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Abstract

This note provides a numerical verification of the extended BLT equation for a
transmission line structure located in the vicinity of a perfect ground plane. The line is
excited by a nearby infinitesimal current element, and as a consequence, it is illuminated
by a spherical wave having a 1/r fall-off of the field intensity. Using suitable Green’s
Junctions for the ground plane effects, an extended BLT equation Jor the transmission line
~ voltages and the E-field at observation locations is formulated. Solutions are obtained
both numerically and symbolically. One key issue in this analysis is including both the
common mode (antenna) and differential mode (transmission line) contributions fo the

scattered field from the line. At the conclusion of this note, there are several suggestions
of future work that could be performed in this area.

Work conducted under the provisions of AFOSR MURI Grant F49620-01-1-0436
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Example of the Use of the BLT Equation for
EM Field Propagation and Coupling Calculations

1. Introduction

The original BLT (Baum-Liu-Tesche) equation was developed for determining the
voltage and current responses at the nodes of a general multiconductor transmission line
network [1]. As noted in this and other references [2], the solutions for these responses using
the BLT equation are approximate, in that they involve the assumptions of transmission line
theory to describe the behavior of the electromagnetic waves being propagated along the

branches (or “tubes”) of the network. Recently, an extension of the BLT equation concept was-

proposed to include the effects of EM field propagation in space (along trajectories that can be
thought of as being an imaginary field propagation “tube”) [3]. In this development, the
possibility of non-plane wave propagation was suggested, and the coupling of these fields to
the lines was taken into account. Moreover, the re-radiation of EM fields from the transmission
line currents is provided. With these effects included, an extended BLT equation was
formulated, with observables being a combination of both transmission line voltage and E-field
Tesponses. : '

In the present note, the use of the extended BLT equation developed in ref[3] is
illustrated with a numerical example. A simple geometry is postulated involving a 2-wire
transmission line, which is a structure that is appropriate for a conventional BLT analysis.
However, this line is excited by a transient current element located near the line, and
consequently, the excitation of the line is by a spherical wave. Moreover, the line is located
next to a conducting ground plane, and this affects both the incident field exciting the line and
the re-radiation of the line. A distant observation point is also defined in this problem, and the
solution for the E-field at this location is also included in the BLT formulation.

All of these features are included in the extended BLT equation, which permits an
analysis in the frequency domain. Included in this analysis is not only the transmission line
response, but the common mode (or antenna mode) response of the transmission line structure,
which has an effect on the scattered field. As will be noted in what follows, however, these
scattered fields from the antenna are small compared with the primary fields emitted from the

. source.

" It is important to point out at the onset of this analysis, that while spherical waves are
used to represent the EM fields propagating to and from source and field observation points,
these fields are assumed to be locally plane waves at the transmission line structure.

e



2. Problem Description and Geometry

The problem under discussion here involves a simple two-wire transmission line
ilfuminated by an electric and/or a magnetic source, as shown in Figure 1. This line/source
configuration is similar to that examined in ref.[3], with the exception that now an infinite,
perfectly conducting ground plane is added to the structure.

As in the problem discussed in [3], the goal of the present analysis is to develop an
extended BLT equation for computing the two load voltages on the transmission line, as well
as the E-fields at a distant observation point and at the transmission line.
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Plane
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Field \
Observation
- Point ‘
Field ' o (nduced Load
Observation o "A Responses
Point _ ' ‘
»>2%< \yfs
Vi 1, >
r2 { $ y . Wo\
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Source(s)
‘ Transmissicn Line

Figure 1. Geometry of a simple elementary source exciting a transmission line.

In performing this analysis, the following assumptions are made:

1. The distances between the source, transmission line, ground plane and any observation
points are assumed to be large compared with the wavelength, so that far-field
expressions for radiated or scattered fields can be used.

2. The transmission line cross-section is assumed to be electrically small, so that the
induced differential mode response can be represented by transmission line theory. The
transmission line length can be comparable or larger than the wavelength.



3. The currents on the two-wire line are portioned into differential mode (transmission
line) and common mode (antenna) components. The common mode response has no
effect on the transmission line load responses, as it is zero at the ends of the line.
However, it does affect the response of the EM field at distant observation points. The
differential mode current response is calculated using conventional transmission line

~ theory, and the common mode response is calculated using an approximate
transmission line-like solution.

‘4. The transmission line equations for the propagating voltage and current waves on the

line in the presence of the ground plane are assumed to be identical to those of an
isolated line. The excitation field for this line, however, is modified by the ground

“plane. This is equivalent to saying that the transmission is loosely coupled to its

ground plane image.

The P and M sources shown in Figure 1 radiate an EM field towards the transmission

line (in a direction defined by the angle ;) and towards the observation point (in a direction
 defined by the angle y»). Due to the anisotropic nature of the radiation from general sources,
the amplitudes of the EM fields in these directions will be different. Also shown in Figure 1 is
‘the angle of incidence y; of a field incident on the transmission line, and a scattering angle, ¥/,

~which corresponds to an angle at which the radiated E-field from the transmission line is
observed. '

The specific example of the two-wire line considered in this note is shown in Figure 2.
The transmission line consists of two parallel conductors, each of radius @ and length L, and
separated by a distance 4. This line is terminated by two impedance elements, ZL, and ZL,,

and the induced voltages across these loads are the observation quantities. This line is located
parallel to an infinite ground plane, at a distance # from the center of the line.

The excitation source for this problem is taken to be an infinitesimal source with
current moment Idl. This source is parallel to both the transmission line and the ground plane
(in the z-direction), and is located on the y-axis at a distance r; from the transmission line

center. The field observation point is also located along the y-axis at a distance r, from the
source, as shown in the figure. For this geometry the various angles discussed above are all
equal: Y=y, = W, = ¥; =7/2. :

ey
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Figure 2. Specific example of the line geometry of a simple elementary source exciting a
transmission line.

As discussed in ref.[3], the signal flow graph for the problem without the ground plane
is the simple two tube, four node graph shown in Figure 3. With the ground plane present, the
signal flow graph for the excited transmission line is the same, but the EM field coupling and
propagation relationships on the tubes are formulated using modified Green’s functions that
take into account the presence of the conducting plate. Details of these Green’s functions are
provided in the next section. |

Nods 2
, L]
Tube 1 —
; Node 4
Nade 3 ~ Source
@--ooiTn '."."Z:'Z:‘:'.':'.’::'.'Z'.Z::::.
: TFube 2
®
Node 1

Figure 3. The signal flow graph for the EM interactioﬂ geometry of Figure 2.
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3. The Extended BL'T Equation

The derivation of the extended BLT equation for this problem begins by defining
traveling wave components of positive and negative traveling voltage waves on the
transmission line (tube 1), and similar positive and negative propagating E-field waves on the
field propagation tube (tube 2). These traveling waves are determined at each of the nodes in
the network, and are re-expressed as incident and reflected waves at the nodes. Figure 4
illustrates the incident and reflected voltages and E-fields on the signal flow graph.

The development of the extended BLT equation for this network involves combining
both the tube propagatlon relationships and the node reflection relationships, as described in
ref, [3]. However, in the present analysis with the ground plane, the effect of the ground plane
on the field coupling and radiation of the transmission line must be taken into account.

Node 2
-
inc ‘ inc
A Source ‘E} N Node 4
Node 3 @ L et
gl \.» ' N~
Tube 2
fef © bl ‘.\ Tube 1
VQ Vi
I 1 Transmission line tube b
' EM field ﬁropagalion "ube" Node 1

Figure 4. Definition of the incident and reflected voltages and E-fields on the signal flow

graph.

3.1 Tube Propagation Relationships
3.1.1 Propagation on Tube 1 (the Transmission Line)

To begin with the development of the extended BLT equation, we first review the
propagation telationships for the positive and negative traveling voltage waves on the
transmission line. For the transmission line tube 1 located in free space and excited by an
incident plane wave, ref. [3] has developed the following matrix equation relating the reflected
and incident voltage waves at nodes 1 and 2:

A I N B LA R RUA 248 B
= s : m
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As shown in Figure 5, the excitation of this line is provided by an incident EM field
with the E-field in the plane of the transmission line and an angle of incidence 1. This

incident field induces charge and current everywhere on the line, and the specific observation
quantities of interest are the load currents and voltages, as noted in the figure.
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A .

., 4 .

< S >
+ N +

LTV, Z.. Y Ws -, v, ZL,

- = z
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Figure 5. Field excitation of a two-wire transmission line.

For this lossless transmission line with wire radius a and separation d, the characteristic

impedance of the line is
z, = JGaL)I{jac)

\ , ‘ 2
=1201n(£) Q ' @
a ‘

and simple TEM transmission line theory provides the wave propagation constant ¥ as
LW '
y=ji— €))
. [+

where @1is the angular frequency (27f) and c is the speed of light = 3.0 x 108 m/s.

Note that Eq.(1) contains two terms. The first is a matrix relationship relating the
propagation of the incident and reflected voltage waves on the line. The second is a vector term

that describes the excitation of voltage waves by the incident E-field E;”ﬁ at the “field coupling
node” (node 4), as inttoduced in ref.{3]. This excitation is represented by the integral functions
F,(w,) and F,(w,) developed in Appendix A of [3], multiplied by the incident field Ej%.
These F functions depend on the local angle of incidence on the line Y, and in the more

general case, on the azimuthal incidence and polarization angles (see Eq.(7.40) of ref.[2] ). For
the special geometry of Figure 2, the incident field on the transmission line is broadside to the

line, so that y, = w/2.



From Appendix A, the general expressions for the field coupling terms to the
transmission line F,(w,) and F,(y,) are given as

E@w) =§(ejkb(l—cos%) - 1)

y , 4)
Fy) =5 e (e -1)
and for ;= /2 these terms simplify to

d;

FE==(e™ -1

L) ( ) (5)

d .

F=5{1=e")=-H,

It is important to note from Eq.(4) that the excitation of the line, and hence the line
response, are even functions of the angle of incidence ¥; on the transmission line. Thus, for

the excitations shown in Figure 6, the line responses I, I, ¥; and ¥, will be identical for the
two different incident fields.

" The effect of this symmetry in the excitation of the differential (transmission line)
mode when the line is located next to a conducting ground plane is suggested in Figure 7. In
‘this case, the reflected E-field from the ground plane has a reversal of direction to satisfy the
boundary condition that the tangential component of E is zero on the ground plane. This results
in the ground plane-reflected field, which arrives with a negative angle of incidence, affecting
the line exactly like the incident field in Figure 6, but with a different time delay. As a result, -
both the incident and ground-reflected field components induce differential mode responses on
the transmission line that have the same sign. In other words, the contributions from these E-
field components to the differential mode are additive. '

Incident inc

| Field .
I K , |

. +
7,5V, _ Z,y _“‘:’s :\, ' V, $ Z,
- . [ ! -
: —»X
0 Einc ker” L
Node #1° \/ . Node #2

Figure 6. Line excitation for positive and negative angles of incidence, ¥.
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Figure 7. Transmission line located over a conducting ground plane and excited by an
incident plane wave.

To extend Eq.(1) to the case of plane wave iflumination of the transmission line located
over the ground plane, we may superimpose the effects of the incident and ground plane-
reflected fields. This provides the following matrix expression: ‘

vl To er] vl [Ra)E™ + Ky )E=Y |
, _ R ‘ ©(®
VY| e 0 ||y | BRW)E™ +F(-y,)E¥Y

In this last equation, E™ denotes the incident E-field strength evaluated at the

midpoint of the transmission line, and E®Y represents the ground plahe—reﬂected field
strength at the same midpoint lo_cation.1 '

, Assuming that the line height over the ground plane is 5, using the excitation symmetry
and taking the zeto phase reference to be at the midpoint of the line, we find that Eq(6) for the
* incident and reflected line voltages at nodes 1 and 2 for a plane wave excitation becomes

v [0 @R ] | RGOE™ W+ )
v et 0 JBr] LRGET e

! Note that Ein¢ and Egpr ¢/ are the total fields, not the tangential fields along the line. (See Appendix A of [3] for
details.) '
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where an effective excitation term £ has been defined as
gexcn — Einc(l_i_e—jkzhsin(w,))‘. (8)

Notice that the term £ ¢ is not the total E-field at the transmission line (Which would

be written as E™ = E™ (1— e /***®:)y ), but rathet, it is given by Eq.(8) with the plus sign for

the exponential term. Since the assumed geometry of this problem involves only the z-
components of the E-field (see Figure 2), the z-component of the E-field is identically zero on
the ground plane (1 = 0). The excitation term in (8), with the positive sign for the exponential
term, becomes 2E7¢, This is a field boundary condition more akin to that for the tangential
magnetic field on a perfect conductor, than to that for the tangential E-field.

Using the notation £ &< for the effective line excitation, we write Eq.(7) as

Vi,’:f 0 e;VL . I/}i’ﬂ‘ 1;; (Ws) Eexcit

©)

wi |l o ]|nr] LB@aE™

Thus we see that the functional form of Eq.(1) may be used to describe the
relationships between the incident and reflected voltage waves at nodes 1 and 2 of the
transmission line with the E¢ terms in the excitation being modified by the effects of the
- ground plane, as represented by the excitation term £, :

Of course, the expression for the excitation field in Eq.(8) is valid only for an incident
plane wave. In the case of the infinitesimal current source excitation shown in Figure 1, a
different form of this excitation function is required. Neglecting polarization effects and
assuming far-field conditions hold, one can express the incident E-field on the transmission

line by spherical waves from the current source Jdl and possibly from a reflected field (E¥)
from the distant node 3, as

ire e‘f-b'., ref e‘ﬁ"ﬁ
E™ = aE% +——5, (w). (10)
[ 1

In this expression, the terms (¢~ /r) provide for the propagation of the spherical waves
along tube 2. As discussed in ref.[3], the parameter a3 represents a typical dimension of the

scattering body at node 3 and is used as a normalizing constant for the E-fields to provide
dimensions of voltage, and to provide a BLT equation for all variables having the same
dimension. '

The source term S, (y;) in Eq.(10) describes the amplitude of the radiation from the

elementary current source in the direction given by the angle w7, as shown in Figure 8. For this

simple example of a z-directed current source, the z-component of the radiated E-field at the
transmission line location is given as ' '

12
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. | ‘
- . (11

" Current source

Figure 8. An elementary current source and the E, field component at a distance r.

Equation (11) defines the source term S at an  angle y; as
- 8(y,)=—jouldisin® (p,) . For the example we are considering in Figure 2, the source angle
is ¥ = @, = 12, so that the source term in Eq.(11) is | '

g =-I% 1 (12)
4z '

With the spherical wave of Eq.(10) incident on the transmission line, another ground
plane-reflected spherical wave also will be present, and both will contribute to the excitation of
the line. From Eq.(10) and image theory, the following z-directed excitation E-field actmg on
the transmission line can be determined:

- jr, = J(r,420) L —Jk(r+2h)
ci . € e e e
g =[ + JasE;f{-{ + 3,

r r,+2h K r+2h

o

(13)
=K, (r)a, B + K, (n)S,

. Here the terms K;(r,) and K;(r;) amount to modified Green’s functions representing the

excitation functions for the transmission line in the presence of the ground plane. These are
defined as |

13



= i —jk(r+2h)

+—— 14
r+2h - (14)

€

K@=

With this excitation term for the transmission line, the tube 1 matrix propagation
relation of Eq.(9) for the spherical wave excitation becomes”

vy 0 || WY | BEKtaEY | | FK0)S, .
= : - - : (15)
il ole™ 0|y | BEKGaET | | RE®)S,

3.1.2 Propagation on Tube 2 (the Field Propagation Path)

We now turn our attention to the behavior of the incident and reflected E-fields at
nodes 3 and 4 on tube 2 — the field propagation path. Considering first the incident E-field at

node 4, E;", we note that it consists of a direct term like Eq.(10) from the source and the

reflected field at node 3, Ef{ , together with the ground plane image contributions. This

results in an equation similar to Eq.(13) for the excitation field of the transmission line, but
with a negative sign for the image terms: '

- jkr, — ji(r,+2h) — jh —jx{r+2h)
inc € e e e
By, =( T )%EE{ —1-( - Jsl

A r,+2h n n+2h
(16)
_é K, ()4 Ezmg +K,(%)5,
where the modified Green’s function K5(r) is given as
. e—jftr‘ e—jk(r +2h) .
K,(»= - 17
2(7) ( P +2h)]'- )

% Note that Eq.(15) is different from Eq.(9) for the isolated transmission line. The source term for £q.(9) involves
the just the incident E-field at the field coupling node (4), while in Eq.(15) the effective excitation source involves
both the E-field reflected from node 3 and the radiated field from the current source. Both of these excitation
fields are reflected in the ground plane (using the X; Green’s functions), and then the original incident field

components and the reflected fields are applied as excitation fields to the line, as indicated by Eq.(6). This is done
because the excitation of the transmission line is not determined by the total incident E-field (e.g., the sum of the
incident plus ground plane reflected field at node 4), but rather, the excitation depends on both the incident field
strength and on the direction of incidence (see Figure 6). In this manner, the excitation of the line is constructed so
that the signs of the incident and ground-reflected field components are correct.

14



Similarly, with the transmission line (tube 1) absent, the E-field propagation

relationship for the incident E-field E;; at node 3 (the field observation point) is expressed
using image theory as: '

fine I i T T A )
= - a,BEf + - s
23 P (r, +2h) 424 n niZrian) ¥,

o

(18)
=K, (;;J)@Ef{ + K (7 )3, ()

In this expressioﬁ, a characteristic length of node 4 (a,) is used for normalization of the
field. Also, a third modified E-field Green’s function K3(¥) is introduced to account for the
ground plane effects, as

e—jkr e—jk(r 25420 . _ co
Kg(r)=( —- : J o (19)

r+2n+2h

The source term S, (¥, ) in Eq.(18) generally involves a different angle than does the
source in Eq.(16), as noted from Figure 1. However, for our example of Figure 2, this angle is

the same as ;. so that S, (v, ) =S, (y,) = —%‘i Idl.

If the transmission line is inserted into the problem space, then the transmission line
mode currents flowing on the line also contribute to the incident E-field at node 3. As noted in
Appendix B of ref.[3], the radiated E-field at a distance r, and observation angle 3, from the

transmission line currents flowing in the 2-wire line of Figure 9 can be expressed in terms of
the incident voltage waves at each node of the transmission line of the line (nodes 1 and 2) as

_JkZ, e

E=aez 5 WEWITVIEW) (20)

where Z, is the free space wave impedance (Z, = 377 Q), Z, is the characteristic impedance of
the transmission line (Z,=120In{d/a) @ for wire radius a and separation d), and

k=2nf! c. The field radiation terms F; and F, are the same as these derived for the reception
case in Eq.(4), but evaliated for the observation angle 1, .

15
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- Figure 9. Illustration of a transmission line radiatingi an Eg—field component in a
direction given by the angle y,.

‘Equation (20) is not the complete expression for the radiation from the transmission.

line, however, as the ground plane effects have not yet been taken into account. Figure 10
shows the transmission line positioned near the ground plane and illustrates the fact that the

wire currents of the transmission line image are in the same direction as in the original

transmission line. Thus, the radiation contribution from the image transmission is expected to
add to the original transmission line radiation. Thus, the radiation at node 3 from the line
located near the ground plane is given by the expression

. jkZ, (e-ﬂ% AT

E =L +
‘oz v, (r,+2h)

](FI (w. )V + F, (w,)R5)
; @1
-k Z . re V Ine
=177 KR W)V +E ()7E)
where the term K is that defined in Eq.(14) and the angle 1, = 1/2. Note that Eq.(21) assumes
that the observation angles 3, from the physical and image transmission lines are equal, which

-~ is valid only for distant observation points.

16
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Figure 10. Radiation from the transmission line in the presence of the conducting ground.

With Eq.(21) providing the contribution from the transmission line currents to the
incident field at node 3, we express the complete incident E-field at this node as

ine . re | ik Zo inc ' he
E), =X, (ro)a:;Ez,{ +K,(1)S, (Wz) +%;E'Kl ) (F; (Wo )V” +F, (Wo ) Vljz ) (22)

[

Using the same procedure as in ref. [3], we combine Eqs.(18) and (22) into a matrix
equation for the incident and reflected E-field components at nodes 3 and 4, as

Eim: 0 a K (ro) E?“?f . F F V::"-' K (rz)s .
23 _ 4422 . 2,3 -ﬁiiK,(ro) 1 2z . 1 N 3 2 (23)
x| lake) o JEY] FE o o] K] LK)S
“and upon rearranging terms, this equation can be solved for the normalized reflected E-fields at
the nodes as ‘

0 1 K,(n) s
re] i — inc ' inc 3
a,Eqy _ a K, () || L3 Jk Z, K'(r”’)\io 0} Pl _ K, () .
aEg| | ! o |amm] #EEEE Blrr] K@) g |
&K, (7,) | | K@)

(24)
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Equations (15) and (24) now can be combined into a larger matrix equation relating the
reflected generalized voltage quantities at the nodes to the incident voltages and the source
terms. See Appendix A of this report for details. The resulting equation is

0 e R 1A Fl[Kmn)fc,(ro)-K.(r.,)Kz(n)}sj
a, K1) k()
vl ny {(25)
K@) KK () =K )KL 0)
vL __MMas o
vt e : 0 |y | | AR ARG,
o5 0 0 0 _ L i|eE K@)
ak,(r) ~ K,(ru)s‘
a,Ey; . a B
jk Zo Kl(ru)F jk Zo K](?;)F 1 Kg(rz)s
22 Z K ()| 2 Z K0T aki() L ) :

3.2 Node Reflection Relationships

At nodes 1 and 2 on the transmission line, the voltage reflection coefficients are used to
related the reflected and incident voltage waves as '

W =pWiy and VY =p 7 (262)

‘where the reflection coefficients p; are related to the terminating line impedance and the line
characteristic impedance as ' '

— ZLi _Zc

= . 26b
Zy+Z, (26b)

Pi

Similarly, at node 3 we can define an E-field reflection coefficient between the field
incident and reflected at this location — if there is a scattering body at this node. This
‘relationship is ‘

E = p,Eys . @D

If we assume that this observation point is located in free space, there is no reflection of the
field, and we have the condition that p; = 0.

At node 4, the field coupling node, the effects of the transmission line currents in
- producing a reflected field at this node have already been taken into account in Eq.(22).
However, the effects of the antenna mode current flowing on the transmission line have yet to
be included in the analysis. As shown in Figure 11, the two wire line can be modeled as a

single conductor of length L and effective radius Ay =J2_ a, so that the equivalent cross-
sectional area of the conductor is equal to the total area of the 2-wire line. '

For this line, an incident EM-field with polarity as noted in the figure strikes the wire
with an angle of incidence @ This field induces a current 1(z) to flow in the wire and a
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scattered EM field results in such a way that the total tangential E-field is zero along thé wire.
The is 8 component of the scattered E-field may at an observation angle & is shown in the
diagram.

Radius a4
‘Incident
Field

Einc

Current
1(2)

Eé;ca
Scaitered
Field

- Figure 11. Hlustration of a single conductor scatterer of'length L and radius Aopy-

For use in the extended BLT equation, we need a relationship between the incident
field at this wire to the scattered ficld to define the field reflection coefficient at node 4. The
usual approach for determining this is to use an integral equation solution. However, keeping
with the spirit.of performing a transmission line analysis for this analysis, we can develop an
approximate, transmission line-like analysis for this scattering problem.

As noted in Chapter 4 of ref[2], the Hallén integral equation for the antenna mode
current for-the conductor in Figure 11 can be approximated and a closed-form of the incident
field-induced current results. For an incident field Ef#¢ at angle &;. this current has the form

I(Z) — ____114_'_7‘_"-E__ (COS kz — g keeosé ) o+ (ejkLcosﬂ —cos kL).S'ln kz . (28) '
Z Q ksing, I -sin kL

In this expression, the term Q is the usual thin-wire antenma parameter, Q=21n(L/a).

The scattered E-field at the angle £, can be determined from integration over the wire
current distribution as '
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%7 si -jte, L L
E;ca = Jch S Ba € II(Z)ejh°°SB°dz
Az ;

o

" ~ (29)
g _ ZEZ’ sin(lkL) A ]:ﬂi( cos kz — /%4 )sin kL~ (cos kL — el )sin kz] el gz
0 i Y, o '

where k = @/c. As noted in [2], the analytiéal expression for the scattered field for arbitrary
angles & and @, are very cumbersome. However for & =6; = /2 the expression is rather
simple: ‘

o E"™ ¢ (2(cos(kL)~1)+kLsin(kL))
[

= 0
Q, k sin(kL) @0

For the reflection coefficient at node 4, we wish to relate the z-components of the.
fields. Noting that E;* = —E*, we have from Eq.(30) '

e = E™ ¢~/ (2(1-cos(kL)) - kLsin(kL))
o, kb sin(kL) ‘ 31)
i,
=E"™Z—o(w) .

]

where (@) is the frequency dependent effective scattering length of the wire, defined as

¢ (2(1—cos(ewL/c))—kLsin(wL/ ) (meters) (32a)
Q ol sin(wlL/c) - ' :

(7]

o=

The above expression for the effective scattering length is seen to have zeros in the
denominator due to the term sin(al/c). Frequencies for which (al/c) = nn correspond to the
natural resonant frequencies of the antenna mode current on the wire, and at these frequencies
the scattering length given in Eq.(324) is infinite. This singularity arises because the radiation
loss of the scatterer is not properly taken into account in the approximate scattering analysis.

In a numerical implementation of the extended BLT equation, these singularities in o
provide similar singularities in the spectrum of the computed E-fields at the field nodes 3 and
4. Moreover, in the time domain, the FFT solution consists of an ever-repeating oscillating
waveform with the frequency content of the various singularities.

To fix this problem, we can add artificial loss into the antenna mode solution —not
trying to model accurately the radiation resistance, but rather, attempting to eliminate the
singularities in the solution. Noting that the derivation of the antenna mode response has
involved a transmission line-like equation, we can put Eq.(32a) into a form resembling a
transmission line solution by expanding the sin(al/c) term into complex exponentials. In this
manner, Eq.(32a) can be written as

20



2 je!™e (2(1—cos(wL/ c)) — (aJL/c)sm(aJL/c))
Q 0)/(,’ | eJZa)Lic_l

o(w)= (320).

In examining typical transmission line solutions (see ref.[2]), we note that the
denominator term in the Bq.(32b) frequently appears as e”***'* — p, p,, where p; and p,
correspond to voltage reflection coefficients. When p; and p; = 1 there are zeros in the
denominator and singularities in the response. However, when there is loss on the transmission
line, the product of these reflection coefficients is |0, 0,| <1, with the result that there are no
tesponse singularities. Thus, a simple solution to eliminate these singularities is to rewrite the

denominator in Eq.(32b) as ¢***/° — x, where « is a suitably chosen number close to, but less
than, unity. A choice for this parameter for this study is ¥ = 0.9.

To determine the reflection coefficient at node 4, we evaluate Eq.(31) at the node
“boundary”, which is defined by the parameter a, that was introduced in Eq.(18). At a distance

of a, from the node, the scattered E-field is expressed in terms of the incident field as

Esca - Efm: ( m)

~ g 012 (33)

a, .
= E"p,(@)

Hence the reflection coefficient is p; = 6/a, at node 4.

Takmg each of the reﬂected terms into account, ‘We now can write thc network
reflection matrix as

Vlrff p 00 0 V]i’lw
vy 0 p 0 0]\¥Y

= ‘ . » l - (34a
EZ| 10 0 py O||E] 4
EF| [0 0 0 p]|E%
or in terms of the normalized voltage variables,
vie 1 [ 0 0 o[ wr
Y 1|0 e 0 0T @)

aaEzr,e{ 0 0 p O a3E£’,’;
af%] [0 0 0 plas
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3.3 The Extended BLT E quations

Egs.(25) and (34b) can now be solved for the vector of incident waves at the nodes.
This provides the following exterided BLT equation for the incident voltages and E-fields at

the nodes:
—-p g™ 0
[ v
V]’l';c BTL —pz ]
a._,E;"; 0 0 -
| 4,87 | : ‘
Jk Z, Ki(r,) ik Z, K\(r) 1

|27 2. K0 | W Z K0T ek

K@) ]
a,K,{r) i

— K|(1"n) F
a,K,(r) ?

1
a4 K2 (rn)

—F4

—1 [

R

R

L

K (n)K, () - K (n)K, (7)
K, @)

)

KK, ()= K (1)K, ()
K, (r.)

K@) 1

Ki(r) '
K, () 5

]s,

(35

5 Using Eq.(34b) again in the above expression to compute the fotal voltage and E-field,
we can write the final expression for the extended BLT equation as :

¥, | 1+, 0 0 0

Viz 0 i+p O 0
an X

aE,; 0 0 1+p O

| ., | 0 0 0 l+p,]

— pl eTL

e™ —

0 0

R Z K)ok Z KG)

1

27 Z K 2w Z K0T ek ()

I

[ E(Kl(r.)Kz(ru)—K.o:,)Kz(n)} s

K, ()

E [K. (K, ()~ K, (r,,)Kz(r.)J s

Kl(rn)
Kz('i)
rase

Ks(rz) 5
PR

(36)

Note that this equation now contains the effects of the both the transmission line mode and the

antenna mode response of the two-wire line.

3.4 Solution to the Extended BLT Equation

For the case where there is no reflection at node 3 (p; = 0), it is possible to obtain a

symbolic solution to Eq.(36) for the total voltages and fields at the nodes. After a bit of
manipulation, we can express these solutions as '
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e FE,+p,F,

. V{,l = (1+p1) 27 _ : Ki(ﬁ)sl ' . (37a)
' P2 .
V= (14 p,) i Al s e
:,z""(. Pa o _p p, 1(’i) 1 ‘ (370)
ik Z, 2EFe™ +FEp, + F;
E,,=K,(1)S,+ GKZ(FG )K, (1)S, +;7{ZK1 (ro)Kl(rl)[ = ez ____lpf);z 21 J51 (37¢)

o

By 4= [1+?J K,(n)3 (37d)
4

: The voltage solutions in Egs.(37a) and (37b) have the form of the usual transmission
line solutions for the load voltages due to an incident field excitation. Note that the reflection
coefficients p; and p, provide oscillations on the line, and the Green’s function K (r;)
contains the time delay and 1/r fall-off for the propagation of the excitation from the source
and its image in the ground plane.

Equation (37¢) for the total E-field at the observation node 3 is seen to have three
components. The first is a direct illumination by the source and its image. The second term
_arises from the antenna mode scattering from niode 4, which has been accounted for by the
node 4 reflection coefficient oy, The last term in Eq.(37¢) arises from the differential mode
scattering from the line, and as such, it contains the influence of the transmission line
reflections. It is important to note that in this expression for the E-field at node 3, the node
dimension parameter a3 that was introduced for dimensional consistency in Eq.(10) is not
present. Clearly the value of this parameter is not important, ' '

_ The final equation (37d) represents the solution for the total E-field at the field
“coupling node 4. We see that the field expression at this point consists of an incident
component from the source and its image (through the single X(r;) term) and another term

~ arising from the scattering effects of the antenna current (the (o/a,)K,(r) term). Ideally, this |
total field should be zero, due to the boundary condition that the total E-field on the scattering

body is zero. However, we note that this approximate solution for the scattering from this wire
does not provide for a null field. ' :

Furthermore, there have been no contributions to the field at this node by the
transmission line currents in Eq.(23). Had these contributions been included, the matrix of F
terms would have been full, with the traveling wave currents providing incident wave
contributions to node 4. Thus, the solution for the total field at node 4 is not obtainable from
these approximate transmission line and scattering solutions. However, it is known to be zero.
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4. Numerical Verification

To check on the validity of this extended BLT solution, several numerical examples
have been considered using the geometry of Figure 2. The following parameters have been
chosen to define a baseline geometry for this comparison:

Line length L=1m
Wire separation d=1 cm
Wire radius a =/ mm

Characteristic impedance Z, =120In(d/a) =276.3 Q

Load resistances Zj, = Z /2= 138.15 Q
Line — ground plane distance /=3 m
Source — line distance ry =10 m
Source—field point distance ry = 10 m

All angles equal: ;= y5 = ¥, = ¥ =T/2.

4.1 Consideration of an Isolated Transmission Line

The first check for this solution involves examining an isolated transmission line. By

~ adjusting the current excitation source of Eq.(12) so that the incident E-field on the line is B¢
_=1 V/m, we can compute the load currents (I = V;/Z; ) at each transmission line load using
the extended BLT solution for the voltages from Eq.(36). For this isolated transmission line,
the line length and wire radius given above were used, but a wire separation of d = 2 cm was
used. Thus, the characteristic impedance of the line was Z, = 359.49 Q and the load resistances

 were Z = 179.74 Q.

Treating this transmission line as an incident field excitation problem, we have
developed an alternate transmission line model, as discussed in [2]. The NULINE computer
program was used to compute the current in Joad #1 on the transmission line, and the
normalized response |I;/E™¢| is plotted in Figure 12a, overlaid with the extended BLT solution.
The two curves are identical, as expected, because they are both formulated under the
assumptions of transmission line theory.

Figure 12b presents the results of calculating the load current on the same transmission
line structure using an integral equation solution embodied in the Numerical Electromagnetics .
Code (NEC) {4]. Comparing the @ and b parts of this figure, we note an excellent agreement
between the transmission line solutions and the NEC solution for frequencies above 100 MHz.
Below this frequency, the NEC results are in error, due to the well-known code instability for
loop structures at low frequencies.
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Figure 12. Comparison of the extended BLT, NU'LINE and NEC solutions for the plane-
wave-induced load current spectrum |I 1/E¢| for an isolated transmission line.
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4.2 Transmission Line Voltages at Nodes I and 2

The above check of the isolated line case gives partial confidence in the validity of the
extended BLT solution. However, for further examine the solution, we must include the

ground plane in the problem. To show the computed results, we can examine the responses in

the time domain where the times of arrival and polarity attributes of the response components
can be casily seen. To this end, a simple unit amplitude double exponential waveform

-1

IER 3 | .
idl = [%]ﬁ"“—[%]ﬁ"a (e —e) D) (38)

as been used to represent the time dependence of the current moment #(f) dl. For this
waveform the following parameters are used:

0= 6.666 X 107 (1/5)
B=1.0x109 (1/s).

The term &X7) denotes the Heaviside function: ®(f) =0 for 1<0, =1 for 1> 0. Figure 13

displays this source excitation waveform and it spectral magnitude.

Plot of the transient waveform I{t)dl Cie10 7 Spectral Magnituds of I(dl

1 f\ 5
. —8 1

08 = N
1-10
\\ . g - 1
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= \ < 110°
. N . .
. \\ g l:
0.2 n . g0
. ] =1-10
0 . X Ht X
0 0. 20 30 40 50 L 1l
Time (ns) Y110 ? 0.01 0.1 1 10
Frequency (GHz)

Figure 13. Plot of the transient behavior of the current moment i(f) d! (left), and the
corresponding spectral magnitude (right).

Calculating the load voltages from the extended BLT equation (36) for a unit excitation
for the infinitesimal current element spectrum (X(7) a7 = 1) yields the voltage response transfer
function shown in Figure 14. Part a of the figure presents the transfer function magnitude for
both of the load voltages (they are identical in magnitude) as determined by the BLT equation,
and part b shows the corresponding responses for an integral equation solution - this time not
using NEC, but rather, another integral equation solution developed by one of the authors (JK)

for this comparison. As noted in this figure, the BLT transmission line model and the integral
equation model yield virtually identical spectral results.
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‘Figure 14. Plots of the extended BLT equation solution (a) and an integral eqnation
solution (b) for the load voltage transfer function spectra [V ()/I() di| for the

transmission line shown in Figure 2 (baseline configuration).
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The transient responses of the load voltages at nodes 1 and 2 of the transmission line is
found by multiplying the transfer functions of Figure 14 by the excitation spectrum of Figure
13b and taking an inverse FFT2. These results are shown in Figure 15, with excellent
agreement between the two methods being noted.

4.3 E-fields at the Observation Node

In addition to the two transmission line load voltages, the extended BLT equation
provides the E-fields at the observation nodes 3 and 4. As noted earlier, the BLT equation
solution at node is not valid, because it is located in the near-field of the transmission line.
Transmission line theory is incapable of providing reliable information for the near fields.

However, the solution at node 3 is accurate. At this node the BLT solution contains the

‘effects of the direct radiation from the pulsed current source, the radiation of the antenna mode -

current from the line, and the radiation effects of the transmission line current (each having the
ground plane image effects included). This partitioning of the responses into three components
has been noted in Eq.(37¢).

For the baseline problem configuration, Figure 16a presents the complete E-field at

‘node 3. The first response that is observed ocours at a time ¢ = 10/c = 33.333 ns, and is due to

the incident wave propagating 10 m from the pulsed current source. The second pulse occurs at

a time ¢ = (10+(2x3)+20)/c = 120 ns, and is the reflection of the incident field from the source

inthe ground plane. Of course, this waveform also contains the contributions from the antenna

and transmission line mode currents, but these latter components are much smaller than the
direct incident field component. ‘

To illustrate the contributions from the antenna and transmission line currents, we
temporarily set the parameters K3 , F; and F; to zero in the BLT equation. This suppresses the

incident field. (See Eq.(37c for the role that these parameters play in the solution.) This results

in the E-field waveform of Figure 16b, which contains only the antenna mode contributions.
Note that this response is about a factor of 250 smaller than the complete solution — indicating
that the scattered field from the line is not too important in determining the total field.

 Similarly, by setting the parameters K3 and o'to zero, we are able to compute the field

response for just the transmission line currents. This response component is shown in Figure
16¢, and is a factor of 3,500 smaller than the incident field response. Cleatly, this transmission
line component is unimportant in the total field solution.

3 Note that the choice of the excitation waveform in this example is unfortunate, in that the waveform has a
discontinuous derivative at t = 0. As noted in Eq.(12), the radiated E-field from the source is proportional to jw
times the excitation spectrum, and the excitation function of the line in Eq.(13) has another term involving jo from

_the sums of the two exponential terms. These two factors of jo multiplying the excitation waveform spectrum
amount to taking a second time derivative of the waveform, which, for the double exponential function, provides a
delta-function contribution when the waveform turns on. These impulse function contributions are clearly evident
in Figure 15. ’ ‘ :
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Figure 15, Plots of the transient BLT solution () and an integral equation solution (b) for
the transient load voltages at both ends of the transmission line of Figure 2 (baseline

configuration).
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Figure 16. Dllustration of the radiated E-field at node 3. Part (a) is the total solution, (b) is
the solution with just the antenna mode contribution, and (c) is only the transmission line
contribution to the field.
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5. Comments

This report has illustrated the development and use of the extended BLT equation for
analyzing a transmission line located near a conducting ground plane and illuminated by an
EM field produced by a near-by point source emitting a spherical wave. The extended BLT
_ equation includes the transmission line voltage responses as observables, as well as the E-
fields at observation nodes.

The solution of the transmission line responses uses conventional transmission line
theory, with excitation being provided by the incident EM field from the source radiating in the
presence of the ground plane. The ground plane effect on the solution is taken into account
through modified Green’s functions.

The solution for the radiating field components likewise uses modified Green’s
functions for the ground plane effect on the primary radiation from the point source. In-
addition, the radiation from. the antenna mode and transm:ssxon line mode currents contribute
to the E-fields at the observation locations.

All of these effects are combined together into an extended BLT equation, and this
equation can be solved either numerically or symbolically. The numerical results that have
been shown here are both reasonable and they have been verified partially by an independent
integral equation analysis.

From the BLT analysis, it is clear that the E-field response computed at the
transmission line is incorrect because the transmission line theory fails to provide accurate
" near-field results on the line. However, the transmission line load responses and the distant
scattered field are accurate — within the limits afforded by the transmission line approximation.
As noted in the comparison of the “exact” and approximate transmlssmn line solutions, the
agreement is very good.

There are several suggestions as to possible future work in this area of BLT analysts.
These are as follows: ‘

1. Examine the use of the modified Green’s function approach to consider a transmission
line located within a rectangular cavity, for example where the Green’s function can be
expressed analytically.

2. Develop an analysis for the EM field coupling through an aperture in the ground plane
(shield) that couples to a transmission line located on the opposite side of the shield.

3. Extend the BLT formalism to be able to represent a general EM radiation and scattering
problem, taking into account all aspects of EM coupling (e.g., integral equatlon
analysis), angle of incidence and polarization issues.
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Appendix A

Combination of the Transmission Line and Field Propagation Relations for
the Extended BLT Equation ‘

Equations (15) and (24) provide the propagation relationships between the incident and
reflected voltage waves on the transmission line and the field propagation path, as

el [o e [v] [EeaE] ]| [RKG)S,

= ' - - (15)
V;r;.f eﬂ. 0 Vlf;c F,K (r,)a, E;e{ FK (n)S,
a by _ a,K,(r,) “3E;,3 & Z, K1) [ 0 01\ L _ Kz(”o)_ Q24)
a4Ef£ 1 0 a,,Ei’_’j T Zc ‘Kz (T;,) Fi Fz Vlj,;c Ka (1"2) S ,
oK) | T

We would like to combine these into a single 4 x 4 matrix equation, but unfortunately, Eq.(15)
. has reflected wave components on the right hand side of the equation as well as on theleft
side. Thus a bit of matrix manipulation is required to arrive at the final matrix equation. -

As may be easily verified, Eqs.(15) and (24) can be written together'as

‘ 0 et 0 0 . (00 FE®m 0.)
1o R o) v -y 0
ot 0 0 0 00 R 0O {Al)
o 1 EK®) of nY ‘ Vi 0
= 0 0 0 ! e o KW
o0 t  ofary ak; ) || a,E0 Ki(n) s,
00 o Yasy) [ZEZEE) . -EZLEe), 1 ag%) o o K0 (s
U mrRe wraEm akm C ) P ke
Noting that
1 0 EK(r) OY" (1 0 -FK(,) O
0 1 RK() 0f 0 1 -EK() o (A2)
o0 1. 0| |loo 1 0
00 0 1 06 0 1

Eq.(Al) becomes
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Carrying out the indicated matrix multiplications yields the final propagation matrix equation,
which is Eq.(25): :
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44 w (Ad)
. __K(n) ) K (DK ) - KK < |-
144 & 0 ¢ __—a4K2();) 2 . phe i pz[ i) j(z(,;)l s,
a, By 0 0 0 1 b8 it K,y (n}
aX,() | K ()™
"4E2r.?1r “4E=b.‘:
_JkZ, Kir) & Z, K\(n) 1 K,(rz)s
| 27 Z, K,(n) ' 2 2 Ka(n) T aKa() ) | K@) !

34




