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Abstract

In evaluating large-band-ratlo ﬁ'equency spectra of transient waveforms, one needs some appropriate meas-
ures, such as are obtained from norms. In this paper, after considering the response of resonant systems to such
waveforms, appropriate weighted norms are introduced for such evaluation. These have the property of weighting
~ the high-and low-frequency portions approximately equally. In turn one can define appropriate efficiencies. '
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1. Introduction

In the development of impulse-radiating asiennas (IRAs) very large band ratios (typically two decades)
~ have been obtained [8]. This has led to some new definitions: hypoband (narrow band), mesoband (medium band),
_ 'hyperband (at least one decade of band ratio) [2]. The old concept of ultra wideband based on 25 percent or greater

bandwidth is in appropriate for hyperband systems, the new technology far surpassing the bandwidth concept,
- leading to band ratio. While some older antenna éon_oepts {e.g., log periodic) can also haﬁe large band ratios, the
| [RAs in coniradistinction are approximately dispersionless an& are suitable for pulse radiation and reception, .

_ Not all radiated pulse waveforms are as ideal as those from IRAs, having frequency spectra which are not
even approximately flat over the frequency range of interest for'coupling to complex electronic systems. How does

o one characterize the bandwidth or band ratio in such cases. The use of norms comes to mind, and some bounds have

~ been obtained for bounding frequency-domain nortms by time-domain norms and conversely [6]. Window norms

 are also 'inlroduced to apply the apprdpﬂate p-nonﬁ integrals over only a portion of the time dowmain, or over only a

. N poruon of the Fourier tmnsform (frequency spectrum) of the pulse [3]- This 1atter isrelated to bandmdth/ratlo Thls
has been profitably employed in measurements [4,7]. '

The present paper applies window norms to the froquency spectrum in a way that is con51stent with the use
of band ratio for hypeﬂ)and puises



2. Efficiency of Hyperband Waveforms for Exciting Hypoband Responses
Let

70 (£) = excitation voltage or field waveform
| v (g '; response of ta.rgé_t ' | _ _
.. 7 .(s) = transfer function of target represented by hypobaﬁd_(narrow band) filter |
e i ey
~ = two-sided Laplace transform over time ¢ | |

s = Q + jo = Laplace-transform variable or complex frequency
For the filter we asswme the simple form (conjugate pair of first-order poles)
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- Further assume that s, is near the jo axis (hypoband)
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Now assume that 707 (s) is smooth (i.e., does not change appreciably, including phase) near s = + ja,

giving
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Noting that | QO | << @g, we have an approximate peak of this as
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For convenience and normalization let us set
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giving
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As we can see small A gives a smafl response to the incident waveform.

Of course, the transfer function is also a function of frequency, having different valoes for different reso-

pances. So a more general form has
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In this form we see that the peak response depends on the value of |75 | at the various resonances of interest.
For the transfer function one can choose a frequency range of interest such as around a GHz [1, 3. How large

T(jmp) can be at the resonances in this range is very complicated.



Consider next the variation of 7"\ (jw). TFor an impulse-tike waveform (such as from an impulse-
radiating antenma (IRA)) this can be approximately constant, emphasizing the higher frequencies due to the: general
increase of Ae with frequency. On the other hand, for a fast pulse (nanoseconds), perhaps with a fast rise time we
can approximate the input by a step function as

7o) = o @11)
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over some frequency band of interest. In this case we have
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N = mmber of cycles to ¢! for transient response
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So for this type of excitation the response is inversely proportional to Q or Aw/@g. If the various resonances have

approximately the same Q, then frequencies of inferest are weighted in the above form.



3. Application of Norms to Large-Band-Ratio Radiated Waveforms

‘The p-norm of the frequency spectrum of a waveform f(¢) is [6]

© i/ p @ 1/ p
FGo),, | [FGof ao| = |2f|7Ga) do
- f (f) = f* (s) (conjugate symmetry of real-valued time waveform) = - (3.1

f{-io) = F (jo)
Let us now also infroduce a weighted norm [5] in the special form
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- For this logarithmic weighting we see the convenience of integrating over the positive o axis.

" Inj3, :7] the concept of a window norm has been introduced. This applies here as .
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where @; and @, are to be chosen later.- Consider some incident waveform (single linear polarization)



EO(5) = Eof(F)

Then, similar to [7], let us define efficiencies
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Choosing some number (say 90%, or whatever) for these efficiencies we can say something about @ and wp and

thereby infer band ratio.

Consider what we might call an IRA-like waveform, the spectrum of which we approximate as
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Outside the approximately flat central portion there are 20 dB per decade rolloffs. One can choose other forms, but

this will do for present illustration.

For the logarithmic form we have
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This is inverted as
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So the band ratio is found directly from the efficiency one may wish to specify. For example a two-decade B corre-

sponds to roughly 0.9 for 2-norm efficiency.

For the other form we have
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Note that p > 1 is necessary for the integral to oo to exist. Of course, one can assume a different form for the high-

frequency rolloff. The efficiency is now
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independent of ®; and @, . This is problematical. Looking more closely we see that @ is much more important

than @) in the formulae for the norms in (3.10). Comparison of @] to @, in this sense shows the lesser importance



of @ compared to o,. Instead of @, @) one can use wy/@w; which weights o, and »; equally. The

logarithmic form in (3.8) and (3.9) seems meore suifed to large-band-ratio waveforms.



4. Concluding Remarks

In applying norms to the important parts of frequency spectra of large-band-ratic waveforms, there are vari-
ous ways to approach this, In the present development we have introduced a weighted norm where the integration is

with respect to dén(o) = @~ dw . This is shown to weight both the low- and high-frequency limits of the window

norm equally. From this one can define an efficiency in norm sense for containing some fraction of the norm within.

the frequency limits.
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