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Abstract

“We perform a detailed dynamic stability analysis based on the unsplit-field uniaxial PML, formuiation and

derive a dynamic stability condition for the simple, nondispersive Maxwell/PML equations. In this paper,
we introduce the delayed axial field time-response functions in place of the fictitious field-dependent
source terms that others have used in the usual PML analysis. Using the delayed axial field time-response
functions, we are able to cast Maxwell/PML equations for the first time into the well-known state-space
form of control theory. We then proceed to use usual Laplace and Fourier transforms to investigate the
characteristic equation of a system for its dynamic stability. Qur finding shows that it is essential to have
transverse field gradients present at all times in order to stabilize PML calculations; in fact, in the absence
of transverse field gradients the PML method becomes marginally unstable with axial field variables
growing linearly in time for 2-dimensional problems and cubic in time for 3-dimensional problems. The
linear growth is demonstrated in the actual finite-difference time-domain calculation for the TE;, wave
propagating inside a square waveguide that exhibits 2-dimensional behavior.
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I. INTRODUCTION

Despite the successful implementation of the perfectly matched Iéyer {PML) method to absorb outgoing
electromagnetic waves at the arlificial boundaries of a bounded numerical volume, the question of the
dynamic stability of the PML method remains [1,2,3,4]. Abarbanel and Gottlieb [1] carried out a dynamic
stability analysis of Berenger's split-field PML formulation [5], and they concluded that the split-field
Maxwell/PML equations are not mathematically strongly well-posed. Hence, these equations result in
unstable {field variables that grow linearly in time.

In this paper we present for the first time a detailed dynamic stability analysis starting with the
unsplit-field uniaxial PML formulation [6,7], and derive a dynamic stability condition for the simple,
nondispersive Maxwell/PML equations. This analysis shows that the unsplit PML method also results in an
unstable condition where axial field variables grow linearly in time for 2-dimensional problems and cubic
in time for 3-dimensional problems. However, for PML parameter values used in most practical

applications, the growth rate is so small that no significant increase in the axial field variable is expected

within a typical total simulation time of interest.

II. 2-DIMENSIONAL MAXWELL/PML EQUATIONS INSIDE A UNIAXIAL ANISTROPIC

PML MEDIUM
~ Consider an arbitrarily polarized wave, propagating in the positive x-y direction inside an isotropic
medium, that is incident on a half-space, uniaxial anisotropic PME medium. The interface between the two

media is located at the x = 0 plane with x z 0 representing the PML half-space. Inside the PML region, the

2-dimensional Maxwell equations are expressed in the frequency () domain as [6,7]
e~ . PML ~
VxH(ax,y) = joS (o) » et B x, y) (1
= . =PML Y
VXxE(mx,y) = -joS () el H(wy X, ) (2)
where E (0;%,y), H (0;%,), €0, &, Mo, Uiy and SPML {w) are the complex m-dependent electric field vector,

the complex w-dependent magnetic field vector, the free-space permittivity, the relative permittivity, the

free-space permeability, the relative permeability, and the complex ®-dependent uniaxial anisotropic PML



tensor, respectively. Also in the above equations, we use the notation e to denote a dot product and the

symbol ~ above functions to denote @-dependence in order to distinguish them from time-dependent

functions. Elements of the complex uniaxial anisotropic PML tensor, SPML (w) are given by

~PML ) 1 -~ -

S () =diagi=——,S_{w),S_{(w) ' 3)

= S ((D) X X

X

where “diag” is used to represent diagonal terms of a matrix and S, () is an w-dependent parameter that
satisfies the full impedance matching condition at the free space/PML interface. Details of the
mathematical forms and properties of §, (®), which are required for proper handling of impedance
matching at the free space/PML interface, are found elsewhere [8]. The most commonly used form of
S, (w) in the computational electromagnetics community is
*
X

with 2x= 5x “
€o Lo

Oy

S, (@) =1+

JOEo
where oy and &, * represent the PML electric and magnetic complex conductivities, respectively, which are
introduced to absorb electromagnetic waves inside the PML medium.

Since the solutions to Maxwell's equations in 2-1) decompose into transverse electric (TE,) and
transverse magnetic (TM,) waves, we consider these waves separately in the next two subsections. Note
that we use the subscript x to denote the reference propagation wave vector directed in the x direction along

the direction of propagation following the usual convention [9].

ILA. TRANSVERSE ELECTRIC (TE,) WAVES

For TE, waves, (1) through (4) reduce to the following three equations for three complex w-dependent

field variables H, (@; X, ¥), ﬁy (0; %, y) and E, (o; x, y):

IV x Hlwx, y)I, = joes (14+—29) B, (@ %, ) | )
JWE
¥ x By, = —2H (@x,y) - ®
(1425 |
JOE: -



~ . T,
[VxE(mx,y)l, = —jope (1+

jm)fiy(m; X,7) ')

Directly taking the inverse Fourier transforms of the above equations with some manipulation results in the

following time-dependent forms:

» [aHy(t; %Y) 3H, (X, y)J:| _3E, (1Y) o
Jat &
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EoEr ox ay 0 Z( * Y) ( )
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with

Delay ¢,

FEXD) | O oo 53,5y =H, (3,) an

In the above, we introduced the auxiliary variable H2%® (t; x, y) in (9) to handle the delayed time-response

of the éxial magnetic ficld H, (t;x,y). It follows naturally from the inverse Fourier transform of

f, (w; x, ¥) upon defining HE (w; x, y) as follows:

~ COH, (wx,

H?elay (m; X, y) = ( Y) (12)
jo+—=
Eo
or, expressed equivalently in the time domain, as
' c
Y™ (53,y)= [H, (¢5%,9) expl- (2 -1)]dt’ (13)
o .

Note that (11) is simply the differential form of the above expression (13).
The introduction of the delayed axial magnetic field time-response function, H2®™ (t; x, y), in this paper

differs from the usuwal PML analysis that has appeared to date in the literature in which a fictitious

field-dependent source term is introduced as the time integral of [V x E(t;x,y}], [10,11]. Because of the

introduction of the delayed axial field ﬁme-response function, this paper provides a different approach of



the PML method, which we call the delayed-axial-field-convolution technique, to distinguish our approach
from other approaches that use the fictitious field-dependent source, such as the Anisotropic PML (APML)
technique [7]. Advantages we gain by introducing the delayed axial field time-response function are three
fold: first, the wave equations can be cast into a set of first-order differential equations that are more
amenable to a dynamic stability analysis in accordance with the well-known state-space form of control
theory; second, linear and nonlinear dispersive material contributions can be included withowi much
difficulty into the PML formulation by including additional first-order differential equations for linear and
nonlinear dispersive mateﬁals [12,13}; and third, we can easily implement well-known numerical
techniques [14], such as the piecewise-linear approximation, to solve a set of first-order differential
equations in the time domain.

Casting (8) through (11) into a more compact form results in

TE TE TE
W ATy g IW " om OW
gt = - = dx = ay

=0 (14)

where W' (t; %, y) =[E, (%, ¥), Hy (5% ), HI™ %, y), Hy (6%,y)]", and matrices A™, B™

and C™F are given by
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To carryout the dynamic stability analysis of (14), the Laplace transform is performed in the time domain

and the Fourier transform in the spatial domain. The Laplace and Fourier transformed function

v TE
W (s ks, k) of WTE (t; %, y) is defined by

Sg+joe = .1
WGy =5 fexp0is—— [ W (sky,kydexp(ik,n + i,y)dicd, as)
2, e @n)* =2

with Re(s) = s,

where s is the complex variable defined in the Laplace domain and k, and ky are, respectively, the complex
axial and transverse wave numbers defined in the Fourier domain. Noté that we use the symbols ¥ and ~
above functions, respectively, to denote Laplace and Fourier transfo.rmed functions in order to distinguish

them from time-and-space dependent functions.

Upon performing Laplace and Fourler transforms, {14) becomes

% TR % TE ~ TE
£ (sske,ky)e W (ske,ky)=W (t=0,k, k) (19
% TE
where g (s; ky, ky) is the characteristic matrix of the TE, wave, given by
" .
S+ X J Y 0 .]kx
o EoEr EoEr
’ jkY Oy Oy ?
B ' - — 0
O (skek,)= (s I+A" +jk BE + jkygmj =| R & & 20)
0 -1 § - —= 0
Eo
~ ik 0 0 s +—%
JEalir €o

The dynamic stability of the system is characterized by investigating the determinant (or, equivalenily,

. x TE . . .
the eigenvalues) of the characteristic mairix Q (s; ki ky). The determinant gives the following

characteristic equation, relating s to k, and k;, modes in the form of the quartic equation:

2 2 2
szl:[s+&] +M]+(s+0—"] —(IE!-)-":O . @y

Eo EoErLofIR €0 EoErllollr



IL.B. TRANSVERSE MAGNETIC (TM,) WAVES

For TM waves, (1) through (4) reduce to the following three equations for three complex w-dependent
field variables H, (w; x,¥), E, (®; %, y) and Ey (o x, y):

Ox

[V x E(wx, ), = —jcnuaua(1+jm)ﬁz(m; X, Y) (22)
¥ xfi@x )l = 25§ (i) 23)
(1+—2) o
JEo
[V x H(osx, )]y = joeees (142 B (%, 7). (24)
JWEY

Following the same steps as in the TE, wave case yields the following equations for the TM, wave in the

Laplace and Fourier domains:

<M - . T™ A TM
Q  (skekyyeo W (skky)=W T (t=0k, k) (25)
< ™ X X % Del = T
where W (s; ke, ky) = [H, (s; ke, ky), By (85 ke k) BV (35K, ky), Ey (55K ky) 17 with the delayed
axial electric field ED¥™ (s; k,, k,), defined by the Laplace and Fourier transforms of

EP™ (Gx,5)= [B,(t5%,3) expl- (20—t @26

—oa

= TM
and Q&  (5; ky, ky) is the characteristic matrix of the TM, wave, given by

ser Z Jky 0 L
€ Holir Hople
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5 TM . .
Taking the determinant of the characteristic matrix, Q  (s; ky, ky), gives the following characteristic

equation, which is exactly the same as in the TE, wave case:



2 2 2 k 2
SZ[(HE;-] +("+)}+(s+°_x] by (28)
Eo E0Er|lollr €e / EoErflollr :

II. DYNAMIC STABILITY ANALYSIS

To study (21) [or (28)], we first normalize s, k, and k, by setting

k) (k,)?
-S EoErfLolr q EoEr[Lollr

-8, —(K,)* an —(K,)? (20-31)
[Gx J Gx ? Gx g
€ Eo {g]
Now, (21) [or (28)] resuits in the following equation;
SPLE+D +(K )1+ S+ (K,)2 =0 (32)

Since the above characteristic equation yields S for K, and K, modes, the dynamic stability of a system
can be characterized by investigating the values of Re{S}. The system is absolutely stable for all norrﬁal
modes if and only if Re{S} < 0. For Re{S} =0 any noise present in the system eventually excites the K,
and K, modes and drives them unstable.

From (32) it is immediately apparent that if the normalized transverse wave number K, is zero then two
of the four roots are located at S =0 in the complex S-plane, which results in marginally unstable behavior
that grows linearly in time when transformed back into the time domain. These marginally unstable roots
are associated with the axial wave, relating to the axial field variable and the delayed time-response axial
field variable. The other two roots are associated with the stable, incoming and outgoing transverse waves
that propagate as exp [—(leso) t = jk, x]. Looking at the. form of (32), we can see the term that contributes
to stabilizing the system is the real part of K,. Phys.ically, this means that the transverse field gradient (in
the y direction} contributes to stabilizing the axial field (in the x direction) as TE, and TM, waves
propagate into the uniaxial PML medium.

In the special case of nondecaying waves where K, and Kry are both real and not equal to zero (which
ariées from G, =0}, Re{S} can be shown to be negative for all roots 5; using a proof based on Descartes'
Rule of Signs [15] (sce Appendix A), implying the system is dynamically stable for the usual purely

propagating ‘waves. Unfortunately, the actual PML system is not given by only the real part of the



normalized complex axial wave number K,; rather, it includes the imaginary part of K, as a result of
attenuating the wave amplitude by as much as 50-100 dB within ten to twenty cells of the PMT. as the wave
propagates into the uniaxial PML medium. To investigate the effect of the imaginary part of K, on the
dynamic stability of the PML system, (32} is solved numerically using MATHEMATICA software {16] for
the four complex roots [17] of the quartic equation. Shown in Fig. 1 are stability diagrams [18] that map the
stable and unstable regions of the complex S-plane into the complex K,-plane for the selected K, values of
0.5, 0.1 and approximately zero. In these diagrams, the boundary between stable and unstable regions is
obtained by searching for values of Im{K,}, for given values of Re{K,}, that satisfy the marginally
unstable condition, Re{S8} = 0. Comparing the stability diagrams (a) through (¢) in Fig. 1, we see that as the
K, value is decreased from 0.5 to 0.1 and then from 0.1 to approximately zero the PML system becomes
increasing unstable as seen by the shrinking area of the stable region in the complex K,-plane. Fig. 1{c)
shows that for K, = ¢ any small nonzero value of Im{K,} results in an unstable condition for any value of
Re{K.}. From these stability diagrams we can conclude that as the transverse field gradient decreases the
system becomes increasing unstable, leading eventnally to the marginally unstable condition for zero

transverse field gradient (i.e., K, = 0) as discussed in the beginning of this section.

0.4 . Unstable region, Re{S = 0}
Im{Kg 0.0 b : (a)
0.4 : Unstable ,
04 Uns;able ;eginn,‘ Re{SEEO} & For Ky= 0.1
Im{K,} 0.0 wonmnre
-0.4 ‘ Unstable

Res20) | For Ky~ 0.0

0.4 Unstable region

Im{K,} 0.0 (c)
o4 - Unstable \Stable, Re{S <0} 7
' l 1:0 ‘ ‘ ‘ ! 2.0
Re{K,}

Fig. 1. Stability diagrams for mapping unstable and stable states of the complex S-plane
into the complex-K, plane for K, values of 0.5 [top diagram (a)],
0.1 [middle diagram (b)], and approximately zero [bottom diagram {c)].
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For 2-D FDTD calculations the 6uter most layers of the PML are bounded typically by perfect electric
conductors. As a result, the transverse electric ficld gradient (or, equivalently, K,} goes to zero least one
spatial peint. within the PML for traveling modes given by even functions. It is at these spatially localized
points that the PML system goes marginally unstable since there is no transverse field gradient to stabilize
the marginally unstable axial field.

The spatially localized, marginally unstable behavior, which we obtain from our dynamic stability
analysis, may explain the reason for some published papets reporting unstable (exponential growth)
numerical PML results and others reporting stable numerical PML results, depending on the types of
numerical techniques used to solve Maxwell/PML equations. Depending on which numerical technique is
used, a slight numerical error from the exact solution results in deviation from a marginaily unstable point,
resulting in either a stable or unstable numerical condition. In second-order accurate FDTD calculations, it
has been reported that an exponential time differencing technique resulted in an unstable (exponential
growth) condition and a central time differencing technique resulted in a stable condition [10]. Since the
PML system is found to exhibit the marginally unstable behavior specifically at the spatially localized
region where the transverse field gradient is zero, we would expect the numerically calculated axial field
values to grow linearly in time locally if the numerical calculation is performed correctly without numerical
errors. Without going through detailed dynamic stability analysis, many fcsearchers in the computational
electromagnetics commynity have been lead to believe that PML systems provide stable behavior in time.
As our detailed dynamic stability analysis has shown here, the simple, nondispersive PML system actually -
reveals the spatially localized, marginally unstable behavior and we should not expect the solution to be
stable over a long time. |

Now, if we are interested in getting the unconditionally stable behavior of PML systems in the long time
limit, it is possible that we can achieve this goal by making slight modification in one of the Maxwell/PML
equations. For TE, waves, this can be done by reducing only the PML electric conductivity term that
appears in front of H, in (9) by a very small amount &, while keeping all other PML electric conductivity
terms the same in (8), (9), (10) and (11) so that marginally unstable points move info the unconditionally
stable region of the complex S-plane. This modification changes the characteristic matrix of the TE, wave

shown in (20) to the following form:

11



s+—= Ky 0 ks
Eo EoEr Eokr
Jk Yy Ty - 5x ( Oy Jz
+ TE §— 0
[g {8k, k ¥ it 5, change Mol B Eo . (33)
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Taking the determinant of (33) results in the following dispersion relation

. 2 2 2 k 2
[Sz+ 5 (“&J] [[Ho_x) +&}+[5+9_x_] G )
€o Eo £o EoErlloflr €0 EoEr|lollr
Evaluating (34) at k, =0 where the PML system revealed the marginally unstable behavior before, the

eigenvalues of the modified PML systemn based on the expression in the left most bracket of (34) are given

2
A
2€0 2&0 €0 €o

The above expression shows the real parts of s to be always negative for any real value §,> 0 based on

by

Descartes' Rule of Signs [15], implying the meodified PML system for TE, waves can be made
unconditionally stable.
For TM; waves, (27) is modified in the same way by reducing one of the PML electric conductivity

terms by &, while keeping the others the same, which results in

- ik :
8+ Gy J ¥ 0 .]kx
€a - Hollr Hollr
. 2
< TM _Jky s——o-x_ax (Gx] 0
{_Q_ (s; k x> k ¥ ) with &, change — EoEr Eo €0 (36)
0 -1 §+—= 0
. ’ o
LS 0 0 § 2
EoERr o

Taking the determinant and solving for the eigenvalues at k, =0 gives in the same unconditionally stable

condition as in the TE, wave case.
A consequence of this unconditionally stable approach is that modified PML systems no longer provide

the full impedance matching condition in the presence of axial field components at the PML interface for

12



off-normal incident waves. However, we can choose the value of 8, so small such that the reflection of
outgeing waves back into the simulation volume of interest is within the noise level of the FDTD
calculation. Hence, one advantage of this approach is that we can assure ourselves of the dynamically
stable behavior of PML systems in the long time limit, provided the numerical calculation is carried out

correctly.

IV, NUMERICAL VERIFICATION

To verify the dynamic stability analysis of the previous section and demonstrate the marginally unstable
behavior of the axial field inside the PML in actual numerical experiments, let us consider a simple test
case consisting of a rectangular X-band waveguide that is capped with a perfect electric conductor on one
side and open on the other. Dimensions of the cross section of the waveguide are chosen to be 1.144 cm by
2288 cm (in the y and z directions, respectively} to allow only a (TE,)},y mode to propagate in the
x direction along the length of the waveguide. The length of the waveguide is chosen to be 11.44 cm. A
dipole source is used to excite modes at 1.0 cm from the end that is capped.

The FDTD numerical simulation is carried out with a cubic cell size (Ax) of 0.1144 e¢m and .a Courant
number of 1A/3 for the computational volume of 10x20x100 cubic cells. The dipole source provides a
sinusoidal excitation of 10.0 GHz [19] that is superimposed on a Gaussian profile with the FWHM of 0.44
nanoseconds (i.e., 200At). The excitation frequency is chosen to operate above the 6.557 GHz cutoff

frequency of the (TE,);; mode so that only the dominant (TE,); mode propagates inside the rectangular
waveguide. A 10 layer PML with the fourth-order conductivity profile [ o, (x) =o3™ [x/(1 0Ax)]* is used

in front of the opening to absorb the exiting (TE,);p mode. In FDTD numerical calculations, the usual
Maxwell/PML equations are discretized using the usual Yee leapfrog scheme [20] based on the piecewise-
linear approximation in time with exponential time differencing [21,22]. In the process of using a 3-D
FDTD code and a dipole source, we let the system evolve into a (TE,);, mode and made sure that only the
(TEx)10 mode would have survived and all other modes would have decayed to the noise l.evel within the
single precision of our SUN SPARC 60 workstation after traveling a certain distance. Only after we are
certain of the fact that (TE, ), is the only surviving mode in the square waveguide, we place the PML a

certain distance away from the dipole source to absorb the outgoing wave. Since TE,q is characterized by

13



2-D behavior, we effectively mimicked the 2-D behavior using a 3-D FDTD code. Based on the result of
FDTD numerical calculations, shown in Fig. 2 is the time-dependent axial magnetic field, H,, of the {TEDw

mode that is incident on the PML layers. Fig. 3 shows a magnified view of the temporal behavior of H,

calculated at the middle of the 10® PML layer for 6™ values of 2.0, 2.5 and 3.0 siemens/meter. As seen

in Fig. 3, Hy grows linearly with time for all three values of o3 as a result of having zero transverse field

gradients inside the PML. To be certain of the fact that the observed linear growth is not coming from
numerical discretization effects, we performed additional FDTD runs by reducing the spatial and temporal
size each by a factor of 2. We see the same unstable linear growth behavior of the axial magnetic field in
these runs. From curves in Fig. 3, we estimate the number of time steps required for H, to reach 1% of the
maximum axial magnetic field value to be 2.38x107, 7.80x10° and 6.22x10°, respectively, for 6™ values
of 2.0, 2.5 and 3.0 siemens/meter. These numbers are significantly larger than the total number of time
steps typically chesen for many FDTD runs; hence, in most practical applications, we do not expect the

field values to change significantly as a result of unstable linear growth within the total simulation time of

interest.

(G210 .
3
05 A ii
I
H, : %
(A/m) Dw—mwufgi 3§; NN i ittt
i
-osi ﬂ
wii~
“+8 3000 R0 BOD 3000 1200 4400 1600 Ie00 B0

Time Steps

Fig. 2. Time-dependent axial electric field (H,) incident on the PML.
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Fig. 3. A magnified view of the temporal behavior of H, calculated along the center
of a square waveguide at 10" layer of the PML for 6,™ values of 2.0, 2.5
and 3.0 siemens/meter.

To check the evidence of the local marginally instability that leéds to the catastrophic unstable behavior
in the rest of the computational space, we performed additional FDTD calculations by simply increasing
the maximum time beyond that of typical FDTD runtimes considered by pecple in the computational
electromagnetic community (i.e., we arbitrarily set the number of maximum time steps to an order of 10'%).
The result is that we observed the catastrophic unstable behavior that spread to the rest of the computational
space. It happened after the localized axial magnetic field value grew to a point where it starfed impacting
the calculation of transverse electric fields. At the beginning, the localized axial magnetic field grew -
linearly in time as predicted by our dynamic stability analysis as long as the axial magnetic field value
stayed small as compared with the transverse electric field values. At later times, the transverse electric
fields became unstabie due to the use of Ampere’s Law, which couples the marginally unstable axial
magnetic field to the transverse electric fields through the gradient of the axial magnetic field.
Consequently, the transverse electric fields in all surrounding cells became unstable and then spread out
further to all adjacent neighboring cells as the calculation proceeded forward in time. The observed
unstable behavior of transverse electric fields exhibited the exponential increase in time within the

localized region of the computational space surrounding marginally unstable axial magnetic field points.

15



Now, if we consider the same simple test case described above and perfoml the FDTD caIéulations by
solving unconditionally stable Maxwell/PML equations that we introduced in the previous ‘section, the axial
magnetic field, II,, shows the stable, exponentially decaying behavior in time. Shown in Fig. 4 is a
magnified view of the temporal behavior of H, that compares the results of unconditionally stable

FDTD/PML calculations with that of the marginally unstable FDTD/PML case, evaluated at or = 2.0

siemens/meter. The unconditionally stable FDTD/PML case clearly reveals the exponentially decaying
behavior of H, that approaches zero quickly as time goes on; on the contrary, the marginally unstable case
shows the linear growth. For these unconditionally stable FDTD/PML calculations, we arbitrarily choose

the 8, value to be 1x10°® of the &, value. At this 8, value, the resulting increase in relative reflection of the

modified FDTD/PML case as compared with the marginally unstable FDTD/PML case at the interface of
free space and the PML tums out to be —71 dB, indicating that the impedance matching condition is met

sufficiently well for the unconditionally stable PML formulation.

3

Marginally Unstable PML Formulation

=R,
-

4 i i ¥

Unconditionally Stable PML Formulation

xa
Time Steps

Fig. 4. A magnified view of the temporal behavior of H, obtained along the center of
a square waveguide at 5™ layer of the PML for 6, = 2.0 siemens/meter.
The top diagram shows the result of the marginally unstable FDTD/PML case
and the bottom diagram shows the result of the unconditionally stable
FDTD/PML case.
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V. EXTENSION OF THE 2-D MAXWELL/PML EQUATIONS TO 3-D FOR A UNIAXIAL

ANISOTROPIC PML MEDIUM

We next extend the 2-D Maxwell/PML equations to the 3-D case. We consider an arbitrarily polarized *

wave, propagating in free space in the positive x-y-z direction, is incident on a half-space, uniaxial

anisotropic PML medium. The interface between the two media is again located at the x =0 plane with

x 20 representing the PML half-space. Inside the PML region, the 3-D Maxwell/PML equations now

require the use of two complex auxiliary variables, ﬁfem" (s; ky, ky, k) and ICIEeray (8; k, ky k), in addition

to the usmal six complex field variables, ﬁ(s; ks, ky, kz) and E(S; ks, ky, kz). Following the procedure

outlined in Section II, the 3-D Maxwell/PML system can be described by the following eight-by-eight

matrix system in the Laplace and Fourier domains:

% EM x EM : « EM
O Gkykyk)e W (sky,ky k)= W™t =0k, k,k,)

@37

= EM : Zpely & R X X Delsy T x EM .
where W (s; ky, ky, k) =[E,, E;*7, By, E;, Hy, HY, Hy, Hy] " and Q0 (85 ks, ky, k) s the

characteristic matrix of the electromagnetic wave, given by

~

Taking the determinant of the characteristic matrix,

EM
O (sikpky k)=

(s} a
2% (_X)2
&9 Eo
-1 543

Eo

¢ 0

0 0

0 0

0 0
*p
K

LSV 0
EoEr

EoEr

jk

. S
CotR

0 0
1]
0 — jkz
EoEr
ik
s+ Ly
. Eo EoEr
Ky o
EoEr €o
0 -1
_ ka 0
CoEr
0 0
< EM
Q

O

(—;‘)2

EoEr

0
Lo

Eatr
0

0

(38)

(s; ky, ky, k;), gives the following characteristic

equation, which is simply the square of the two dimensional TE, (or TM,) case with (ky, ? replaced by

(kY + (k)™
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=) EoErflollr Eo EoEr]Loflr

2 2 2 2 2
sz{(HG—XJ e ]+(S+G—XJ S Dl G (39)

or, expressed equivalently in normalized variables, as
{1+ +& I+ E+ YLK, )P +(K,)1 | =0 (40)

with K, normalized the exactly the same way as in K, and K,

Carrying out a dynamic stability analysis for the 3-D case similar to that in the 2-D case, we get four
degenerate eigenvalues at S = 0 in the absence of the transverse gradient term (i.e., (Ky)2 + (K,)* = 0} that
will lead to marginally unstable cubic growth in‘time (i.e., ~t' ) when transformed back into the time
domain.

In order to demonstrate marginally unstable 3-D Maxwell/PML calculations that show the actual cubic
growth rate in axial fields, we believe it is rather difficult, because of the fact that a slight amount of
numerical inaccuracy that comes from spatial discretization results in moving the marginally unstable
points into the region of stable points in the complex S-plane. For marginally unstable cubic growth, it
requires that gradients to be zero in two transverse directions all the time at a specific spatial location. In
numerical (discrete} calculations, we have to make sure that a specific spatial location in question has to be
resolved within the finite grid size to assure that transverse gradients to be zero all the time, It is almost
analogous to placing a square tile (as of the square grid) on the top of an erupting mountain and make sure
that it is balanced just right so that the tile will not slide down to the side of the mountain due to its
misplacement. If the center of a tile is not placed just right at the apex of the mountain, it is most likely that
the tile will fall down as a result of slight imbalance (which is equivalent to causing the gradient). In the
actual numerical calculation, it is not easy to predict the exact location where two transverse gradients
happen to be zero within 3-D grids, as well as placing the numerical grid right at that point such that the
placement of the grid will not create an unwanted gradient. As shown in our dynamic stability analysis of
the PML system, if there exist a finite transverse gradient then a system is stable. The authors predict that
marginally unstable cubic growth can be seen only in the case of very fine spatial resolution calculations in
which an enormous amount of computer memory is used so that the discrete space comes close to the

continuum space.
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V1. EXTENDING THE 2-D DYNAMIC STABILITY ANALYSIS TO CORNER REGIONS
At a comer region of the 2D PML medium, the complex uniaxial anisotropic PML tensor, EPML (), is

modified to include contributions in both x and y directions as follows:

’§ P~
SPML((D) = diag ,,y(m) , ,S,X(m)
= 5, 5, @

) ’s“y(m) 41y

where §y () is given by the following form, which is identical to that of S, (@) except 0,—0C, and
o, —o*

*
g B+ (4]
¥ with —Y=-L-l‘f~ 42)
0 .

Sy(@) =1+
Eo Ea

Using (41} in (1) and (2) and following the same steps as in the previous sections yields the following

equations for the TE, wave in the Laplace and Fourier domains at the 2D PML comer region:

= TB = TE ~ TE
[2 (S;kx!ky)]comer * [E '(S; kx’ky)}comer = [—W. (tmo;kx’k}')]mmer (43)

where

= TE z < % < e
(W (85 ko Ky) Joomer = [ B (85 ks ky)y Hy (55 ko k) HY™™ (55 ky, k), ALy (85 K i), FID (55 Ky, k)1 T

% TE . .
and [ {s; Ky, ky) Jeomer is the characteristic matrix of the TE, wave, given by

C,+0, G0, i —
P T T L) 0 —iky 0
£ S(En)2 £ ) £oEr
. o — __
ﬁ g x o-y Ty (Gx Gy) 0 0
- et £ & &
[£=2 (S;kwky)l:omer: 0 -1 S+$ 0 0 (44)
B
—3 O, —G, G, -G,
ks 5 0 P T S e T
IR & B &
Sy
0 0 0 -1 s+—=2
&

3 TE . ..
Taking the determinant of the characteristic matrix, [Q  (s; ks, ky) Jcomen gives the following characteristic

equation:
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2 2 2 2 2 Y
o g ) k k
s (s+ "] [s+—y] +[s+——y—J i-+[s+0—") ) =0 (45)
Eo Eo Eo EoErflellr Eo Eor]lollr
As seen in the above equation one root is located at s =0, which gives a stable solution in the time
domain, and the other four roots can be obtained by setting the expression inside the square bracket to zero.

For arbitrary complex values of k, and k,, the real parts of the four complex roots of the quartic equation

have to be investigated numerically by solving (45).

For the special case of 6y = G, the expression inside the square bracket of (45) reduces to the following:

2 2 2 2 '
(S+G—XJ [(sﬁ‘—xJ G+ l) }:0 | (46)
Eo €0 EoErllolir ‘

The first bracket of (46) results in the double root at s = - (6, / &), which provide the stable solutions in

the time domain. The second bracket of (46) results in two more Toots at s = - (G, / &) 1 j {1/ 1/(eotrploptn) k }

where (k) = (k,)* + (k,), which provide one stable and one conditionally unstable solution in the time
domain. To investigate these two roots, we express k in terms of the real and imaginary parts

(i.e, k=" +jk' ) so that the expression can be rewritten as

R 2 o 142
s=-Dx 4 J{ L&)+ k)] cxpl:j tan_][%]jl } , kR =0 “7)

Eo EoErlLole

From (47) we can readily see that one of the two roots results in an unstable positive real value provided

that the following condition is met:
R42 142 1
f[(k )*+(k) ]Sin|:tm—l[k_J] 5 Sx (48)
EcExfloile kR €0
Simplifying (48) we get

K> (Ejam o, 49)
Eo

For TM, waves in the corner region we obtain exactly the same dynamic stability condition as shown

above.
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VII. CONCLUSIONS

Starting with the unsplit-field uniaxial PML formulation in the ® domain, Maxwell/PML, equations are
transformed into a set of first-order differential equations in time. Then, using the Laplace and Fourier
transforms, the characteristic equation of the PML system is obtained and investigated for its dynamic
stability.

From the dynamic stability analysis, we find that the simple, nondispersive PML system is marginally
unstable due to the presence of zero transverse field gradient inside the PML where the axial field grows
linearly in time for 2-dimensional problems, as demonstrated by actual numerical experiment. By making a
slight modification to the usual Maxwell/PML equations, we show that the PML system can be made
unconditionally stable in the long time limit, as demonstrated also by actual numerical experiment.
However, there is penalty associated with obtaining the unconditionally stable behavior; that is to relax the

perfectly matched impedance condition slightly.

APPENDIX A
A proof to show that the real parts of the roots of the polynomial, 8> [ (S+1 )*+a] +(S+1 ¥ b=0 wi.th
positive real coefficients a and b, are all negative.
Theorem:

Consider the equation
S S+ +a]+(S+1)*b=0, S C (A1)
where a, b > 0. Then
() (A.1) has no real solutions;
(i) IfS;=oy+jf,i=1,2,3,4 (Bi= 0)are theroots of (A.1) then o; <0,i=1,2, 3, 4.
Proof:
(i} Rewrite (A.1)as

S[(S+1)? +a]=-(8+1)’b , | (A.2)
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and note that, since a, b >0, if § € R \ {-1,0} then the left hand side of (A.2) > 0 and the right hand side of

(A.2) <0, a contradiction; while if §=-1 then the left hand side of (A.2)>0 and the right hand side of

(A-2)=0 and if S=0 then the left hand side of (A.2)=0 and the right hand side of (A.2) <0, also

contradictions. Thus, if § satisfics (A.1) then S ¢ R. Further, all four solutions are of the form § = o + jB,

o, B .E R,B=0.
(i) IfS =o.+jP is any solution of {A.1) then
(a+jﬂ)2[(a+jﬁ+1)2+a]+(a+j[3+1)?b=o | (A3)
Expanding and equating real and imaginary paris of (A.3) to zero gives
(@ ~p?)? —4a?p? +2[a (o —B*)— 2082 ]+ (1+a+b)(x® —p2)+ 20b+b =0 (A4)
and
Bl2a(o? =B +202 +(a® —pH)+(1+a+b)a+b]=0 (A.5)
In (A.5) the term in brackets must be equal to zero since, otherwise, 3 = 0, which is not possible since
'S & R, Rewritten, the term results in
- Qo+ DB* +20° +3a® +(1+a+b)a+b=0 (A.6)
If o= -!% then we are done (since then o < 0). Othérwise, if ot # -Y2 then (A.6) gives

1

B2 =2a+1[2a3+30c2+(1+a+b)a+b] (A
and
p?-a? = 2a1+1[20n2+(1+a+b)a+b] (A.8)

Substituting (A.7) and (A..8) into (A.4) and simplifying leads to
16a° +48¢° +8(7T+a+b)a’ +16(2+a+byo’
+[(+a+b)* +8(+a+b)]o? +(1+a+b)’a+ab=0 (A.9)

Since a, b> 0 then all coefficients in (A.9) are > 0; thus, by Descartes’ Rule of Signs [15], (A.9) has no
positive roots. Further, zero is not a root of (A.9). Hence, all real roots of (A.9) are < 0. Finally,

o, 1= 1, 2, 3, 4 must be among the solutions of (A.9) so ;< 0,i=1,2,3, 4.
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