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Abstract

By means of a symmetric renormalization of the voltage and current vectors the transmission-line equations
are cast in a form which brings out a leading term which dominates the high-frequency propagation. Using the sum
rule of the product integral a correction term is also exhibited.
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1. Introduction

A nonuniform multiconductor transmission line (NMTL) is described by the telegrapher equations as

%(1’7',, (z,s)) = - (Z;,m (z.5)) « (Z, (z,s)) + (17,53)' (z,s))
%(fn (z,s)) = - (Y"',;,m (z,.s')) . (V’n (z,s)) + (f,ﬁ*‘)' (z,s))

(1.1)

Here we have N-component vectors (for N conductors pius reference)

(I/";, (z.5)}= voltage vector

(f n(z, s)) = current vector (positive current convention in direction of increasing z)
(17’,5“ y (z. s)) = voltage source per unit length

(f,g*"' Y (= s)) = current source per unit length

z (real) = position coordinate along the line _ (1.2)
~ = two-sided Laplace transform

s = Q + jo =Laplace-transform variable or complex frequency
. ., T
(Zn,m (""’5')) = (Zn,m (Z’S))

(Y",;’m (z,s)) = (f',; m(z, s))T = per-unit-fength (transverse) admittance matrix (N X N)

per-unit-length (series) impedance matrix (N X N)

where reciprocity has been used.

There are various approaches to the solution of these equations {11]. From a computational point of view,
one can divide the line into a set of sections, approximate the line as uniform in each section by some sort of section
average, solve each resulting eipproximate section analytically, and multiply the resulting set of chain matrices to
obtain an approximate solution for the entire transmission line, As discussed in [S, 6] one can improve on this by
adding a small variable term to the average and use the sum rule of the product integral to obtain a correction which
reduces the reflections at the section boundaries.

In this paper we adopt a different approach. While the approximations in [5, 6] work well for wavelengths of
the order of the section length (or even somewhat less), the present approach is based on a high-frequency approxi-
mation (thereby being a complementary technique). Previous papers [2, 4] have explored some aspects of this with
- the assumption of equal modal speeds (all N modes). Here we form a similar normalization of the voltage and



current vector by the square root of the characteristic impedance matrix and separate the waves into the two propa-
gation directions with coupling between the two. This yields a WKB type of leading term plus corrections based on
the sum rule of the product integral followed by a (matrizant) series expansion of the correction product integral. It
should be noted that the WKB approximation is treated in references such as [8] for single-conductor (plus
reference) nonuniform transmission lines. Here, however, it is generalized to multiconductor nonuniform transmis-
sion lines.



2, Symmetric Renormalized Form of the NMTL Equations

Following the procedure in [1] It us first look at the local aspecis of the propagation, neglecting the z varia-

tion. We then have

(Prmtz9)

(Z Cnm (z. s))

il

It

[(Z”;z,m (z. s)) . (Y;; m (z,,s)):!l/2 (p.r. square toot)
propagation matnx

(Fum (2.5)) * G (28)) "
(Fam ()™ * (Zam(z:5)
(oun ) = (Zap )

characteristic impedance matrix

@.1

In 1] the square of the propagation matrix is diagonalized to find right and left eigenmodes. Taking positive-real
(p.r.) square roots of the eigenvalues gives the eigenvalues of the propagation matrix. These modes are then used to

give representations of the other above matrices. However, in the present context these eigenmodes and eigenvalues
are functions of z, making their use less desirable.

We can still use (2.1) to define the characteristic impedance and admittance matrices, as well as the propaga-
tion matrix. Now they are allowed to vary as functions of z. Asin [2, 4] we form

(Ecn,m (z,s)) = ch,m (z,.s'))”2 (p.r. square roof)
(J"fcn’m (Z,S)) = (fcn’m (z,ér))”2 (p.I. square roof) (2.2}
= (fﬂ'n,m (z,s))_1
We then have

(Zc,,,m {z,s)) . (j;'cn’m (z, s)) = (ln,m) = (‘;}cn,m (z,s)) . (zcn’m (z, S))
':g;(fcn,m (Z,S))} . (j-)cn,m (Z,S)) + (Ecn,m (zns)) . [%(ﬁcn,m (Z,S))] — (On,m) @2.3)
d
dz

‘: (j;cn,m (Z, S))j] * (Efn,m (Z’ S)) + (j} Cnm (Z’ S) ) * [%(Ecn,m (z, s))] = (OHJ")

these last two results being the transposes of each other.



NoW define normalized variables

(Zom(z9) = (Fam(@9) * (Za,,,@9) = (Fam(9) + (2, & s))2
- . 2
(T @) = (%, , @) + Fam@9) = (%, @) (Famz9)

= (}7n,m(z,S))T . (}-Jcn,m (z,.*j‘))2

Substitute the above in the telegrapher equations as

i[( e 9] (vn(z,s))] = — (Fum(@9) « (zcn,m (z, s)) s (3z9)
+ (2, @9) « (%7 @)

drly. = - T - "

E[(ycn,m (z,s)) . (zn(z,s))] = - (71: ,m(z,s)) . (ycn’m (z,s}) s (Vp(z.9)

+ (e, @9) + (5 o)

Expanding the derivatives and clearing terns gives

%(\”fn(z,sj) = ~ (Fom@9) - {d( cm(z))] (¥n(2:5))
~ Fepm @) + (Frm@) « (7,,@9) + (@) + (75%9)
2 19) = = (2, @) [ Ty @) ] (i (2.9)

- (zcn’m (z,s)) (;V,, ,m(z,.s')) (ycn’m(z,s)) » (Vu(z,9) + ({rgs)('z,s))

Define combined normalized voltages as

2.4)

(2.3)

(2.6)

2.7



(Vntz, s))é = (Vn(29) * (i(z5) (2.8)

and similarly for the sources. The upper index (1, + sign) corresponds to waves propagating in the +z direction
while the lower index (2, - sign) corresponds to waves propagating in the —z direction. The normalized voltages and
currents can, of course, be reconstructed from

(p(z,9) = %[(v,,(z,s))l + (Fn(z5), |

(a2 9)) = %—[(?n(z,s))l - (i‘fn(z,s))z]

2.9

Collect some terms as

(Eim@9) = ~(5,,@9) « (7,,69) - (zm (z,s))
—(ZCnm(z,s)J . (Y:m (z,s)) . (Ecnm (z,s))

: U
- (2, @9) (Fru@a) - (5, ,c9)

g, s))T

Il
p—

) 0[] ) (4]
_ %:—[‘%m (z,s)] . :%(z%m (z,s)ﬂ + [%(z%m {2,3))] . (); y (Z,S))]
= %_[%(J’f%m (z,s)): . (zcn’m (z,s)) - (z%m (z,s)J . [jj;( j;%m (z,s))ﬂ (2.10)
- {[i—[ﬁ%m (z,s)): . [Ecnm(z,s)) + [E{f%m (z,s)J] . (“Cnm(z,s)ﬂ
= (anmz9)
(5, z9) = % —(ycn,m @ s)) . [%(’z'c G s))] 4 (f%m (z,s)) . [Z(yc @ s)m
_ %:—(«"cn,m @ s)] . [’;i-(fcn,m (z,s)ﬂ - [%[z%m (z,s))] . ( 5, (z,s))]
- %:[?i—(ic”,m (z,s))] . (Ecn, (z,s)) + [zc (z S)J ) { _i_ (}.,cm . s)m
= % [gz—(?%m (z,s))] . (zc " (z,s)) - [i[zc i (z s)ﬂ . ["c (z,s})]
T

It
——
‘g 1
o~
N
2
N’



We are pow in a position to cast the new parameters in terms of a supervector/supermatrix equation by taking
sums and differencfes in (2.7) as

G z9)),)
(@9, ) (Gune),, ) + (Gne),, )] © (Enteo),)

+ ((ﬁf,s)’ (z S))v)

()= [ i) (men ]

~ 8y m (2,5) ( n,m) _

- n,m ~n,m (z.5) -
(Gun o)) - \(5,1(,1 (z,)S)) (b (Onm) )] - (e, )

The solution of (2.11) is in terms of a matrizant solving the matrix differential eqnation

?i‘((‘i)nm (z.20: S))V,,;)

= [((gn,m (Z’S)),,,V) + ((anm (Z=s)),,,vr) + [(gn,m (z»“")),,y:)] © ((é’n,m (Z’ZD;S))V’V)
. ' (o) (Onym)
(o, )=l )- (1) )
(boundary condition) (2.12)

In terms of this we have the solution of (2.11) as

((nz9),) = ((én,m{z,zo;s))m,] © ((nz0.9),)

+ j((@n,m(z,z’;s))V’V,J O] (({rgs)r(z',s))‘/)dzr

(2.13)
Zy

If there are no sources the integral is zero.



The matrizant is given by a product integral [10]

((&)n A 20;5))‘/,./]

_ ﬁe[((én,m(z’,s))v’v,) + ((&,,,m(z’,s))v’v,) + [(5”””(2”5))‘»,‘;')]&’ @2.14)

%

Let us observe here that the first term in the integrand, (@ )y, iS, like (P m)v,/) . usually propor-
tional to s. This is associated with the fact that (Z}, ,,) and (¥, ,,) often take the form s(L;, ;,,(2)) and s(Cy; i (2))
(lossless case). Even with losses thent (g, ,,)y,/) tends to « as s > and so is large for large 5. By compari-
son (dy, ,,) and (Engm) may be independent of s (lossless case) or vary slowly with s. Hence our strategy is to
bring out ((£5 m)y,/) as a dominant term for high frequencies, giving a generalized type of WKB approximation.

The other terms give correction terms which become more significant as the frequency is lowered.



3. Development of the Solution: Leading Term and Corrections

Define what will be the leading bigh-frequency term as

(Camz9),,,) = :ﬁe((én,m(f,s))v,wjdz
- ﬁe(g"’"’(z"*”“"} » [f[e-(én,mw))d’ }
| 2 0

Letting

z

(Gn,m (Z,zo;s)) = He(gn,m(Z' ,s))dz'
Z

and noting

(Enn(@) = Enm ()

we have (from (A.5))

Combining we have

((G”"" (z’z‘);s))v,w) = (Gom (z’zo;s)) ® (G (z0.55))
((Gn,m (Zv20§s))‘,’,,:)_l = (C"?n,m (z,zo;s))_1 & (f},,,m (zo,z;.’s))-}T

- o5 © (G5

(3.1)

(3.2)

(3.3)

3.4

(3.3) .



Applying the sum rle the complete product infegral (2.14) is

(@nnteaid), ) = (Comtaauial, ) © ((Fum G20,
(Hnm (z>20?3))v,1/ = oo

z

He((én,m(z’,zo;s))v’w]_l o) [(&n’m(z‘,s))',, v‘) + ((En,m(z’,s))v,v,) o) ((Gn,m(i,zo;s))v’v,)di

2

For treating this second, or correction, term we can use the matrizant series [2, 9]

ﬁe(An,m(z'))dz’ - i(}(ﬁ:m (z,zo))”
Zg n=l)
(X,, m(z, zo))0 = (Lym) . 3.7

(Xnm @20)1 = [ (o (@) + (o 20),

Successive terms are then successive integrals of the product integrand. Gantmacher ascribes this series to G. Peano
(1883).

Provided the product integrand is sufficiently small in the correction term, then it can be represented by the
first few terms in the matrizant series.

10



4, Properties of the Leading Term

In the leading term the + (or right-going} waves are completely separated from the - (or left-going) waves.
Let us write (for no distributed sources)

((i"n (z,s))v) = ((G,,m (z,zo;s))V, v’) O ((ﬁ,,:m (z,zo;s))v’ v’] © ((i'f,, (zo,s))v)
[(Vj(no) (z,s))vj = [(C"?r,, - (z,zo;s))v’ V,) o) (("‘rn (ZO’S))V,V')

= combined voltage leading term 4.1

Let us take as our boundary condition at z

(Vi (ZO,S))IJ _ [(v,, (20.5)) ]
((‘"'n (20,5)), (0,) 1 @2

The launches only a +z propagating wave when considering only the leading term, due to the block-diagonat form of
the product ftegral. This implies that

(#E9), = (P69) - ((06s) - @)

(¢ s))1 - (vf}’) (z s)) + (5,5‘” (z,s)) - z(v&,") (z,s)) “
Hence, we can write for the normalized voltage, without disttibuted source,

(%2 @5) = (Gom (z2039) = (v (20.5)) @.4)
giving for the voltage vector

(7 25)) = (2, (29)) * (G (2. 7055)) » (Fepm 05)) + (P 20.9)) @.5)

This can be considered as a generalization of the WKB approximation for NMTLs.

So, now look at the properties of (C"}n,m) , which is written as

11



(Bl

(Gu,m (z, =] §S))

“20“ (4.6)
e—(ﬁ Cn,in (z',s)) il (? "sm(z"s)) ’ (Z"n,m (z’,s))dz'

A A

%0

At this point the Ieading term is reduced to an N x N (instead of 2N X 2N) product integral. Various assumptions

concerning the terms in (g, ;) can now be made to further simplify the problem.

One assumption one can make is that the various N x N matrices commute with each other, including for all

pairs of z' for zz < z' < z. Thisis the form discussed in [3]. In this case

z

(én,m (z,zo;s)) = exp I—(j'zcn’m (z’,s)) . (;7" m (z’,s)) . (ch,m (z’,s))dz' “.7
Zy

reducing the problem to the usnal sum integral. There are various equivaleni ways to state this commutativity. In -
particularly one only needs that -(Z,,,,) and (¥,,) commute with each other for every pair of z' in

2g < Z' < z. Then there is a common set of eigenvectors for all of these matrices (from (2.1) and (2.2)). The.
above integral reduces o the form

) N[ g5z
(Gn’m (z,zo;s)) = Z 20 (%, (s)) 5 (%, (s)) g
=1

(%:(5)) = position independent orthonormal eigenvectors (symmetric matrix)

£ (z,5)= position dependent eigenvalues of (g, ) 4.8)
This gives us N separate scalar problems in which the N eigenwaves do not couple to each other.

Another interesting assumption concerns equal modal speeds, such as encountered with N perfectly conduct-
ing wires (pins reference) in a uniform isotropic dielectric medinm (uniform at each z, allowing variation with z).

- The wires may vary their diameter {or even cross-section shape) and their positions relative to each other. In this

case we have

12



(fn,m (z,s)) = ?(z,s)(ln’m) , (gv,, m (z,s)) = —f(z,s)(lmm)
(Gn,m (z,s)) = G(z,zo;s)(ln ,m) : 4.9

}4
_I }','(zr,s)dzf
G(z,2;5) = e

Note that this still allows variation of (Z;, ,,) and (¥, ,,) as long as each is equal to the inverse of the other times a
scalar (at each z separately), this being consistent with the foregoing assumption. Stated another way (ch ) and

{Z,, ,,) arcallowed to vary as functions of z. Applying this to the +z propagating wave in (4.4) we have

(i‘rﬁf’) (z,s)) = G(2,20;5)(%x (20,5)) 4.10)

again without distributed sources. Converting back (o unnormalized variables we have for the voltage vector

(ﬁ,ﬁ”) (z,s)J = 6520y (29) * (Fap (20:5)) + (i (z0:5)) @.11)

This is a remarkably simple result. It extends the result in [4], giving a closed form (involving a sum integral) for
arbitrary N.

13



3. Properties of the Correction Term

From the correction term, using the matrizant series, we have

((ﬁn,m (Z’ZO;S))V,V’) =
P ] o (bt )+ (e, ] o (Gunicon, Yo

Zg

= ((1n - )W,) + (5.1)

j.((én’m (z'.20; S))v,v’ )_1 o) [((an - (z',s))yy,] + ((5,,’,,, (z’,s))v,v, )] 0] ((Gn,m (z’,zo;s))v’v,)dz’_

RN

We can note that, for small eigenvalues (all 2N) of (@, ,,)y ') + ((5,,,,,, Jvy) times z—zg, the second term in-
the series is small.. Note that the similarity transformation does not change eigenvalues. Higher order series terms
are then even smaller. Looking at these second term, it is the-properties of (G s ),,) and (B, mv,) that are

important.

Note that in general, for practical NMTLs, all the (&) and (4, ,,) blocks are slowly varying with fre-
quency as compared to (g, ;) and (G, ,,). Typically (&) is proportional to frequency and (G, ,,) is corre-
spondingly exponential in frequency {or for s = j& of approximately constant magnitude), Practical cases ate often

approximated by perfect conductos in Jossless, dispersionless dielectrics for which

(an,m (z,8) = (@ (2)) '
- independent of s : (5.2)
(bn,m (z.8)) = (bn,m (2)) } '

This shows the significance of bringing out the leading term as in Section 2. For high frequencies it is dominaut.
Consider first the properties of the off-diagonal blocks (5,,,,,,) . These represent the coupling between the

waves propagating in opposite directions (+z propagating to —z propagating, and conversely}, Suppose one would

like there to be no such coupling. Then we require from (2.10)

14



(En,m (2. s)) = (On,m)

;[ (5, (25)) + [“’ e s))] [%(zm (z,s))il « (Fens (z,s))]

Clearing common factors and dot muitiplying by Z, ) on both sides, we find

(5.3)

O} = [ )]« (e ) + (e @)+ [ {5
I:(zcnm(z s))] 2z, ) (5.4)

( enm (7 s)) = (Z"cn,m (s)) = (Y_Cn,m (s))_ = independent of z

which should not be surpnsmg (This serves as a check.) In this case there are no reflections on the line and one set
of modes, independent of z, describes the propagation.

Consider second the properties of the diagonal blocks (&, ;). These may represent mode conversion along
- the NMTL for +z propagating and —z propagating waves separately. - If we desire no such coupling from-one mode:.- -

to another we might like to have
(&n,m (Z,S)) = d(z, S) (In=m) = (On’m ) 5.5
so that for the +z propagating waves

| ((Gu,m (z,Z();s))V,V,)_l. a(2.) (b ) * ((G,1 J,, (z,zo;s))v,v__) = @(25)(Lum) 5.6)

and similarly for the —z propagating waves. Then including the first correction, neglecting the (5,,5,,,) terms (+ -

wave coupling) we have
(ff nm (220 S))LI = [1 + a(z, s)] (lnm) G.7D

giving only a scalar multiplier to the leading term. However, 2.10) shows that (3, ,,) is skew symmetric which

forces

15



a(z.5) = 0, (Gnm(2.5)) = (Onm) ' (5.8)

so that there is no first order correction to the diagonat blocks. This is turn requires

[%(z%m (z,s))] ; (Fep 2:5)) = (7 (59)) « [_j;(f%m (z,s))]
(Fon ) | G )] = | G e (29} = (2 )

so that (Ecn m) commutes with its derivative. Consider two values of z close to each other, z and z + Az. This

(5.9)

Kimplies that
(E"n,m (z,s)) . (Ecn,m (z+Az,s)) = (z‘cn’m (z+Az,s)) . (‘z'cmm (z,s)) (5.10)

i.e., the two matrices for two close positions on the line comnurte vﬁth each other (to order [Az]2 ). Extending this
to the entire internal zg to z and letting Az >0 we find that (%, ) (and hence (ch’m )) must commute with the
same at ever pair of points in the interval, This is the same as one of the assumptions in Section 4 leading to (4.7)
and (4.8). The only coupling between modes is that from + to — waves, one +wave mode coupling with exactly one

— wave mode.

The case of equal modal speeds is also discussed in Section 4 for the leading term. - In ths case we have

(amte),) = (0or),)
"2zIrg"(2’,S)dZ"
j‘ (aum(z.5) (bym (2.5))e 0 (5.11)
+ '
2? £(z" 5)dz" :

(En,m (z’,s))e 20 (a,,,,,; (z’,s))

Zp

due to the particularly simple forms that (G, ,,) and its inverse take from (4.9). Here we see that (3, ) gives the
mode mixing in the + wave (and similarly for the — wave) to the extent that it differs from a scalar times the identity.
As discussed previously this implies that it is the zero matrix (3.8) and requires commuting matrices between the
various points on the interval. This is not consistent with the simple result (4.11) for the leading term which does
not require such commuytativity, Thus use of the first order correction significantly complicates the result. The off-
diagonal terms give the reflection between + and — waves and also involve mode mixing in general, except in the

commutativity case, an extra complication,

16



6. The case of N=1

The special case of a single conductor plus reference simplifies the foregoing formulae considerably. In this
case we have for the leading term

- L G(z,zo;s) 0
e IR
S ?g"(z’,s)dz'
G(z,zo;.s) = Teg(z,s)& = %
2z
g(z,5) = -7(z.9) = —[z’?”'(z,s)lf'"’(z,.s*)]”2
Zo(25) = T (2.5) = [Z/(z.) 7 (z,s)}llz : ©.1)

Z(z5) = 75 (z.5) = Z¥?(z,5)
O (z,5) = G(z.20:5) (20,5)
70 (z,5) = G (z.20:5) 2.(z.5) 7, (z0.5) I;'(zo,s)
{without distributed sources)

The correction term simplifies to

d(z,5) =0

5(2,5) = ~ 5o (2,5) az, CEZZ’S) _ dfn(E;.z (2.5))

( vv’(z ans)) (VV') '

z

+j[ b(z,5)G 2(2 zO,S)JdZ
b(z s)Gz (z',29;5)

)
= (Ly)

dZ’

j dﬂn(zc (=, s)) 2 ‘[ A" s)det
N 2

J‘dfn(zc (=, s)) ZI P )iz

' 0 (6.2)
dz

Zg

17



This has no diagonal terms to modify 7). The off-diagonal reflection terms give some conversion of the + wave
into a — wave (and conversely), small at high frequencies. Given some specified forms for Z, and 7. the integrals
can be evaluated. For s = jw the off-diagonal terms involve an integral over a slowly varying dién(z.)]/dz
times an exponential of a constant times jo (lossless case). As @ —> oo the resulting integral tends to zero making

the first correction term go to zero.

18



7. Concluding Remarks

Now we have formulae appropriate for high-frequency propagation on NMTLs. To how low in frequency the
leading term extends is more complicated. One can estimate the error in the leading term from the correction term
provided it deviates from the identity by a relatively small amount.

What we have here is an extension of the WKB approximation to N-conductor (plus reference) transmission-

line systems. This generalizes some previous results [7]. I would like to thank E. Heyman and J. Nitsch for discas-

sions concerning this paper,
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Appendix A Some Properties of the Product Integral

Various properties of the product iniegral, including supermatrices, are fabulated in [4 (appendices)]. Some
additional properties are considered here. We begin with the definition as the limit of a product

z—2zp

Az = L > Zp = 2Zp + phAz
He(hn,m(z'))dz’ - H[(}n,m) + (hn,m (z’))dz'}
% 29
= Tim e(hn,m(zL))Az h__.e(h,,,m(zz))Az' . e(hn,m(zl))Az (A1)
(ﬁz_ﬁjo)
= lim é e(h"’m(zp))&
L—w p=1

with continued dot multiplication taken 1o the left.
A first simple nule concerns complex conjugation

*
Z

He(h"’m(g))dz' = ﬁe(h"””(’" Ve (A.2)

Zg Zp

since the conjugate of a product is the product of the conjugates.

Consider next the transpose
z r z T
: __[e(h,,,m(z’))dz’ =T [[Cnn) + (o (z))2]
20 Zg
= i [[(um) + (om0} tmm) + ()]
| = jm :(In,m) + (g (@) AZ] ""'[(In,m) + (um (2)) Az] (A3)
B y RO

-1

!
s~

e
‘;3"'

3
~
=
&

20



In another form we now have, replacing (%, ,) by (i ) .

T

ﬁe—(hn’m(z')) dz

Zy

This leads to special cases.

1. Symmetric

(hn,m (z')) =

Tl

2y

2. Skew symmetric

il

(hn,m (Z'))

ﬁe(hn,m(z'))dz' _

20

T

- 71

(hn,m (z '))T

- (hn,m (z ,))T

Z

T tonte) ]

L 20

T
rIZ_OL,,(hn,m(z'))dz' }

z

(Transpose equals inverse.)

21
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(A.6)
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3. Hermitian

(um (@) = (i (), + = T% = adioint %)
Replace Tby 1 in (A.5)

4. Anti Hermitian

(A (=) = = (o ym (z'))T (A8)
Replace T by 1 in (A.6)

In [4 (Appendix B)} product integrals of direct-prodact matrices are considered. For completeness we note
the simple rale for direct sums

((hn,m (z'))w,) = (h,%},, (zr))@ ...@(;,,g{tg”) (z,))
) ()
O (e)

(M square blocks on the diagonal) (A.9)

(), Jo
! |
) lf[e'(’"(g”m)dz' }B_,_@

2z

[ ek }

)]
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