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Abstract ~

In identifying radar targets based on the poles (resonances) in the singularity expansion method (SEM),
there is additional information to be gained from the residues. The polarizations of the substructure resonances can
also be vsed as a target signalure'. 1n addition, the relative times of arrival of the various resonances at the radar can
also be used as another way to construct a target image. '
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1. Introduction

In identifying (classifying) radar targei’s the natural frequencies s, (pole locations in the complex s-plane)
have proven to be quite usefnl due to their as;pect-indepcndent property (independent of all incident-field parame-

ters). This is but part of the singularity-expansion-method (SEM) description of electromagnetic scattering. Sum-
marizing its general form in the case of an incident plane wave we have
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1; = direction of incidence, 1 p = polarization, 1; » 1, =0

~ = Laplace transform (two-sided) over time ¢ .y
s = Q + jo = Laplace-transform variable or complex frequency
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Taking ¥=0 (coordinate center) as some convenient position near the target the scattered far field takes
the form
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A (-1, -1,5:5) = scattering dyadic (reciprocity)

1 5 =direction to observer (outgoing)
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For backscattering (1 o =— 1) this simplifies to
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Ap(1:,5) = Ap(1i,) =real symmetric dyadic (special case of Hermitian}

Note that in the case of backscattering this can be regarded as a 2 X 2 dyadic using transverse coordinates in the
usual radar 4, v (horizontal, vertical) coordinate system. '

The SEM representation of the backscattering dyadic [9, 13] is given by

S e_[s_sa}to“) - 5,
Ab(1i.5) = Z-—mca(lf)ca(lf)
8§ — 8

o
+ entire function

S - - = —>
Ab(1i,5) = Z ca(11) Cal( 1) ult—1y)
(24

+ entire function (temporal form) (L4

_)
10 = turp-on time

Ré(s,) < 0 (natural frequencies)

The entire function is an early-time contribution with damped sinusoids applying at late times. The details of this
are discussed in [2, 6] and need not concern us here. There are special cases for which second order poles appear,

but this is neglected here.

While the terms in (1.3) can be regarded as experimental observables, they can also be calculated, for

.example, from an integral equation of the general form
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involving volume or surface integration as appropriate. From this we have
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Taking the kernel as symmetric (E-field form) we have
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While the natural frequencies s, are very useful due to their aspect independence, one would like to use as much

information in the scattered field as possible. For present purposes let us consider the pole residues.



2. Properties of SEM Pole Residues

Consider the physical properties, partlcularly with regard to polarization, of the SEM pole residues. For
thlS purpose define

2.1)

Both 1, and 1, canbetakenas 1j and 1y or some linear combination (real) of these. So our residues are

comprised of two factors containing incident and scattered polarization. The above is for the case of nondegenerate
natural frequencies, but this is easily extended to the degenerate case

A fundamental concept concerning the properties of the residues is target symmetry. The geometrical

is a symmetry plane (say y = 0) with a group representation,
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symmetries of the target evidence themselves in the symmetries of the scattering dyadic [10, 12]. A simple example
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This property can be used to orient the resonance and hence the scatterer relative to the radar, but it requires the
proper location of the radar on the symmetry plane

i

The implications of such have been discussed in the context of mines (the vampire signature) in [5, 8, 13]



Bodies of revolution with axial symmetry planes extend the above, since at Ieast one of these symmetry
planes extends through the observer. In this case there are two _c)a to consider (with the same s, , ie,
degeneracy) which are aligned parallel and pe;ipendicular to this symmetry plane. This is particularly convenient if
the symmetry plane is vertical, thereby fitting into the %, v radar coordinates with #o crosspol in backscatter.

While previous considerations have concentrated on the symmetries of the total target, one can consider the
properties of substructure rééonances to the extent that they can be separated from the overall target scaitering [7].
This can be accomplished in part by temporal isolation of the scattered signal from that of other “clutier” such as
carth or water surface or other nearby large structures. (Such symmetries can be termed “partial symmetries” [3, 4,
1ib. :



3. Polarizations and Time Delays of Resonances in Backscatter

Figure 3.1 indicates a set of canonical target substructures that might be present on a larger object such as
an aircraft, land vehicle, building, etc. If the target is sitvated on a reasonably flat earth we can regard this surface as

the xp plane for our coordinates.

3.1 Substructure polarizations

For simplicity let the radar be directly above the target. Then our choice of /, v coordinates is
ambiguous and we can use x, y coordinates for our radar. In Fig. 3.1 we have some thin-wire scatterers orienied in
the three coordinate directions. The z-directed wire does not scatter the radar wave in x and y polarizations. How-

ever, the x~ and y-polarized wires do interact with the radar beam. Suppose s, and s, are two corresponding naty-

ral frequencies. The fact that these two resonances are oriented 90° relative to each other is itself a target signature.

Of course, the relfative angle between these can be any angle in principle for this target signature.

Another substructure is shown as a body of revolution (with axis parallel to the z axis). This backscatters
equally in both x and y polarizations (with no crosspol).

—
Yet another substructure is indicated with a symmetry plane perpendicular to 15 . In this case the scatter-
ing dyadic is diagonal in this coordinate system with separate natural frequencies for each of the two polarizations.

3.2  Substracture relative elevations

Consulting Fig. 3.1 we can see more information potentially available for target recognition. In particular the target
substructure resonances arrive back at the radar at various times. The time difference of arrival of say s; and s

located at clevations / and /sy have a time difference of arrival of approximately [/ —/]/(2¢) from which
M — /M canbe inferred. This is also a target signature. This extends to all the substructure resonances. Of course,
there is some ambiguity as to exactly when a complex resonances begins in time. (This is an analog of the

Heisenberg uncertainty principle in quantum mechanics.)
3.3 Combining resonances with multiple directions of incidence: resonance imaging
The discussion of the previous subsection can be extended if we have multiple directions of incidence (and back-

scattering). In a conceptually simple case let us suppose that we have three mutually perpendicular directions of

incidence. Then generalizing from a set of heights /i, to the coordinate positions Fo we can-determine the
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Fig. 3.1 Target Substructures with Simple Polarization Properties
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vector, say #] — # 2, from the three orthogonal components, thereby giving the relative positions of the resonant
centers in space. This gives a kind of image of the target. For a set of nonorthogonal incidence directions one can

still determine the relative positions via matrix inversion.
3

Note that as one varics the direction of incidence some of the target substructures may be shadowed by the
larger target stctures. One needs to atiow for this when constructing the image.

3.4 Including ground reflection

With a ground (or water) surface present under the target, the ground reflection also influences the
measurements. Consider the geometry in Fig, 3,2, Again assuming an approximately flat ground surface we have a
ground reflection of the incident plane wave, this reflected wave also scattering from target substructures. As indi-
cated in the figure the first scattered signal in the direction _1)0 with
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follows the reverse path of the incident ray.

The second signal follows two directions on the path involving a single ground reflection as well as scatter-
ing from the target [1]. Due to reciprocity this second signal has equal contributions from both directions on the
path, effectively doubling the signal. However, there is also loss associated with the ground reflection. There is an

extra path length £, — ¢ delaying the signal after the first signal atime fy as

cty = £y — {3 cos(z—20)
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From a measurement of ¢, then h can be determined. By extension this applies to the various substructures to

determine the various /4, , thereby aiding in the resonant imaging.

There is also a third signal associated with two ground reflections which can also be thought of as scatter-
ing from the target image. This arrives yet later, and has yet more loss due to the two ground reflections.
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Fig. 3.2 Target or Target Substructure Above Ground or Water Surface
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4, Concluding Remarks

So we see that the pole residues contain information useful for target identification. The relative polariza-
tions of the target-substructure resonances are target signatures. The time delays between the substructure reso-
nances (including delays due to ground reflection) also allow one to form a target image.
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