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'ABstract

Maxwell’s equations for a thin, infinite and lossless wire above perfectly conducting ground
are transformed into the form of the Telegrapher equations. The occurring line parameters are
complex-valued functions and gauge-and source-dependent. Choosing plane wave excitation
and grazing incidence, it is shown that the corresponding eiectromagnetic fields, Poynting
. vectors, currents and potentials assume TEM structure. This resuit is conﬁrmed by a direct
" TEM solution of the Telegrapher equations.
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1. Introduction

The treatment of transmission lines at very high frequencies with the inclusion of radiation
becoimes an increasing topic in dealing with EMC effects. Since the classical transmission line
equations (classical Telegrapher equations) do not include radiation, it is necessary to
generalize these equations for higher frequencies and arbitrary modes. This is the purpose of
the present paper where we demonstrate the single steps with the aid of a simple example: an
infinite, lossless line above perfectly conducting ground excited by a plane wave. Firstly
Maxwell’s equations are transformed into the form of the Telegrapher equations with new,

generalized complex-valued, source-and gauge-dependent line parameters. Then, in Section 11
we derive the general solution, using the theory of matrizants and product integrals [1]. On the
basis of this solution we study, in Section III, a special case of excitation: grazing incidence of
the plane wave. It is shown that this excitation leads to a pure TEM structure for the
electromagnetic fields and the Poynting vector. Also the line parameters assume static values.
Section IV compares the result of the previous section with a direct TEM ansatz to solve the

“classical transmission line equauons Fmally, we finish this paper with a brief conclusion
{Section V). - .

II. Maxwell -Telegrapher Equations for an Infinite Line
In two previous papers [2, 3] we have shown that Maxwell’s equations for an infinite, lossless
wire above perfectly conducting ground which is excited by an incident plane wave can be

transformed into Telegrapher equations with generalized, frequency- and source—dependent
line parameters. These equations read for the scalar potential ¢(z) and the current /(z):

do))d) . (0 LY o) (E™ ' L
dI(z)/dz ' 0 I(z) 0 :
with the gauge-dependent line parameters the -inductance per-umt-length L and the
capacitance per-unit-length C'
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The function H{” denotes a special Hankel function, and K, is a modified Bessel function

[4]. The height of the wire above ground is denoted by 4 and its radius by a.The angle 9 is
the incident angle of the plane wave (see Fig, 1):
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The reflection of the plane wave at the ground plane is taken into account in the factor EY.
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Fig. 1: Geometry of the problem

The solution of equation (1) is easﬂy expressed with the a1d of the matrizant [1] MZ :

[“’?(z)):M; (qo(zw] ;]Mi (E;"c(z')J &z ®
I(z) ) o " 0 | |

where the matrizant can be given in closed form

M _( cosh(y(z - zol)) | ~Z sinh{y(z - zo_))) '
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As usual ie transmission line theory, we have defined the so-called propegation' constant ¥
y = walLC' R o ®
and the character1st1c impedance Z.

usin'g the expressions’ for.th'e 1ine'para;meters. R
The integral in eq.(6) yields the following contribution - . -
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- Now, taking into consideration the boundary values for the potential and the current
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which immediately can be obtained from equatlons (1) regardmg the fact that o(z) and I(z)-
can be written as

o(z) = gaoe_j"?""‘z and I (z) I e (13)

we can represent the solution of eq. (6) in a very compact form:

(D(Z) E ? J k; c _]k z
= z i e ine (1 4)
(I (Z)J R )[?/Zc o
If we introduce the gauge-independent impedance function per-unit-length Z'(jw) [2, 3]
=2
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equation (14) may be rewritten as

. [(D(Z)J :: Eg (Enc/(a)C')}e_ngz : : (16)
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exhibiting very clearly the gauge-independency of the current and the gauge-dependency of
the potential.

Remember, equation (16) is an exact solution of Maxwell’s equations. Therefore radiation.
- and higher modes are inherent in this solution (see also in this context refs. [2, 3]).

In concluding this section we calculate the relation between the potenuals in both gauges.
From eq. (16) we obtain a z-independent ratio : -
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In particular, the boundary values for the potentials are in general not equal In the next
section we will show an example.

T Grazing Incidence of the Plane Wave

Grazing incidence (6’ N O) seems to be a very spec1a1 excitation of the line. On one hand one

may expect that no current will be induced due to the TEM-wave conﬁguratlon On the other - .
hand, throughout the following derivation of this limiting incidence case, from our results of

the previous section we will show that there is a current flow, desplte a TEM structure of the
electromagnetic fields.

In a first step we show the TEM character of the EM wave ford — 0. Here we rely on the

result of ref, [3] where the fields and the corresponding Poynting vectors have been explxcn:ly
: 'glven The clectnc ﬁeld reads : : :
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with €, = P/ p unit vector perpendicular to the z-direction,
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In the hmlt & — 0 the field components become quasi-static, and the electric field vector is
orthogonal to the wire direction. '
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The general ekpressibn for the niélgnetic ﬁeld is (see ref. [3]): o
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Again, for 8 — 0 we get
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As expected, we have a field which is orthogdnal to E P and to the z-direction and also static
- in planes perpendicular to the transmission line. Thus, we have obtained the TEM-character of

the wave for grazing incidence (E -vector parallel to the wire). Observe that at no place of

our calculation the assumphon of low frequencies (smallk) was made. They  remain
arbltranly :



In “order to complete - our. vector-field calculation we also evaluate the Poyntmg vector
S= [ } for& — 0. For the orthogonal component we obtain
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This is a pure imaginary term. It indicates that there is no radidtion For #=0 § (6’ =0)

‘becomes zero too, and all the power density is conducted along the line in z—dxrectlon
- The z-component of the Poyntlng vector, S.ée,, is glven by

(25)
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We found for # =0 a pure TEM-character of the electromagnetic fields and the Poynting
wvector, and observed that all energy is transported along the wire. It is now of interest to find
the corresponding current, potentlals and line parameter functlons This is done in our second
step.

We begin with the current and the 1mpedance per-unit-length. From eq. (16) we have

I(z)=_~_'%___e—ﬂzmz _ ) L . o (28) .
| Z'(jw) _ | _
with (we consider an excitation by a vertically polarized plane wave, sec Fig. D:
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'. 'Approximéﬁng eqs.‘(29j and (30_) for small angleé .9_0n_e" geté__ |
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Therefore, in the rat10 of both, the sin 6’ cancels out and 1t remains a non—zero current
amplitude: :

s (ﬁr@mEJ e e

This result may be a little bit surprising, since it is not quite clear how the grazing field should
induce this current. We will come back to this question at the end of this section.

A general result can be extracted from z'%= 0( jw)=0, usmg q. (15) One - obtains
_ (independent of the gauge)

. (L:C:)t9=0 =c'2 _ " o : (34).
(c-speed of light) R

~ The line parameters become in the limit& — 0
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With these parameters the characteristic impedance is derived as
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C_j_ W 271' KO (ka)-K (2kh) , - Coulomb gauge : :
This impedancé is used to present the (_scattered) potential
P @ =(l, 280 ) = o N

It is obvious that qoo depends on the gauge. But we also recogmze that for the small k-values -

(1 ¢. small frequencies) the expressions for Z'g =0in eq (37 become equaI Thus, if we in
addition to the limit & — 0 require that also & ~» 0, the results for @, coincide. In the Lorenz

-gauge this extra demand was not necessary, the wave number & and the Smﬂ occur in the
: fonnulac as products (k -sin 8). -



~ Is there a physical argument, which may lead us to an unique expression for ng_o ? Let us
require that at infinity (this may be the location z = 0) the potential becomes

@, =2E'h g (39

“The term (2E ih) represents the potential of the incident field in the plane perpendicular to the
wire at infinity.

If we calculate @, from eq. (38) in the Lorenz gauge we obtain the required result of eq. (39) :
Per_forrr_nng the equivalent calculation in the Coulomb gauge we find

o _ 2hE
Foc = 1n(2h/)

This only gives the wanted resuit (39) in the limit & — 0. Therefore, to obtain a gauge-
independent TEM solution from our generalized Telegrapher equations, we have to consider

grazing incidence and small frequencies. Finally, the amplitude [, of the current (see eq. .

(33)) can now be explained: It is that current that couples via the thought vertical part of the
wire at infinity into the transmission line (acting as a generator) and is then conducted along
~_the line obeying the formula (33). :

IV TEM - Solution of the Telegrapher Equations

In this section we briefly compare our above results with those which we obtain from eq. (6) .

without any exterior source. The source is put into the boundary conditions /, and @, . The

_following results are we]I—lcnowﬁ; however, they may elucidate our previous considerations.
We assume TEM wave propagation with the corresponding line parameters '
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"between the boundary values. Thus it is sufficient to fix- ®o in order get a completely
determined solution. Looking at the eqmvalent circuit which is displayed in Fig. 2 '
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Fig. 2: Eqmvalent circuit for the feedmg part of the transmission line.

_one can equate. (po with a source potential which feeds the line at the location Zgy, a point
‘which could be shifted to infinity. Then it becomes obvious that the choice

@5 =@, =2hE’ . (45)

as source leads to the results of the foregomg sectlon showmg the consmtency of our
calculations.

" V. Conclusion

An-advantage of working with Telegrapher equations with generalized line parameters may
exist in the fact that one can use all known solution procedures (and thers is a host of
literature on this subject) for transmission lines (e.g. ref. [5]). Also the new parameters have a
- physical’ meaning: Their imaginary parts constitute the radiation resistance of the line,
whereas their real parts are connected with the stored reactive energy along the line. In case of
a quasi - static approach [3], i.e. retardation is suppressed, the parameters become purely real,
indicating that there is no radiation. A particular situation is obtained if we consider grazing
incidence of the plane wave. Then we end up in a complete TEM configuration with static
coefficients of the line (see also [6]). This limit requires small angles of incidence (& — 0)
and low frequencies (£ —0), the usual assumptions in the derivation of the classical
transmission line equations. Of course, our example describes a simple line configuration. -
However, it contains many new results in analytical form, especially appropriated for physical
parameter studies. In our forthcoming investigations we will extend and apply the above
formalism to multiconductor lines of finite length, even nonuniform ones, including ohmic
and insulation losses. - '
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