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Abstract

In the BLT formalism, based on the electromagnetic topology of a complex system, black boxes (junctions)
and multiconductor transmission lines (tubes, especially uniform ones) have long been included. This paper
discusses some features of including apertures and cavities in the formalism. This mvolves the definition of
appropriate voltages and currents for inclusion in the scattering matrices.
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1. Introduction

In the quantitative aspects of electromagnetic topology ome uses various forms of the BLT equation
(organized according to the topology) [2-5, 7]. Fundamental to this is the use of scattering matrices to separate the
variables for each topological piece in a form which readily allows the pieces to be incorporated into a description of
the entire electromagnefic system. In special cases chain matrices can be used to collapse certain parts of the system
into a more compact representation with the results then converted back to appropriate scattering matrices [6].

In its original BLT1 form [2] the special case of uniform multiconductor transmission lines (MTLSs) were
treated as special “tubes” connecting junctions (general muitiport linear and reciprocal “black boxes™) giving

() - (6nm),,) © (Enm)),, )] © (050,
- () o (%),

[(S’n n (s))uv) = scattering matrix of vth wave into xth wave at some junction

(Eam(s) = [ Fum(5)), L

= delay matrix for uth wave (supermairix being block diagonal)
. ; 1/2 '
(Fam ), = [(Zem(5)),  (Fom (), ]
= propagation matrix (¥, x N,,) for the uth wave
T @s), = (Calzss)), + (2, ().« (u)-9)

= combined voltage

.
U

z, = coordinate from O to L, in diiection of wave propagation
(2 different values of « for the two waves) '

(enn ©), = (e @), * Cin @) = (e ), - (Zom )

= characteristic-impedance matrix for u#th wave o (LD

Ly
Ao = [N, (50 e o)
[V (_)]u .([ [V ( )) “

u

- = source vector for uth wave



(78 en)] = (9 Cu)) + (2,,, 9), - (387 o)

= combined distributed source for uth wave
Much more detail concerning these terms can be found in the references.

As discussed in [5] one can redefine any tube as a junction (a multiport “black box™) with sources at the
ports. However, increasing the number of junctions in the network increases the size of the supermatrices. For
nonuniform MTLs (NMTLs) there is a special form of NBLT equation which preserves the supermatrix size but

introduces additional terms into the equation [5]. For completeness, if all tubes are replaced by junctions the BLT2
| equation takes the form as above with the delay matrices reduced to identities and the sowrces reduced to discrete
sources at the various ports, There is also & special form, the BLT3, in which the BLT1 is manipulated into a special

form using geometric matrix serics appropriate for early-time calcnlations 7).

_ Practical impiementation to date has used the BLT1 from [8]. While the electromagnetic topological
description is quite general, certain pieces of real systems have not yet been practically included in the calculations.

‘In particular the present paper is intended to discuss some aspects of apertures and cavities as pieces to be included
' inthe BLT formalism. | | : o



2. Approach to the Problem

For cavities with apertures and cables consider the illustration in Fig. 2.1. The cavity might have any three-
dimensional shape. It might have any number of apertures, with one shown here with aperture surface S;. There

- may be any number of cables (single conductors or MTLs) entering or passing through the cavity. Here one is
shown penetrating the cavity wall at boundary surfaces S, and S_p. There is also a surface S, separating the
cable from the cavity. It surrounds the cable except for a part comsisting of the cavity wall (assumed perfectly
conducting) serving as the reference conductor in transmission-line theory. There are sitwations in which the cable

. INay pass through the cable away from the wall for which Scc would completely surround the cable, but soch is not

con31dered here.

By the electromagnetic uniqueness theorem we need know only appropriate fields on the closed cavity
boundary including the penetrations, to specify the problem. Our goal is appropriately to specify the fields on the
aforementioned surfaces in the form of scattering matrices which fit into the BLT formalism. We defer the problem
of construction of the cavity Green function and concentraic on the general form of the scattering matrices which

link the fields on the two sides of the surfaces. . It is these surfaces themselves that we wish to characterize.
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'Fig. 2.1 Cavity with Aperture and Cable




3. Aperture Scattering Matrix

To construct a scattering matrix we need to define incoming and outgoing waves. As illustrated in Fig. 3.1
we can think of the aperture as being a degenerate case of a cavity with the two sides of the aperture, Sy and S5,
coming together as S, . Since it is the tangential components of the ficlds, E: and ﬁt , that mmst be specified on 2 o
surface, we need to think of these in terms of incoming and outgoing waves on both sides of the aperture. T

Consider dividing up the aperture into N patches which we take as rectangular for simplicity of discquidn .
as indicated in Fig. 3.2. Other shapes (e.g., triangular) with special basis fimctions on them may be more useful
numerically. Special treatment may also be given to péiches adjacent to the boundary of S, (edge conditions). The

- present choice is merely for illustration of the concept.

Associated with each patch there are two polarizations, two incoming wave directions, and two outgoing
. wave directions, giving 8N variables to consider. The scattering matrix then relates the 4N incoming waves to the
4N outgoing waves giving a 4N x 4N matrix. ' '

- The two side-lengths of the rectangular patch are £, »
en;l En;?. =patch area .

P = 1,2 polarization index

There are two outward pointing normals
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As indicated in Fig. 3.1. For outgoing waves we need £y x Hy to be in the direction of 14 . Note the reversal on

passing through S, .

In the BLT formalism combined voltages are constructed from voltages and currents. For consistency one
. would like to define such variables for an aperture. For outgoing waves associate a transmission line with each

- polarization. Refer to Fig. 3.2 and think of the direction out of the page Tz = ?xx _]_.)y as the outward direction on
' _ the visible side of S,;. We can imagine a transmission line cormesponding to E‘: parallel to ? x with
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Fig. 3.1 Tangential Fields on Both Sides of Aperture |
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ch_l = Zp e"’l = characteristic impedance of hypothetical transmission line
; 2 |
Zy = wave impedance of medinm _ : _ . - (3.3)

I/_ 2
= [&} for free space
£p :

" Similarly we have

3.4

- Note that if the above is for side 1, then for side 2 there is a sign reversal in either —fx or Ty (but not both) for
referencing outgoing waves in the Yz direction. While here I, 7 is visualized as current on a transmission line, it
can also be regarded as current on the aperture in the direction of voltage increase (hegaﬁve of electric field) giving
outward propagali.ng.pewer. o 3 '

Now define combined-voltage waves as

p £ Zey, Inp 33
Here we see the significance of Z in the normalization. For a plane wave propagating normat to the aperture in the
' high-frequency limit, it passes through the aperture, the incoming wave on one side becoming the ontgoing wave on

the other side (and conversely). Of course, if the wave is not propagating perpendicular to the aperture the choice of
Zy for normalization may not be optimal, but it should serve as some kind of average. Note in (3.5) that if both

outgoing and incoming waves are known then 7. p and 1. o, arc easily recovered.
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Matching Ey and H; through the aperture (boundary conditions) gives

Vel = Vup2
T

(3.6)
mpl = Impp
where the subscript g = 1, 2 distingpishes the two sides. With (3.5) we now have
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This clementary scattering matrix corresponds to one polarization on one patch.
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-Rearrange the n;p;q index set by defining a single index
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' _Then we have
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giving a block-diagonal scaftering matrix (4N X 4N) with determinant +1.
.+ There are other forms that the connection of the two aperture sides can take. We have a chain matrix
[ %Y
(Iv] (va).[_‘}) _ . R | S
v g=1 q=2 SRR oo (31D
. (Cv vr) = (1,,,,,'_) (determinant +1) ' '

2

- where the index v also ranges from 1 to 4N but from 1 to 2N for voltages and 2N+1 to 4N for currents. In this form
the chain matrix is like a special case of the propagation matrix in (1.1) for zero tube length. '

As we can see the representation for the aperture is rather simple in this formalism. This is because we
have separated out the Green functions for each of the two sideé, with the various geometries that may exist there,_
from that of the aperture itself. Essentially this representation of the aperture is just the connection of ﬁel'ds through
the aperture. It can however, be treated as a separate entity in the BLT formalism for organizing the entire system.
.This, in turn, will need to be combined with the scattering matrices representing the volumes on the two apeﬁure

sides.

Some work has been done concerning an aperture connecling two regions [9]. In this case Green fiunctions
are used to generate admittance matrices for the two regions of the aperture. ‘Of course, admittance matrices can be
converted to scatiering matrices. In the general problem each region may be connected to various other regions by
apertures. In such cases scattering matrices arc needed to fit into the general BLT formalism for Iarge systems of

_such regions. -

Here we have used simple rectangular patches with uniform basis functions for the fields for simplicity of
description. More opmnal choices for mumerical aocuracy may well be appropnate In any case, we need associated
deﬁnmons of voltages currents, and waves.



4, Boundary Dividing Cable from Volume

Turning our attention to the cable near the wall in Fig. 2.1, let us consider the division of the cable and
cavity volumes by a boundary surface S,,. Figure 4.1 shows a cross section. This boundary can take vatious

shapes, the hemicylindrical one (radius a) being a convenient one.

_ Here let us consider what are sometimes called entire-domain basis functions. For this purpose we can use
_ ' 1he form of the electromagnetic fields in cylindrical (¥, ¢,z ) coordinates as found in vanous texts and papers, €. g "
: [1] Assummg a lossless dlspelszonless dielectric medium (e.g., free space) we have o

7= s[,u:s-]ll2 = propagation constant

g

/2 : ] o L
Zy =[ﬁ] = wave impedance - : o o '_ @.n

s =0+ Je = Laplace-tfransform variable (with respect to time ) or complex frequency

- If we specialize sto jo the propagation constant becomes

y =k .k = ofu]’? o o | @2

We will find this convenient for present purposes. The reader will note that the more general Laplace form uses
modified Bessel functions (7, and X,). “ -

One begins with solutions of the scalar wave equation

(s 5) = i vy (ol

G+ 2 -1 | A @3
' (1= J,, (k923) S 3 o . :
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- From these, three sets of solutions to the vector wave equation are obtained as
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- By various choices of # (including linear combinations), noting that only two of these are linearly independenf, the

vanous types of waves (incoming, outgoing, etc.) can be oonstmcted Here we need only the N and M functions

smce source regions (charge) are excluded (zero dlvergence)

From these fanctions we can find solutions of the Maxwell equations in the form .

2 (mens) = Bt (mat) « BA (mat) |
e L) RO @3

H (m,é’l, )'“Jg—N (m,¢1,§)+J-ZE—M (m,Cl,g)

Note the pairing of the M and N functions between £ and 1 .

It is the variables ( z,¢# ) in these functions which give us an appropriate form of the basis functionson S, .
Note that only z and ¢ components are used (tangential £ and H). For present purposes we assume that a is
electrically smali, so that only m = 0, 1 are of interest, implying only constants, cos( ¢ ), or sin( ¢ ) in the expansions.

- The cable length £ is assumed > > 4, and not in general electrically small. The M functions representing 7

correspond to H (or TE with respect to z) modes, with associated N functions for ﬁ The N flmcuons for f

~correspond to X (or TA) modes with associated M functions for H .

Writing out the wave fanctions on S,, we have for tangential components

l o 13 | | o ];
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where a prime on the Bessel functions indicates a derivative with respect to the argument,
* For H modes we have for tangential fields on S, (noﬁﬁg Ep,E;,Hg=0ong =0, z)form=0
| Ey oC e %1
-0
E. -0 BNCN)
H, & 161 cos(¢)
Inside S, this corresponds to a uniform H, with E4 (small for small a) encircling it. Form =1 wehave
Ey ! cos(¢#)
CE, =0
(4.8
Hy =0 4.8)

H, aC e~ cos{g)

This corresponds to a uniform vertical £ (ie., E. ) inside S.. The sign reversal on H, shows that this term is
small, '

For £ modes we have for tangential fields on S, for m =0

E¢ =0
E, =0 @.9)
H¢ =90
H, =90

For m =1 we have

u
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(4.10)

This corresponds to a locaily uniform E,, plus £, and H, proportional to y inside S .

Now we have a set of basic functions appropriate to S,,. These match directly to wave expansions oufside
Sec. Inside S, these correspond to quasi static fields, in the absence of conductors and insulators (cables) inside
Sc.. However, we can think of these as incident ficlds from which we can calculate coupling parameters

appropriate to the cables. Since we want these basis functions to take the form of voltages and carrents, then we can
scale them by an appropriate length, say £, so that F fields go into voltages, and f ficlds into currents.

As seen above these basic function involve exponentiais in jkzdj . An arbitrary distribotion with respect to
z can be constructed from this by Fourier transforms over z. For some finite length ¢ of cable (e.g., asin Fig. 2. I)Ia
Fourier series may be more appropriate using terms like cos(vzz/£) and sin(vwz/{) for integer v. Converting
these basis functions to the equivalent MTL sources we have for the BLT cable formalism

(5 o)), = (57 o), + {2 ), - (57 () e
O<z, <¢

where for one u valne z, = z (increases to right) and for a second u value (to give the two wave directions)
2, = £ — z. Positive current convention is for increasing z,. This in turn goes into integrals of the form (for

uniform MTLs)

e
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Oty ™

~ Diagonalizing the propagation matrix we have [2]
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Thus the z integrals for a uniform MTL are all analyiic.

Now what we need is to relate the ay, p and f’u; p o the sources in (4.11) decomposed via the eigenmodes
in (4.13) into the A th components. This requires a separate calculation. Referring to Fig. 4.1 we can see how to
approach this. The voltage sonrce per unit length is found from the £ mode for m = 1 in (4,10} on a plane of
constant z. This is just ~hE, if & is a single wire above a ground plane. Equivalently, this is also —jouhH . This

' generalizes to N wires if they are not closely packed so that the magnetic distortion near the open-circuited wires
does not couple significantly to adjacent wires. With a assumed small compared to £ we can first-order neglect the

z variation (small v ) in the computation,

For the current source per unit length the computation is a little mofe complicated. We can obtain the
open-circuit voltage on an incremental length of cable from E,, corresponding to (4.8) for f modes and (4.10) for £
modes by a computation of the form ~h E,,, except that now diclectrics (if any) need to be included the
computation. Then with the capacitance-per-unit-length matrix (Gr,m) we can convert the open-~circnit voltages fo

-transverse current-per-unit length source (7 ’(s)) via J&)(C,’, =m) So one needs to compute (C;, m) (or its inverse),
including the effects of dielectrics.
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5. Concluding Remarks

This paper explores some possible techniques for including apertures and cavities including MTLs as
special junctions with appropriate scattering matrices in the BLT formalism. There are various other improvements
that can likely be made. Having separated the cavity boundaries with nonzero tangential electric ficld from the
problem, this leaves the problem of construction of appropriate Green functions for the various volumes (inciuding
cavitics and the external geometry).

The present choice of separating boundaries is but one possible choice; others need to be investigated. For
example, one right not use S, as a boundary, but instead use S, and S, . In this casc the cable is treated as part
of the cavity. This of course, changes the cavity Green function. Perhaps this will be the subject of a future paper.

I would like to thank the various participants in the MURI meeting at Clemson U., 1-2 Nov. 2002, for out

discussions concerning the topics in this paper.
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