the wire: the cylindrical coordinates ϕ  and 
z . This fact requires a modal expansion depending on two sets of parameters, due to the 
symmetry of the system: the pure translation symmetry along the z-axis and the 
approximately axial symmetry around the z-axis. Corresponding to these symmetries it is 
possible to use for the Fourier expansion the following complete system of modal 
functions { }πϕ 2)exp()exp( jmzkj −⋅′− , where the first exponent is a representation of 
the translation group, the second one a representation of the rotation group. The real 
number k′  and the integer m  are parameters of these representations. 
 

 
Fig. 4: Plane wave coupling to an infinite thick wire. 
 
For the case of plane wave excitation two components of the exciting tangential electric 
field on the surface of the wire have to be taken into account (including reflection from 
the ground plane):  
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where )cos(:1 θ⋅= kk ,and θ  is the angle of incidence. 
 
The Fourier components for the case of a vertically-polarized plane wave are given by: 
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( ) ( ))sin(2)sin(cos
)sin(
)cos(22,, 1

θπθ
θ
θπϕ kaJ

k
kmkhjEE m

mie
mk +−=           (51) 

amLmkm =⋅= π2 ,  ϕal =  , aL π2=               (52) 
 
We note that for the plane wave excitation we only have one axial mode, zjke 1− , in the 
Fourier expansion. 
Then we can write a system of electric field integro-differential equations for the current 
components and for the scalar potential (in the Lorenz gauge) on the surface of the wire. 
For that we have to use a zero-boundary condition for the two tangential components of 
the total (exciting and scattered) electric field, and to integrate the surface density of the 
induced charge over the surface of the wire to obtain the expression for the scalar 
potential, and, finally, to apply the continuity equation for the induced current densities 
and charge ),( zq ϕ . For convenience we introduce normalized values for the current 
densities (which have the dimension of the current).  
 

),(2),( ziazI ϕπϕ ϕϕ = ;   ),(2),( ziazI zz ϕπϕ =                      (53) 
 
These currents and the scalar potential are then expanded into Fourier series on the 
surface of the wire using the chosen modal system:  
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[ ]
1111 ,,,, mkmmk II ϕϕ = ;  [ ] πϕϕ 2)exp(),(

1
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[ ] [ ] [ ] [ ])(122),( ,,,,,, 11

1

1

1 lIIeeeIezlI mkz
T

mkz
Tljkzjk

m

ljk
mkz

zjk
z

mm ⋅=⋅== −−
∞

−∞=

−− ∑ ππ      (56) 
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[ ]
1111 ,, mkmmk ΦΦ = ;  [ ] π2)exp(),(

1

1

1111 ,, ljkezl m
zjk

mkmmk −= −ΦΦ         (59) 

 
In eqs. (54) through (59) we have introduced both, modal amplitudes and modal 
functions. 
In our last step we substitute (54)-(59) into the system of the electric-field integral 
equations for the currents and the potential and obtain, after a longer calculation, the 
following system for the modal amplitudes (60 a,b,c) and the modal functions (61 a,b,c), 
respectively: 
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In eqs. (60 b,c)  [ ]
21121 ,, mmmmmm kk δ=  is a diagonal matrix. 

 
In eqs. (60) and (61) we have introduced the per-unit length capacitance matrix and per-
unit length inductance matrices (all of infinite dimension) for the axial current and for the 
azimuthal current in their modal amplitude-( [ ]C′ , [ ]zL′ , [ ]ϕL′ ) and  their modal functions 
( [ ])(lC′ , [ ])(lLz′ , [ ])(lLϕ′ )-representation: 
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[ ] [ ] [ ] [ ] [ ]U
c

lClLCL zz 2
1)()( =′⋅′=′⋅′ ;   [ ]U  is the unit matrix           (66) 

 
The matrices [ ]zG  and [ ]ϕG  appear (as well as in (30)-(31))) after the calculation of the 
Fourier representation of the kernels of the electric field integral equations using Graf’s 
addition theorem for cylindrical functions [13]: 
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The system (61) formally looks like the system (32) for the modal current and the 
potential functions. However, it includes three matrix equations instead of two in eq. (32). 
This is caused by the necessity to satisfy a zero-boundary condition for the two tangential 
components of the total electric field on the surface of the wire. The formal solution of 
eqs. (60)-(61) under consideration of eqs. (53)-(54) yields the current density distribution 
along the wire. 
 
We note, that the integro-differential equations for the axial and azimuthal components of 
the induced current density in the Pocklington-like form, i.e., with excluded scalar 
potential, was obtained in the early seventieths [8] for the toroidal wire (“thick circular 
wire ”). The importance (in certain cases) of the consideration of the azimuthal current 
components for the coupling of a pair of skewed transmission lines was specified in [17]. 
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From a calculational point of view, it is not necessary to consider a large number of terms 
in the parameter matrices, because they decrease as !/1 m  for finite ka . This is in 
particular true for frequencies which are important in modern high-frequency ( 1~ka ) 
applications. Therefore, the current distribution along a thick wire, including the 
proximity effect, can be described by matrices of finite dimension for an arbitrary 
excitation. 
In many cases the axial component of the induced current, ),( zIz ϕ , is of interest only. For 
example, the total axial current is equal to the corresponding Fourier amplitude with zero 
index:  
 

)(),()( 0

2

0

zIdazIzI z
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z == ∫

π

ϕϕ              (69) 

 
Then the TL-like modal system for the axial current and the potential with renormalized 
capacitance and current source can be obtained from eq. (61) excluding the azimuthal 
component [ ]),(,, 1

zlI mkϕ : 
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One can say that in eq. (70) the thick wire is considered formally as a multiconductor 
system, if we assume that each mode corresponds to one wire. 
After a straightforward matrix calculation we obtain an explicit analytical solution for the 
axial current. The current amplitude, for example, is: 
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All equations mentioned above for the current and the potential, (60) through (71), have 
been obtained for an excitation of general form and for arbitrary modal amplitudes of the 
exciting electric field e

mkzE ,, 1
, e

mkE ,, 1ϕ  in (48)-(49). However, in our case of excitation 
(vertically-polarized plane wave) with modal amplitudes (50)-(51) a further essential 
simplification is possible. One can show that for these amplitudes the following relation 
holds: 
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mkzm

e
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kE ,,2

1
2

1
,, 11
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After substitution of eq.(72) into (71) and some matrix manipulations, taking into account 
(66), we can achieve a simpler expression for the modal current in (71): 
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[ ] [ ] [ ]e
mkzzmkz EL

kkjc
kI ,,

1
2
1

2,, 11 )(
⋅′

−
= −               (73) 

 
Using eq. (72) it is also possible to show that for the vertically-polarized plane wave the 
azimuthal current amplitude is absent: 
 

[ ] 0,, 1
=mkIϕ

                 (74) 

 
This fact now has a fundamental physical impact: We deal with a TM wave, i.e. the z- 
component e

zH  of the exciting magnetic field is zero. It is proved (see, for example [18]) 
that in every system of ideal conductors with cylindrical surfaces of arbitrary form (not 
necessarily circular cylinders) the solution of Maxwell’s equations decouple into two 
systems of waves: TM waves and TE waves. Since the azimuthal current is connected 
with the z component of the magnetic field, it is zero for the TM polarization. 
Some numerical examples for the azimuthal angle dependence of the axial current 
induced by the vertically-polarized plane wave are presented in Fig. 5. 
 

 
Fig.5: Azimuthal angle dependence of the axial 
current ),(2),( ziazIz ϕπϕ = . 

1=iE V/m, 4πθ = , 05.0=a m, 1.0=h  m, 
0=z .   Curve 1- 1.0=f GHz; 2- 1=f GHz;  

3- 3=f GHz; 4 - 10=f GHz. 

 
Fig. 6: Azimuthal angle dependence of the axial 
current ),(2),( ziazIz ϕπϕ =  for the TEM 
wave. 10 =Φ V/m, 05.0=a m, 1.0=h m, 0=z . 
Curve 1 – (75); 2 – modal solution, 3 terms; 3- 
modal solution, 5 terms. (The difference 
between the exact solution and modal solution 
with 7 terms is not recognized).  

 
To check our approach we compare our results for the azimuthal distribution of the axial 
current, ),( zIz ϕ , with the known analytical result for the current distribution of a TEM 
wave, propagating along a thick wire near the ground [19]. In this case the electric and 
magnetic fields have only transverse components, the electric field distribution in the 
transverse plane has the electrostatic form, and the scalar potential for a fixed z does not 
depend on the azimuthal angle ϕ  and has a constant value 0Φ . In our notation this 
solution has the following form: 
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To compare our results with (75), in a first step we rewrite the system (60 a,b,c) for the 
TM polarization taking into account (74): 
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Noting that the z- component of the electric field for the TEM wave is zero, we obtain 
instead of (75) a uniform system of linear equations. The condition of the existence of a 
non-trivial solution of this system then gives: 
 

[ ] [ ] 022
1 =′⋅′+− zLCk ω , or, using (66):  2222

1 / kck == ω            (77) 
 
From  eq. (76b) we then derive: 
 

[ ] [ ] [ ] [ ] [ ]mkzmkmkz GC
k

I ,
1
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,,,

4 ΦΦ ⋅=⋅′= −

η
πω               (78) 

where the matrix [ ]zG  is taken for kk →1 . 
 
Remember that for the TEM wave the scalar potential ),( zϕΦ on the wire does not 
depend on the angle. Therefore we obtain: 
 
[ ] 0,0, 2 mmmk δπΦΦ =                 (79) 
 
Comparing the first three terms of a Fourier series for eq.(75) (with respect to the angle 
ϕ ) with the first three terms calculated with the aid of (78),(79), and (57) for small ha 2/  
one can show, that eq. (75) as well as eqs. (78),(79), and (57) lead to the same result. One 
can see from the numerical example, presented in Fig. 6, that for the case aah ~−  (when 
the distance between the surface of the wire and the ground plane is about the radius of 
the wire) a good agreement is achieved, even for only a few modal terms. This example 
demonstrates the possibility to describe the proximity effect by the modal method. 
 
In conclusion of this section we offer a criterium for the notation of a “thick wire”. One of 
the principal physical features specific for a thick wire is the azimuthal current density, 
which is induced by the azimuthal component of the electric field for the TE polarization. 
For the criterium of the thickness of the wire we can consider the ratio between the 
maxima of the absolute values of the current density components for the TE polarization 
and for the TM polarization: )(max)(max ϕϕϕ

TM
z

TE II . The calculation of the azimuthal 

component )(ϕϕ
TEI , which we do not describe here, has shown that this ratio is small for 

1<<ka  and is about 1 for 1~ka , for different heights of the wire. Thus, for values of the 
parameter 1≥ka  the wire should be considered as a thick wire. 
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V. Conclusion 
 
The connection between the global TL parameters (parameters of Maxwellian circuits, 
which describe the exact solution for the induced current of the Maxwell equations for a 
thin wire of arbitrary geometric form) and the current and scalar potential constituting 
functions of the wire (for lumped sources, which are familiar in antenna theory) is 
established. These response functions, in turn, are connected to the so-called modal 
transmission line parameters. They are introduced as matrices in the Fourier 
representation of the electric field integral equation for the current and the scalar 
potential. They are complex-valued, depend on the used gauge and are connected with 
radiation. The solution for an arbitrary wire can be formally derived from these modal 
parameters. For high-symmetry cases which are characterized by constant “Differential 
Geometry Parameters” of the thin wire like, e.g., curvature and/or torsion, the 
corresponding matrices of the modal parameters become diagonal.  
The method of modal parameters is generalized for the practically important case of the 
excitation of a thick wire near ground. In this case the modal representation of the electric 
field integral equation generally includes an additional equation for the azimuthal 
component of the induced current. However, a TL-like system for the axial current and 
the potential which is similar to the usual TL system for multiconductor wires can be 
derived. 
We have shown that the obtained system (60)-(61) allows an additional simplification for 
TM or TE waves: For each such polarization the system decouples into a system of two 
matrix equations. Moreover, the solution of the corresponding homogeneous system 
coincides with the solution for the axial current distribution for a TEM wave propagating 
along a thick cylindrical wire, which was obtained at the beginning of the twentieth 
century [19]. Corresponding calculations for the TE polarization as well as an 
investigation of the global parameters for thick wires and of modal parameters for the 
curved thick wire will be a theme of further papers. 
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