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Abstract

Maxwell’s equations for an infinite, lossless transmission line consisting of a perfectly
conducting wire above a perfectly conducting ground are transformed into telegrapher
equations with new generalized per-unit-length parameters of the conductor. These new line
parameters are complex-valued, frequency and source dependent, and contain the radiation
resistance. Their explicit expressions depend on the chosen gauge, but there is also a gauge-
independent representation for them. In the quasi-static approach of the Maxwell-Telegrapher
equations the line parameters become real-valued, and radiation is absent. A Poynting vector
analysis leads to a deeper physical understanding and interpretation of the new parameters.
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1. Introduction

The electromagnetic (EM) interaction of multiconductor transmission line structures with
high frequency EM sources (up to several GHZ) becomes an increasing topic of current
- research. This is due to a rapid development in the information and communication
techrology and the accompanying necessity to guarantee a smooth EM operation of all
connected devices and systems. Since radiation phenomena occur more frequently and lead to
- EMC-relevant perturbation effects, they have to be included in the EM analysis of electrical
and electronic systems. In particular, the effective simulation of new systems in the design
phase becomes a cost-saving factor. There, the demand for numerical programs which can
efficiently calculate the interaction of complex EM systems with high frequency fields is one
resulting consequence. In this context the use of the telegrapher equations for nonuniform
multiconductor transmission lines [1, 2] seems to be an adequate means. They have to be,
however, extended to become valid for arbitrary frequencies and modes. This was done by -
Haase and Nitsch [3]. Different from their approach, in the present paper we deal with a
simple line configuration, an infinite, uniform transmission line above perfectly conducting
ground, and show that the Maxwell equations for this line can be cast into the form of the
telegrapher equations, by keeping the source fixed but changing the classical line parameters
to generalized, source-dependent, complex-valued ones.

In Section II we calculate the new line parameters in a gauge-independent way, using the
- Helmholtz decomposition [4] for the electric field. Their relation to the radiation resistance is
established on the basis of 2 Poynting vector analysis for the radiating infinite line (Section
IV). We also perform a quasi-static approach for the infinite line (Section IIT) and obtain
solutions without radiation fields. In particular, the corresponding parameters are real.

Our generalized description of transmission lines can be extended to include multiconductor
lines of finite length with losses. Then, when incorporated into an existing field-theoretical
computer program for complex systems as a module for very efficient calculations of linear
structures, simulations of electronic systems in the GHz-regime become essentially faster. The
present paper, in a first step, gives insight into new physical phenomena which are connected
and inherent in the new parameters.

II. The Telegrapher Eduations in the Coulomb Gauge

In this section we rely on the Helmholtz-decomposition of vector ficlds T;(F) into a
longitudinal part, V“ (), and a transverse part, 77]_ {#), such that

| V() =V(F)+V,.(F)
and 7 (1ab,c)
VxV(#)=0, V-7 (7)=0

holds in real space. In Fourier space these equatioﬁs read after a (3-dimensional) spatial
- Fourier transform . - ' :

V)= [d 7P F e g (2 ab)



~ 1 I =
V(F)= d kY (k)ye™
=Gy [d 'k Ve (F)
as follows: i ‘ :
V) =Hk)y+W (k) (3 a,b)
and kxW(k)=0, kY F&)=0

At all poihtsi? , in the reciprocal space, ’I/ﬁ(l_c.) is obtained by projection of 7/?(];) onto the

unit vector &; = k/k in the directionk . Thus one has:
| CHOREACRZ() )
and W (k) =V ()~ Y (k)

Observe, that in reciprocal space ( k- space) the relationship between a vector field '1;(12 Jand
its longitudinal and transversal components is of local nature, whereas in the real space their

relationship is not local: I;l (7), e.g., depends on values V' (7') of ¥ at all other points 7'.

After these introductory remarks, we turn to the Maxwell equations in frequency space where
we indicate the decomposition of the electric field into its longitudinal and transverse parts:

ﬁxﬁ(r'ﬂ')=.7(?)+jw£0E'”(F)+ja)£0E"l(F) (5)

VxE(F)=VxE (F)=—jouH(F) (©)

V- EF)=V-E () =—pF) (7)
£y .

V-HF) =0 (8)

As usual we introduce the potentials, @(F) and A(F), and choose the Coulomb gauge _
(indicated by the index C)

V-AF) =V A (7)=0=V. 4., (F) - O
(ECM(F)E())

to simplify the solution of Maxwell’s equations,
Then the fields can be expressed in terms of the potentials:

E(F)=-Vo., E (Fy=—jod;, H(F) =;1—6’><2_C(?) (10)
0 .

- Inserting these equations into the Maxwell equations delivers two non-trivial equations:

2 — —_ — —
[A Ac(P) +ac)—2Ac(f’)J =~y (Ju @)+ T P9 J'-C%V(Dc (7) (1



with Jy (7 =£§'¢C (F), (k=w/c) (12)
HoC :
and

—\?-V"¢C(F)=—Acoc(f)=gip® - | (13)
0 : -

Transformation of (11) and (1 3) into the reciprocal Fourier space yields

k
c(k )= p(k,z) , (14)

A=-EZ 5(",3#‘/;" ‘Pfc,(f ) o 2, B+ A (B 1)

For the current density J (17' ) we use a simple distr_ibution only along the z-axis
T(Fy=2.1ye = 5(0)5(») (16)

where l?inc stems from the incident plane wave and is connected with the wave number k via
the angle of incidence & (we consider an excitation by a vertically polarized plane wave, see
Fig. 1):

k,. =kcos® (17)

E;m: (Z) - E;)e-jkcosﬁz

1(z) ' 2av
>

A
]
ST
Fig. 1: Geometry of the problem.

Thus, we easily find the Fourier transform of this current density
F(#)y=2.1,27 5k, -, ) (18)

From this we denve with the aid of the continuity equation the charge density p(k ") and get o
for ¢ (k ): |



(k)—z’”" b sl -, (19)
ok
Now we explicitly know all sources in equations (14) and (15) and can perform the back-
transformation into the local space. These calculations become a little bit lengthy and
cumbersome and also need some observations concerning the integration contour in the
complex plane. At this place we only can present the results. However, the more detailed
calculations will be published elsewhere [5]. For @ () we obtain (see also [6])

- 1 ]?inc — k.2 7
QQ(I") = E[—k—} Mo IO € He KO (kincp) (20)

with 775 ==ty /84, p=Ix%+? /2 distance perpendicular to the line, and K, a modified
0 0/ %0 Y pel 0

Bessel function. For A, (7 ) we find after a longer calculation .

JEH(Z)(sz kmcp) ? k>;€'nc

Ao, (F)=¢ Holy -tz ]™ 21)

z 273‘ (U kﬂ%ﬂ p) s "E;‘HC > k

- Here H (2) denotes a spécial Hankel function (see, e.g. [ 6 ). In our approximation we always
have k2 > k2 . Therefore the first row in the eq. (21) applies.

ine *

Since for our further calculations we only need the z-component A, of the vector potential, it
is sufficient to evaluate '

— I Ezrzfc = ez 3 ’ L
AC‘PZ(]F)Z——__.;.g.g.____e J'km,,- [_JTH[()Z)( k kmcp) Kﬂ(kfﬂcp):| (22)

k2

In order to get the total z-component of the vector potential we have to form the sum of the z-
component in eq. (21) and of eq. (22) Also we must extend our above results to a wire above
a perfectly conducting ground by using the mirror principle. Then we obtain, instead of egs.
(20)-(22) :

= kmr: = kipeZ 7
pc(F, jo) _—z?ro( I Je e gO(kinc’pUpZ) (23)
and
. = | IO:uO —jE, z k k:ic I | kric
Ae (F)= —471_ e - —k2 g (ka'rw!plspil) 2 So (kincspl noz) (24)

Here we have used the abbreviations:

go(kmcsplspZ) 2(K0(kmcpl) KO(EMCJOZ)) . | .- (25)



.and - p) —ﬂrlH(z)(/kz kmcpl) H(z)(/kz—kmcpz)J, 3
BxRines P1s P2 [KO(‘{ k.. kzpl) KO(}kxic kzpz)] - k >k

where p, = ((:rc—h)2 +y )l and p, = ((x-{-h)2 + yz)l/2 are distances to an observation
point perpendicular to the wire and its image, respectively.

" @6)

Now we are prepared to express explicitly the z-compoﬁent of the electric field in terms of
Ey, and E|,. Choosing for he local coordinates p, and p,the surface of the wire, ie.

£ =a and p, =24k (note that the thin-wire approximation is used), then we obtain

2

I i :
B (a,h)=j ZUO 5 ° FrG (km) - @7

k¥ k2 k2
E a,h = — jlp 200 07]0 —_}k z)] N Mine G —ine 3 |k 78

J_z( ) J A7 kz k( ) k 0( mc) ( )
The capital-letter G -functions replace those from eqs.(23) and (24) where we have fixed the
local values p| and p, on the surface of the wire.

Note that E" and E | are gauge independent quantities. Therefore their representation in

eqs.(27) and (28) does not depend on our choice of the Coulomb gauge. Also in the Lorenz
gauge we would obtain the same result.
Next we want to correlate the longitudinal and transverse electric field to the line parameters
per-unit-length relying on the representation of the differential-power density by the induced-
EMFT (IEMF) method [ 7 :

2

BT =B 0 =BT =2 =2 + 241 09

Insertion of the fields (eqs.(27) and (28)) and the current

I =I,e ke | | (30)

mto eq. (29) yields:

. k2 - k2 |
Zi(j@) = —1— Gyl )= e — G31)
dmegjar - joCo(jw)
with Co(jw)=4nz,Gy' (Kye) | (32
. ke [ K ke (= Y\, Ki o '
and Z'_L (.] &J) = S2 o 2 = Gk (kirrc )+ e G (kmc) = .]a)LC (.] m) (33)
4z k K
| c 472,' k k mc | kz 0 ine . ] ‘ .



We may denote Ci as a generalized capacitance per-unit-length and L; as generalized
inductance per-unit-length of our lossless conductor above ground. The quantity C ¢ s a pure

real quantity which does not depend on % . This is not quite surprising since it was calculated -
from an instantaneous field. L is complex-valued, and we will show that the imaginary part

~of it is correlated with the radiation resistance. An expansion of Ly and Cfor small

arguments, i.e. ka <<1 and 2kh <<1, leads to the well-known classical static transnnssmn
line parameters

fl.oNL 2mE (e Ve Mo
Coljw)= ) and Li(jw)= > m(24/a) (35)

Also the case of grazing (& = 0) incidence is of interest. Then the paraméters become inverse
to each other and assume almost quasi-static values like for a TEM-mode excitation [ 8 ]:

C’e 0( ) 47[80G0 (kmc)= Lg?:O(j ) #0 GO (kmc) (36)

In concluding this section we justify the notation of L and C[. as line parameters showing

the close analogy to the classical transmission line equations. We refer to eqs. (23) and (24)
where we have chosen the local values on the surface of the wire:

@c(z)=1’i[kﬂ}(z)6‘o (i) (37)
4l k
2 T2 2 . .
Ac,(2) =-’7£1(z){k —King G, (km)+ kmf G (k,,,c)} (38)
4 k2

The derivation of ¢ (z) w.r.t. z yields (use eqgs. (30) and (37))

are)
0z

the first telegrapher equation. The second telegrapher equation is derived from the boundary
condition:

+joCepc(z)=0 : (39

(Ez + Ei"c ]wire surfice =0 | | (40)

or, equivalently, - a(ﬁg ) +jod., (2)=E™ ' 41
. , _ .

Insertion of (38) into (41) gives



———620 @) , joLiI(z)=EX (42)
z.

Thus we have proven that the Maxwell equations can be transformed into telegrapher
equations with generalized line parameters. Therefore all known solution procedures for the.
telegrapher equations can also be applied to solve equations (39) and (42).

III. Maxwell’s Equations without the Transverse Displacement Current The Quas1-
Static Approach

This section is devoted to the investigation of the influence of the transverse part of the
displacement current on the solutions for the electromagnetic potentials and the line
parameters. Frequently, in the literature, the cancellation of the transverse part of the
displacement current density in Maxwell’s equations is called “the quasi-static

approximation” and the parameters G, (kmc)are called “quasi-static parameters” [9, 10]. In
the course of this section we will derive the quasi-static solutions and the corresponding line
parameters and establish their relation to G, (k,,.}.

In equations (5)-(8) we only modify Ampere’s law by suppression of the transverse part of the
displacement current density

_?xﬁ<F)=i(F)+jwsOE”(F)+jw@“ () (43)

cancelled

All other equations remain unchanged, and instead of eq. (11) we now obtain
—AA(F) = py J(F) - jorge, Vo F) (44)

The Fourier transform of this equation into the reciprocal space reads

FU) kKoo |
o i (43

Ay =18

Now we solve this equation in analogy to the previous case and get for the vector potential
components

ACJZ(F)I=~‘-’29-}e"’E‘“ZKo (%..0) | (46)
Acgn 7)== 1o (fye ) () @7

The solution for the scalar potential @, (F ) remains the same as in eq. (20). Therefore zalso the
longitudinal field E"z does not change (see eq. (27)). Only £ , is modified and reads



By () =—jolde,, + Acy,.)

. H i ' 1 s _ '~
=—jo -1y e K, (kincp)““ === ol (kim:p)e o K (kincp) (48)
2z Ar
- and for the wire above perfectly conducting ground becomes:

E,,(r, h)—"Jk ??o 0 g o [go( mcaplspz) go(kmcaplspz)] (49)
with _ B _
Z, (l’é‘,-,,c P15 92)= (P YK (015 ) = (03K YK (05 (50)

On - the surface of the wire we have p,=a and p, =2k, and g, is replaced by

G (kmc,a h) Analogous steps to eqs. (29) to (34) now lead to the guasi-static line
parameters: |

(51)

CC (_]60) 472’50(:; ( inc? a, )
(unchanged, like in (32))
and
LE:‘ (Ja)) - fpﬂt [GO (’Z’nc s &y h)— 60 (Eirrc ? a’ h)] (52)

In Fig. 2 we display a simple example for the different line parameters.

Obviously, the quasi-static inductance per-unit-length is quite different from the result (34)
and in particular from eq. (36). In the quasi-static approximation the line parameters are not

inverse to each other. This, however, happens in the case of small arguments, i.e. k, .o <<1

and k,, 2/ <<1. Then Go (kmc ,a, h)% 0 and we have the same result as in eq.(36). Note that
the quasi-static parameters are real functions, and therefore we do not have radiation losses.

1V, The Poynting Vector of an Infinite Line

In the previous section we have derived new, generalized line parameters which occur in the
generalized transmission line equations (41) and (42). Our interpretation of the line
parameters as generalized per-unit-length capacitance and inductance was based on the
differential-power density representation with the aid of an impedance function and the square
of the current magnitude (compare eq.(29)). It was mentioned that the real part of this per-
unit-length impedance equals the radiation resistance. The proof of this statement is the
subject of this section.

From the electromagnetic potentials [11] in the Lorenz gange

A, (F) = ﬁe Ioe ™ g (Foes 122 o (53)

and



C', F/m

—1{ - C', Coulomb gauge
===-2-C' TL approximation

4.0x10° -
2.0x10™
0'0 1 ¥ 1 T 1 ]
0 5 10 15 20
2kh
a)

£
I
-y 4 - ——1-Re(L", Coulomb gauge
4.0x107 - ==--2-Im{L", Coulomb gauge
R 3 - L',Coulomb gauge,quasi-siatic approach
b ——=4 - L', TL approximation
2.0x107 4
0.0 — 1 . ] . ] ]
[ el . 5 __10. 15 _ 20
-2.0x107 Tl =277 2kh Tt )

Fig. 2 Frequency dependency of generalized line parameters (A=0.5 m, a=0.001m,
@ =45°). a) Capacitance per-unit-length; b) Inductance per-unit-length.
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= Enc — ez " — - |
@, (F) =%I{;—Je e gk(kincsplspZ) : (54)

with '
151=(x_h)éx ‘—i_yéy; ﬁ2.=(x+h)§x+ygy (55)

we calculate the magnetic field H and the electric field , réspectively:

) / I”“ e L Ny R Wl e P z]]

(56)

" The electric field is represented in two components:

. _ - in. k k:nc _z s
Ez(r)z i;’lﬂ 1 ( i J jkngk(kincﬂphpZ) (57)
and the transverse part to the conductor

L I, (k e =
Ep(r) J”70 [ ch k:ﬁc e {H(z)( mc:pl) HE(Z)( k kmc)oZ) }

4 k
(58)
Here we have introduced the unit vectors = € p 7 = (&J and € 5, = {&
] 2
£ P2
As usual, we now calculate the Poynting vector
= = =% 1_.-*-1—-—-* = -
5¢)= [Em.2 @)= -Z-[Ezez, 7'+ E[EP,H |=5, +s., (59)

and decompose it into two summands. The first term, S, represents the power density
perpendicular to the conductor, the second term, S,€_, is the power density which is

conducted along the wire. For S L we find

= J Mo |I0 ( k2 mc )J L,f(Z) ( 2 ) (2) ( )}
5. “ Ve e p - HP W[ = o, (60)
{Hl(l)(\f k2 _kincp!)é.p, Hl(])( kz kmcpZ) }

Integration over the area of the wire surface yields

i3 __ ol (kz"’;:-i) 2| (2 0 2
4S.(p, p,)d5 = {H()(a,/k k) — H >(2h1/k k)} (61)

8 k
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Comparison of this expression with the expression for Z'(j@) (see egs. (29), (31) and (33))

Z'(jo)= ﬂd——ﬂijﬁmgﬂzkm)H@&mhz m» (62)

leads us to equation

‘{gl(Pva)d&:Z (;m) |J{0|2 (63)

where the factor two in the denominator stems from the time averaging procedure for the
Poynting vector. Obviously, the real part of Z'represents the radiation resistance whereas its
imaginary part is related to the stored energy in the near fields of the conductor.

‘The transported energy along wire direction can be evaluated using the power density

7 2 77 =
S (plwoZ)é 770[ 0[ [;:CJ k2 ktﬁc €,

32
,HI(Z) (V kz kmcpl) HI(Z) (\' kz kchZ)

We recognize that this function is real and positive for l?mc >0, and also constant along the z-

axis. Thus no energy is stored in this direction, almost all is led in the close neighbourhood
along the conductor.

(64)
2

V. Conclusion

We have shown that the Maxwell equations of an ideal conductor above perfectly conducting
ground can be cast into the form of telegrapher equations with generalized line parameters
per-unit-length. The representation of these new line parameters turned out to be gauge-
dependent. However, a definition of the generalized line parameters with respect to a
Helmholtz decomposition of the electric field yields gauge-independent expressions for them.
Since the Coulomb gauge is compatible with such a decomposition, the results obtained in
this gauge for the parameters are also gauge-independent. The imaginary part of the new
inductance per-unit-length, Im(@wl ), equals the radiation resistance of the infinite line. This

proof was given by a Poynting vector analysis (comp. eq. (63)).

From classical transmission line theory it is known that for lossless lines (where only the
TEM mode is assumed to propagate) the line parameters are inverse to each other. More
precisely, one has [8]

L' = g,p,C"" (65)

with so-called “static” or “quasi-static” parameters. In our new approach we only obtain this
result in the low-frequency approximation (see eq. (35)) or in case of a grazing incidence of
the exciting plane wave (see eq.(36)). '

12



Special emphasis was laid on the quasi static approach for the fields and the new line
parameters. As expected, due to the missing retardation of the fields, the line parameters turn
out to be real, but do not fulfil eq. (65).

Note that the line parameters also depend on the source. It might be desirable to describe the
properties of the line solely by its geometrical and inherent phys1cal parameters, independent
of its excitation. It is possible to meet these requirements. A corresponding theory for the
multiconductor lines of arbitrary configuration which interact with very high. frequency
sources has been established by Haase and Nitsch [3,12]. This leads to an iterative solution
procedure of the Telegrapher equations during the course of which the sources have to be
redefined at any iteration step. In our present representauon the sources are kept fixed and the
parameters have to be adjusted to them.

The extension of the presented theory to multiconductor lines with losses and infinite length is
straightforward. For finite multiconductor lines the theory is expected to become more
involved and will to be the subject of our future investigations.
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