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Abstract-The approximation of a function by a sum of complex exponentials is treated here. In
particular, the Matrix Pencil Metﬁod and the state space based harmonic retrieval methods are
compared quantitatively. It is known that the two methods generate very similar results when
there is no noise in the data and have only minor differences between them, when the data is
contaminated by noise. But quantitative comparison between them has not been reported so far.
In this paper, their comparison is done with respect to the determination of the poles from

transient impulse response of various electromagnetic systems.
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1. Introduction

In this paper two methods for approximating a real time domain signal with a minimum
number of damped sinusoids are compared quantitatively. Usually, late time electromagnetic

scattered field can be represented with damped sinusoids, which can be described by

Vi =X thy
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k=01, -, N-1. n, 1s the noise sequence. |cm| and ¢, are the amplitude and the phases,

respectively. «,, and @, are the damping factors and the frequencies, respectively. M is the

number of exponentials. We also write
R, =|cu|exp(/dn) @

Zm = e.Xp(—am + me) (3)

Since we are épproximating the entire time domain transient response (i.e. both early and
late time) using the superimposed damped sinusoids, the complex resonant pole, represented by
the Equation (3) can be different from an analytic one. We are just interested in the minimum
order of the approximation in terms of accuracy and running time, in this paper.

It is well known that the matrix pencil method and the state space approach generate very
similar result for the exact data case and have minor differences for the noisy data case [2]. And
also it is known that these two methods are equivalent to a first order approximation [1]. Both
methods use the property of a Hankel matrix and singular value decomposition. The properties
of the Hankel matrix play an important rolé in many occasions. The most significant role of the
Hankel matrix is that the rank of the matrix for the ideal case will reflect the order of the
corresponding system. And the number of nonzero singular values corresponds to the rank of
the matrix. So, the set of singular values will be used to determine the rank as well as to judge
the deviation of the matrix from a lower rank one [3]. |

Many kinds of Mairix Pencil Method and State Space Approach have been proposed. But in
this study one Matrix Pencil method and two State Space approaéhes' have been chosen that

deal with approximating the time domain impulse response of a sequence, which corresponds



to the Markov parameters in the State space approach. The Total Least Square Matrix Pencil
Method (TLS-MPM) [4] is chosen for the Matrix Pencil Method. The normal state space
approach using singular value decomposition [3] is the first method and the state space
approach using Extended Impulse Response Gramian [5] is the second method for the State
Space approach.

We shall discuss those three methods briefly, and explain how to obtain the time domain
impulse response sequence. Then several examples will be shown to compare the accuracy and

execution time.

2. Total Least Square Matrix Pencil Method (TLS-MPM) [4]

The TLS-MPM approach is an efficient and robust method to fit noisy data with a sum of
complex exponentials. [8][9] To implement TLS-MPM, one forms the data matrix {Y] using

the input data y as
y(0) y( o L)
1 2 L+1
7= yf) y(:) W :+) @
YWN-L-1) y(N-L) YN-1)

(N-Lyx (L+1)

where N is number of data and L is pencil parameter. For efficient noise filtering L is chosen

N/3 to N/2. Then singular value decomposition (SVD) of the matrix [Y] is calculated as

[Y]=[U][2][_VH]- | )

Here, [U] and [V] are unitary matrices, composed of the eigenvectors of [Y] [Y]H and
[YT[Y], respectively, and [Z] is a diagonal matrix containing the singular values of [Y]. At this
stage, the number of exponentials is determined by the ratio of the singular values to the largest

one. Consider the singular value o, such that

O,
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where p is the number of significant decimal digit in the data. For example, if the data is
accurate up to 3 significant digits, then the singular values for which the ratio in the above
equation is below 107 are essentially noise singular values, and they should not be used.

Next, consider the “filtered” matrix, [V''], constructed so that it contains only M dominant

right singular vectors of [V],

V1=V v, V5] (7

The right singular vectors from M+1 to L, corresponding to the small singular values, are

discarded. Therefore,
[%1=WIE7 - ®
[%,]1=[WIEP)7 ©

where [V]] is obtained from [V'] with the last row of [I'] deleted, [V;] is obtained by
removing the first row of [I'], and [£'] is obtained from the M columns of [Z] corresponding

to the M dominant singular values. The poles of the signals are given By the non-zero

eigenvalues of
A | (10)
which are the sarhe as the eigenvalues of |
At | (y

Once M and the poles ( z, = exp(—a + jw)T, ) are known, the residues, R;, are solved from -

the following least square problem,

- y(0) 1 1 1 &
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3. State Space Apprbach 1 [3]

Consider a stable, linear, time-invariant, discrete-time system of degree n described by the

following minimal realization

x(k +1) = Ax(k) + Bu(k)

Yy =Cx(k) e
In addition, A (k,l) is a Hankel matrix and is defined by
h(q) h(g+1) - A
M, D)= h(g:] +1) h(q:+ 2) --- h(:l +1) (14)
h(l.c) h(k'—i-l) h(l-c+l—q)
where h(k)=CA*'B = Markov parameters or impulse response sequence (15)

Given a minimal realization {4, B, C} of degree n and N 21 the r™ order reduced model is
obtained by the following procedure;

First, make the Hankel matrix M, (N +1,N +1) to be square, and then write the SVD of the

‘Hankel matrix as

M=UzV" (16)
where = Diag[s(1),s(2),---s(r),e(r +1),---,e(n+ N +1)],
with s(1)2s(2)=---s(r)2e(r + 1) ce(n+ N +1)

If the matrix M, (N +1,N +1) has a rank r then all the singular values (i) should be zero.

When the singular values e(i) are not zero but small, then one can easily recognize that the

matrix is not too far away from a matrix of rank r. So, rearrange the matrix such that
M=USVT =TV a7
where U =UZ"?and V=3"*V.

Now the state space matrices 4,, B,and C, of the reduced system can be obtained from

_ followings:



4 =TT, or 4, =V V5 (18)

where + denotes the pseudoinverse and define

T, : the first N block rows and the first r columns of U
U, :the last N block rows and the first 7 columns of T
7, : the first  rows and the first N block columns of ¥

77, . the first 7 rows and the last N block columns of ¥

B,, the input matrix of the reduced system is

B =V® (19)

and the output matrix for the reduced system, C; is

c, =0% 20

‘where
79 - the i-th block row and the first columns of U

70 . the first » rows and the i-th block column of ¥V

Using these state space matrices, we can generaic an impulse response of the reduced

e response of the reduced system is given by

@1n

system and the system transfer function. Impuls

h(k) =CA*'B

And the transfer function of the reduced system is
H(z)=C,[zI-A41"B, (22)

Now we can get the poles (Pr) of the reduced system using the state matrix, 4,as

Pr; = eigenvalue of 4,

These poles will be discrete in z-domain, but we want to have them in the s-domain(P;). We .

can find the poles in s-domain using
P,=e¢" i=1,2,...n (23)

i

where T is the sampling period. This completes the first state space method.



4. State Space Approach 2 with Extended Impulse Response
Gramian (EIRG) [3]

Consider a stable, linear, time-invariant, discrete-time, multiple-input and multiple- output

(MIMO) system of degree n described by the following minimal realization

x(k + 1) = Ax(k) + Bu(k)

24
(k) = Cx(h) ()

The extended impulse response Gramian P, of order N, for the system of degree n, is

defined VN € Z* , N = n as the following

H§+1Hk+l H§+1Hk+2 T HJTHHMN |

PN _ N H;zl_qm H{+2.Hk+2 ’ H§+2I?k+1v (25)
k=0 : . . .
LHLNHMI Hewln o HywHeon |
where

H, = CA*' B = Markov parameters or impulse response sequence (26)

We write the SVD of the Extended Impulse Response Gramian as
P=UZV" ' 27)

where T = Diagls(1), s(2), -+, s(r), e(r+1), -+, e(n+ N+1)] ; with
s(1)25(Q2) 2 s(r)ze(r +1) - e(n+ N +1).

If Gramian has a rank r then all the singular values e(i) should be zero. When the singular
values e(i) are not zero but small, then one can easily recognize that the matrix is not too far
away from a matrix of rank 1.

And we define

X =AY =AU
Xl = [X<l> X<2> X<r+N>] (28)
_X2 = [X<2> X<3> ‘.__ X<P+N+]>] .



where M < = j th column block of matrix M truncated to first r elements

Now one can find the state space matrices Ar, B; and C, of the reduced system. State

matrix of the reduced system, 4, is

ArX 1 = X 2
(29)
A =X, X
where + denotes a pseudoinverse. The input matrix of the reduced system, B, is given by

B,— =X<i> | (30)

And output matrix of reduced system, C, is

C = HUZ™* | ‘ (31)
C, = ;) (32)
where M = i th row block of matrix M truncated to first r elements. If the state space

matrices A4,, B, and C, are known the poles can be extracted using the same procedure as

outlined for the previous approach.

5. Computation of the poles for a transient scattered field

In this study the transient electromagnetic scattered field is used as an impulse response
sequence. To obtain the scattered field in the time domain, first, each example is analyzed in
the frequency domain. Then the time domain data is calculated using the inverse Fourier
transform of the frequency domain result. The backward scattered field is calculated using
WIPL-D [10] in the frequency domain, which uses an electric field integral equation (EFIE) for
the conducting structure and PMCHW for the composite structures. Before taking the inverse
Fourier transform, a Gaussian window is applied to limit the bandwidth and make a smooth
transition to the high frequency. The advantages of the Gaussian window are that it provides a
smooth roll off in time and frequency and is well suited for numerical computation. The
Gaussian window used to window the frequency domain data can be defined as Equation 25
and 26, [11] |



1
= , 33
g(t) py (33)
with
o- .

where ¢ is the velocity of light, £, is a time delay which represents the peak time shifted from
the origin, and o is the pulse width which can be defined such that the peak value is fallen

down to about 2% at ¢ for ¢t —cty =+2c . Figure 1 (a) shows an example of the temporal
Gaussian pulse, where o =1.0lm , and ¢z, = 6.0/m (The unit /m denotes a light meter. A light
meter is the length of time taken by the electromagnetic wave to travel 1 m. Assuming the
medium to be free space this amounts to 1 /m = 3.33564 ns).- The Fourier transform of this
pulsé is \

nof :

G(f)= le_( € ) e~ I2m o , (35)

c

and the frequency band corresponding to the pulse width is plotted in Figurel (b). A wide band

frequency results from a narrower pulse width in the time domain and vice versa.

6. Examples

6.1 Wire: The first example is a thin wire scattering element of length L and diameter d,
which is excited by an incident pulse of electromagnetic radiation. The length of the wirc
scatterer is S0mm and the aspect ratio (L/d) is100. The incident field is coming from 45 degree
from the wire axis and is polarized with respect to the theta direction

The normalized backward scattered field is obtained using WIPL-D {30], in the frequency
domain. The frequency range covered is 0.2~100 GHz. A Gaussian window is applied to limit
the maximum frequency. The parameters of the Gaussian window are o =0.0035 and

ct, =14c . The time domain response due to the backward scattered field is obtained using the

inverse Fourier transform (FFT) of the Gaussian windowed frequency domain data, which is

shown in Figure 3. When taking the inverse Fourier transform some zeros' are padded into the



frequency domain data to increase the resolution in the time domain, The sampling frequency

of the resulting time domain data is 4 times that of the highest frequency of interest.
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" which is used for excitation.
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Figure 2. A wire scatterer model with a wave incident from 8 = 45°.
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Figure 3. Backward scattered field in the time domain for a wire scatterer.
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The target signal is real valued so one has a complex conjugate pole pair, which
corresponds to two singular values, and constitutes one damped sinusoid. The test have been
done with a fixed number of damped sinusoids so that the number of singular values which are
two times the number of damped sinusoids are chosen and the corresponding poles are
extracted. After calculating those poles the time domain signal is reconstructed using those
poles and appropriate residues in the Matrix Pencil Method or using the zeros in the State
Space method. The root mean square (RMS) error bétween the original signal and
reconstructed signal is also computed. Figure 4 shows that the RMS error decreases with the
number of damped sinusoids. One damped sinusoid is thus composed of one complex
conjugate pole pair so that it uses two singular values, Circles represent the results from the
matrix pencil method, the asterisks are the results for the first state space method (This is
represented using ‘SS1’ in the legend) and the triangles are the results for the second state
space approach (This is represented using ‘SS2’ in the legend). The unit of the Error axis is dB
in scale and the threshold is set to -80 dB. It shows that RMS error between both the MPM and
SS1 are the same when the error goes below the threshold and the transient response is
approximated with 19 damped sinusoids. The error, however, for the SS2 decreases slowly and
it requires 44 damped sinusoids to approximate the transient response before it goes below the
threshold.

RMSE [dB]

5 10 15 20 © 28 30 35 40 45
NSIG

Figure 4. The RMS error in the reconstructed signal for a wire scatterer.
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Figufe 5 represent the CPU timé taken by each method. The tests have been carried out in a
same PC — (Intel Pentium IV, 2.4GHz, 2GB RAM). Average CPU time for the MPM is
11.4489sec, that for the SS1 is 16.8239sec and that for SS2 is 224.8235sec. CPU time for MPM

is just 68% of that for SS1 and 5% of that for SS2.
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Figure 5. CPU time taken at each step for the analysis of the wire scatterer.

Figure 6 and 7 show the pole plot for NSIG = 10 and 15 respectively. NSIG represent the
number of damped sinusoids. Just the node locations in the second quadrant are shown because

of the symmetry of the complex poles. For NSIG = 10, all poles are same for the three methods
but for NSIG = 15 case the location of the poles for the SS2 method differs from the other two

methods.
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Figure 7. Extracted pole for NSIG = 15 of a wire.

6.2 Sphere _
For the second example we consider a conducting sphere of radius lem, which is shown in
Figure 8. The backward scattered field has been obtained using WIPL-D in the frequency

14



domain. The incident field is coming from the side and is z-polarized. A Gaussian window is
_applied to limit tpe bandwidth. The iﬁverse transformed time domain data is shown in Figure 9.
This data ekhibits two kinds of pulses. One is a directly reflected pulse and another is a
creeping wave. The time difference, in the location of those two pulses is about 0.176nsec. This
shows a good agreement with the calculated value of 0.1714nsec.

{(2+7)xr/3x10° =0.1714 nsec }.
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Figare 8. A conducting sphere,
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Figure 9. Backward scattered field in the time domain for a conducting sphere.
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Pole extractions and approximations with the two methods are done with the entire time
domain impulse response. Figure 10 shows that the RMS error is the same for those three
methods and the threshold is satisfied when using 18 damped sinusoids with the threshold of -
80dB. But the elapsed CPU time is much different. Average CPU time for the MPM is
1.3983sec, for the SS1 is 2.3284sec and that for SS2 is 34.2365sec. The time for MPM is just
60% of that for the SS1 and 4% of that for the SS2. The plots of the CPU times taken by each

method are shown in Figure 11.
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Figure 10. RMS error associated with the reconstructed signal for a conducting sphere.
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Figures 12 and 13 show the extracted complex resonant poles for NSIG (number of
damped sinusoid signal) equals 10 and 14. They show that the extracted poles are same for

those methods. It means that the singular values are equal even though the starting Hankel
matrix for each method is different. ’
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Figure 12. Extracted poles for NSIG = 10 of a conducting sphere.
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Figure 13. Extracted poles for NSIG = 14 of a conducting sphere.
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6.3 Cylinder

For the third example we consider a finite closed cylinder. The length of the cylinder is Im
and its diameter is 0.2m so that the aspect ratio, length/diameter is 5, which is shown in Figure
14. The angle of the .incident field is 45 degree from the axis of the cylinder aﬁd is &-polarized.
The parameters for the Gaussian window, which is applied to limit the bandwidth .of the

frequency domain result, are o =0.15 and ct, =8.5. After the windowing, the backward

scattered field is obtained using the inverse Fourier transform. That is shown in Figure 15.

Pole extractions and approximations with those three methods are done with this time
domain signal. Figure 16 shows that the RMS error is the same for all methods and the
threshold is satisfied with 15 damped sinusoids. Also the locations of the extracted poles are

same for all methods, which is shown in Figure 17.

Figure 14. A finite cylinder model with an aspect ratio of L/d=5.
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Figure 15. Backward scattered field in the time domain for a finite closed cylinder.
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Figure 16. RMS error associated with the reconstructed signal for a finite closed cylinder.
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Figure 17. Extracted poles for NSIG = 15 of a finite closed cylinder.

But the elapsed CPU time is much different. Average CPU time for the MPM is
19.0647sec, CPU time for the SS1 is 24.7465 and that for the SS2 is 391.4876sec. The time for
the MPM is about 71% of that for SS1 and 4.87% of that for the SS2.

6.4 Dielectric Sphere 7

The fourth example is chosen to be a dielectric sphere of ¢, =4 and radius 0.5 m, The
backward scattered field has been obtained using WIPL-D in the frequency range of 10-
1500MHz. The incident field is coming from the top and is x-polarized. A Gaussian window is
applied to limit the bandwidth. The parameters’ of the Gaussian window are o = 0.56 and

cty'= 50 . The inverse transformed time domain data is shown in Figure 18.

Extracted Poles are almost same for all three methods, But there is a little difference for the
second state space approach for NSIG = 9 and 10. Figure 19 shows the locations of the poles
for NSIG=10. The threshold is satisfied with 10 damped sinusoids for all the methods. That is
shown in Figure 20. Average CPU time for the MPM is 18.0860sec, CPU time for the SS1 is
25.7962sec and that for the SS2 is 341.0181sec. The time for the MPM is about 70.11% of that
for the SS1 and 5.30% of that for the SS2.

20
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Figure 18. Backward scattered field in the time domain for a dielectric sphere.
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Figure 19, Extracted poles for NSIG = 10 for a dielectric sphere,
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Figure 20. RMS error associated with the reconstructed signal for a dielectric sphere.

6.5 Composite Conducting and a Dielectric Sphere

| The last example chosen is a composite sphere of radius 0.5 m, which is shown in Figure
21. Half of it is a perfect conductor and ‘another half is a dielectric with £, =4 . The backward
scattered field has been obtained using WIPL-D in the frequency range of 10-1500MHz. The
incident field is coming from the x-axis and is y-polarized. A Gaussian window is applied to
limit the bandwidth. The parameters of the Gaussian window are o =045 and cf, =35.10.
The inverse transformed time domain data is shown in Figure 22.

 Extracted Poles are same for all the methods and the threshold is satisfied with 9 damped

sinusoids. That is shown in Figure 23 and Figure 24. Average CPU time for the MPM is
16.95sec, CPU time for the SS1 is 24.7059sec and that for the SS2 is 338.3066sec. The time for
the MPM is about 68.61% of that for the SS1 and 5% of that for the SS2.
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Figure 21. A composite conducting and a dielectric sphere of radius 0.5 m.
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Figure 22. Backward scaitered field in the time domain for a composite sphere.
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7. Conclusions

Three representative methods for approximating a real function by a sum of complex
exponentials have been compared quantitatively. They are generated from three different
Hankel matrices and all use a singular value decomposition. The Matrix Pencil Method and the
first state space approach display similar results for the extracted poles. But the second state
Space approach which use extended impulse response Gramian, produce different poles in some
cases. The extracted complex poles are same for all the three methods when the data is
relatively smooth. But they are different when a signal has pulse-like components (wire case)
or is varying rapidly (dielectric sphere). The three methods can perform differently when noise
is present in the data, particularly the second state space approach.

There is a big difference in the CPU time for those three methods. Table I provides a
summary of the CPU times taken by each model. The CPU time taken by the Matrix Pencil

Method is about 60-70% of the CPU time of the first state space approach, and 4-5% of the
| CPU time of the second State Space approach for comparable accuracy in the results. For the
Matnx Pencil Method the original data is used directly but in the second State Space approach
using Extended Impulse Response Gramian a multiplication operation is necessary to form
each element of the Hankel matrix. There are different versions of the state space method [6],
[7] but to calculate the impulse response (Markov parameters) the state space approach with

extended impulse response Gramian (EIRG) is used here for comparison.

Table L. Summary of the average CPU time taken by each method.

Model MPM [sec] | SS1 [sec] | SS2 [sec] MPM/SS1[%] | MPM/SS2[%)]
Wire 11,4489 | 16.8239 | 224.8235 68.05 ©5.09
Sphere 1.3983 2.3284 34.2365 60.05 4.08
Cylinder 19.0647 | 247465 | 391.4876 71.28 4.87
Di-Sphere | 18.0860 | 257962 | 341.0181 70.11 5.30
Composite | 169500 | 24.7059 | 3383066 68.61 5.01
Sphere '
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