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Abstract

In this paper the telegrapher equations are extended to general modes and very high
frequencies to include radiation effects. It is shown that the new line parameters are gauge
dependent. However, there is also a gauge-independent representation of these parameters. In
‘this representation the per-unit-length capacitance is not correlated with the radiation
resistance, only the per-unit-length inductance (strictly speaking, the imaginary part of it)
constitutes it. The generalization to multiconductor transmission lines is straightforward.
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I Introduction

Apart from high-and highest-frequency technology, nowadays, also in the information
technology solutions of the Maxwell-equations become of interest at frequencies far beyond 1
GHz. This, for example, is the case in design processes of electronic devices and systems or
also in the field of EMC. There, more and more frequently, radiated perturbation effects do
occur. : :

In electrical engineering one essential tool to describe linear structures (e.g. conductors) at not
too high frequencies are the so-called telegrapher equations. These equations do not contain
radiation phenomena and they are not applicable at high and very high frequencies.
Nonetheless, one may ask the question whether the telegrapher equations can be extended and
generalized to include radiation effects in the high-frequency regime, while retaining their
formal structure. This question is not quite new. It was raised in a similar kind already in the
thirties [1] and again taken up recently {2,3]. In these papers it is shown that the lumped
elements in RLC-circuits experience an extension when the complete displacement current is

- included in the Maxwell-equations. They become complex-valued, and the (integral) radiation
resistance is calculated from the imaginary parts of the inductance and capacitance. On the
basis of this consideration, Haase and Nitsch [4,5] represented the telegrapher equations in a
new form as a “full wave transmission line theory (FWTLT)” where the new line parameters
also become complex-valued. Another ansatz to derive circuit elements from complete
solutions of Maxwell’s equations is given by the PEEC-method [6].

In the present paper we demonstrate with the aid of an example the generalization of the
telegrapher equations to arbitrary modes and frequencies and investigate the physical meaning
of the new line parameters. Since we succeed to preserve the structure of the telegrapher
equations, all known solution procedures of these equations can be applied immediately, We
consider an infinite, lossless uniform line above a perfectly conducting ground in the thin-
wire approximation. This wire is excited by an incoming plane electromagnetic wave.

In the second Section we derive the new telegrapher equations with generalized line
parameters in the Lorenz gauge. These first order differential equations are equivalent to the
second order Pocklington equation. The third Section mainly is devoted to a gauge
independent representation of the new per - unit - length capacitance and inductance, whereas
in the fourth Section their relation to the radiation resistance is established. Finally, we
conclude our paper with Section five.

11. Lossless, Infinite Line above Perfectly Conducting Ground - Exact Solution

We consider a lossless, infinite transmission line above a perfectly conducting ground which
is excited by an incoming plane wave (see Fig. 1). This is a well-known, simple configuration,
the solution of which can be analytically expressed. Our emphasis does not lie on the solution
procedure rather than on the question of the possibility to generalize the use of transmission
line parameters at very high frequencies, while keeping the transmission-line structure of the
corresponding .equations fixed. Therefore, some steps of our derivations are already known,
but we shall briefly repeat them in order to make the results complete, stringent, and compact,
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Fig. 1: Geometry of the problem.

For the excitation of the conductor in the thin-wire approach we only need the z-component
Eg (z) of the incoming field, which, for the case of a vertically — polarized plane wave, is
_givenby '

EB (Z) — Eie—jk;z (ejkhsinﬂ _ e—jkhsinﬁ)siﬂg = Eoe—jkcogez _ (1)

where @ is the angle of incidence (0 < @ < 7).

The scattered field E,(z) is calculated via the potentials ¢(z) and 4, (Z)in the Lorenz gauge
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The Green’s function g{z) along the wire is given by
o i sat o= e 22+ 4k
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The letter # denotes the height of the wire above 'ground, and a is the radius of the wire.
Insertion of the potentials into eq. (2) and the observation of the boundary condition

E +E 3 =0 (on the surface of the conductor) yield the two equations:

&)

2 o)+ jo 2 [g(z- 1) =B
z 47 _

. - | (6ab)
% jg(z -z (2Y)dz' + jow 47e, 9(z) =0



These equations serve as the basis for the derivation of the familiar, classic telegrapher
equations as well as for an exact solution. To obtain the telegrapher equations we make a low-
frequency approximation for eq. (5) (i.e. k¥ — 0) and make use of the strong weighting
property of the Green’s function. Then we easily get the usual result

9 o)+ joL'I(z)= EX(z)
Jz

P (7 a,b)
—I(z) + jo C' p(z) =0
oz
with the per-unit-length inductance L'and per-unit-length capacitance C’ which read
e Mg | - . 27,
L'=—n(2h{a , C'=——— 8ab
27 (1] ‘) In(24/a) ®25)

The solution of egs. (7 a,b) (for the current /(z) and potential @(z) ) is not the subject of
our current consideration. We rather are interested in the exact solution of eqs. (6 a,b) and in
the representation of the generalized line parameters (in the Lorenz gauge). To tackle this we
first transform eqs. (6 a,b) into the one-dimensional k-space via a one dimensional Fourier-
transformation and obtain '

=k @l + jo 2 G (ko )1y ) = E (k)

(9 a,b)
= jha I (ky) + j d7gy Gy (ky Yoy} = O
- with the Green’s function in the k-space
—~ jzr{Hg‘” (m/frc2 —k3 )- HP (Zh\/kz —k} )} , k>k, (10ab)
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Here H 32) (x) denotes the Hankel function of zeroth order and second kind, and K, (x) is
the modified Bessel function of zeroth order.

Due to our simple excitation function, the Fourier transform of E f (z) becomes
0 0 , ik _
E;(ky)=E;6(ky —ky), (& E"C“"COS(G)) _ (11)

and therefore G, in the z-representation, is not an integrodifferential operator (or a differential
operator of infinite order: G, (k,) <> G, (8/z)) rather than a pure number G (k).

" Therefore eqs. (9 a,b) simplify correspondingly (i.e. G (kz) G, (kl) in(9a b) ) and the
back—transformatmn to the local space results in:
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ail(z) + j(b 47, G,;l (k) p(z)=0 .
4 :

Recognize that egs. (7 a,b) and (12 a,b) are of the same structure, and they even become
formally equal, if we define generalized line parameters

-L’:=f—°Gk(kI) and  C'=4zge, G;' (k) (13, a,b)
" |

Remember, this result was obtained in the Lofenz gauge and it is valid for all frequencies.
Different from the classic approach (8 a,b), the parameters are now complex-valued, and the
meaning of the imaginary parts has to be analyzed. This becomes the subject of the following
two sections. In Fig. 2 we observe that already below 100 MHz (100 MHz corresponds to
2kh=2 for the parameter values in the Figures) the new values significantly deviate from
those of the transmission-line approximation. This holds for the real and imaginary parts of
L’ and C'. Also the gauge-dependency becomes quite obvious. Especially the appearance of
the imaginary parts and their connection to the radiation resistance is a new remarkable
property. For realistic systems at high frequencies ( / =21 GHz ) one can expect differences
between the classical and new parameters of about 10% to 20%. The line parameters in the
Coulomb gauge will be presented in the next section. ~

I11. Physical Interpretation of the New Line Parameters

Usually, and in particular in the low-frequency approximation, the per-unit-length capacitance
is correlated with the scalar potential ¢ and the per-unit-length inductance with the vector

potential A. However, we have to keep in mind that the potentials are gauge-dependent, and
therefore we obtain also gauge-dependent expressions for the line parameters. This is not very
satisfactory and one may ask for a gauge-independent access to the line parameters. We can
achieve such an approach as follows. Consider the, for our purposes, essential component of
the electric field, £, (z), which we write in two different ways:

) 5 EX(2)+E?(z) -gauge dependent decomposition
E@)=-jod -——¢@) =1 \ (a _ .
Oz 7 (E,mm )z + (E, )z_ - gauge independent decomposition
' (14 a,b)
The second definition uses the Helmholtz — decomposition of the electric field _
E=E +E,, (15, a,b)
with - div E,. . =0, ~rot E =0 '
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Fig. 2 Frequency dependency of generalized line paraméters (h=0.5 m, =0.001m,
#=45°). a) Capacitance per-unit-length; b) Inductance per-unit-length.
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This decomposition results into two gauge-independent contributions: the longitudinal,
instantaneous field £, [7] and the transverse (to the k - vector in the & - space) electric field

E s 7] Which contains retarded terms as well as an E| ;- compensating term. We only need
to consider the z — components of these fields . '

(B). = V).~ old). |
E p| - 16ab
(E trans )z =—j G)( frans )z . (16 a,b)

- and constitute F,(z)as

E,(z)= {— % o(2)- jold) }— 70y ), (17

With this field and the current /(z) we can present the d1fferent1a1—power density by the
induced-EMF (IEMF) method [8]

~E, (I (2)=Z'@DI(2)] () ‘ ' (18)
where we have defined the per-unit-length impedance function Z'(z) . As usual, we now write
Z' in terms of L’'and C'
2

. . , . .
Z'(z)=joL (z)+—coC—(z) (19)

Here, k, denotes a suitable, so far not ﬁxed, factor (wave number) which has to be introduced

to get the correct dimension. Insertion of eqgs. (17) and (19) into (18) yields the gauge-
independent expressions for L' and C':

_L,(Z)z(%”(z)} )= (kJ — 20ab)
Ve jo [é—z—c;(z)wwA,z(z)] |

_ Only the transverse part of the vector potential contributes to L', whereas the longitudinal part
4;, and the scalar potential occur in the expression for C”. Note, that our results, obtained in

the Lorenz gauge, are not compatible with (20 a,b): They correspond to the gauge-depeﬁdent
(gd) calculations

4.(z) | kz Itz)
Ly(z2)= ( ] Cea(2)= ( J I — (21 a,b)
I o))

It is interesting to note that in the Coulomb-gauge the equations (20 a,b) and (21 a,b) coincide
and lead to the same, gauge independent results. In the Coulomb gauge we derive



, K-k kf . -
chf_;{ i LG (k) +—5 Go(kl)} Ce =47 £,Gy' (ky) (22 a,b}

with ' ,
G, (k) = —jm{H P (kasin 6) - HP (2khsin 6)}
Go (ky) = 24K, (kafoos ) K, (2/Hcos 6])} | (23 a,b)

Note that the capacitance per-unit-length Ce is a real function of kj, whereas- L is
complex-valued. Thus, only the near fields (reactive energy) contribute to Cy., the radiation
resistance (see next section) is solely connected with' L.

It is worth to be mentioned, and will be more explicitely elaborated elsewhere [9], that with
egs. (22 a,b) an equivalent set of equations to (12 a,b) can be derived:

%uw% 1(2)=E(2)
| (24 a,b)

o . .,
_6 +joCepc(2) =0
z

We have found two different sets of equations ((12 a,b) and (24 a,b)) of the same structure
which describe the same physical phenomenon. Since all physical, observable quantitics
which are derived from these equations are equal (like e.g. 1(2),Z'(z), E,(z), etc.) it
remains to decide whether one would prefer a gauge-independent representation for L'and
C’. In this case the Coulomb-gauge would be preferable to the Lorenz-gauge. In view of a
generalization of elecirodynamics to quantum electrodynarmcs [7] also the Coulomb-gauge is
used.

IV. The New Parameters and their Relation to the Radiation Resistance

This section is devoted to the investigation of the relation between the new parameters and the
radiation resistance of the lossless, infinite line. To tackle this problem we first estimate the
vector potential of the far field for coordinates perpendicular to the propagation direction of
the current

I(z) = I, -exp(~ jk,z) (25)
-The vector potential at far distances orthogonal to the wire is obtained by an expansion of the

appropriate Green’s function for large arguments and results in [10] :

12
m} - sin( kA sin fcos @) (26)

Here p= 1/x +y° s the magnitude of a local vector which is directed to a point (x,y)

A W ez 1ol o exp(— jk(z cos 6+ psin 6){
o>

lying in a plane perpendicular to the z-direction. With the aid of A(p,z) we calculate the



magnetic and electric far-field components (which decrease like p"l" N, H far(P>2) and

E (P> 2), respectively and the corresponding time-averaged'Poynting vector

" k
S= ;R [E o H far] EQ—ST—E;MQI—( os(H)e +sm(9)e ) smz(khsmﬂsm ?) (27)

where 77, =/ /€, denotes the wave impedance of free space. Observe, that the power flux
density has a radial component (& - direction, into upper half-space) which corresponds to

radiation and a z-component (€, - direction) which corresponds to energy propagation along

the wire. The power radiated per-unit-length by the wire is obtained through integration of the
radial component of the Poynting vector in the upper half space (— 7/2 < @ < 7/2):

2khsin @) (28)

/2 ksin2(@)\1,*
Py = ISde?’:% 8( L (L~ 7o
) )

The uniformly distributed radiation resistance along the wire now is defined via the equation

1., _
P x:—z-Rm‘d II 0|2 (29)
and gives
) :
Ri =§2£S4£@(1—J0(2kh sin6)) (30)

On the other hand this resistance is connected with the above introduced quantity Z'(z) by
. y
R, =Re{Z'(z)}=Re{ joL'+—— (31
' jeocC |

Of course, R/, is gauge-independent and related with the imaginary part of the Green’s
function in k-space :

2 g2 |
——a)Im(LC)— 47: Q‘k—"‘*)Im(Gk(k,))=

rad -

| ’74"‘ sin Q[JO (kasin8)-Jo(2khsin6)] ~ M—-S%i@[l—,fo@kh sin 8)] (32)

ka<d
In eq. (32) we have used the fact that in the thin-wire approximation ka <<1.

Our above investigation resembles somewhat a similar problem which already has been.
treated in the thirties [1] and has been again reinvented later on [2, 3]. In these papers it is
shown that in RLC -circuits the lumped elements have to be generalized if the complete
- displacement current is included in the calculations. They thereby become complex-valued
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and the (integral) radiation resistance can be evaluated via the imaginary parts of the
inductance and the capacitance. However, gauge dependencies were not discussed. '

V. Conclusion

With our example of a lossless, infinite line above perfectly conducting ground we have
shown that the telegrapher equations can be generalized to include higher modes and radiation
effects. The new line parameters which occur turn out to be gauge dependent and complex-
valued. The gauge dependency can be removed by using the Helmholtz decomposition of the
electric field and in consequence also of the vector potential with a subsequent corresponding
calculation of the line parameters. The imaginary parts of these parameters constitute the
radiation resistance. They only appear if the complete displacement current (i.e. in particular
also the transverse part of it) is taken into consideration in Maxwell’s equations. Neglecting of

/ Ot) leads to a quasi-static approach of the
solution of Maxwell’s equations and therefore does not contain retardation effects.

the transverse displacement current (&, 6E’n,m

“Also the excitation influences the radiation. The far-field Poynting vector has two
components: one perpendicular to the conductor axis, the other parallel to it. In case that the -
wave vector of the incoming wave is parallel to the wire axis (we practically have a TEM
current wave, induced in the wire), then there is no radiation’; all energy is guided (in the near
zone) along the line. In the other extreme case (&=7/2), all energy is emitted in p-
direction. ' '
Eventually, we mention that the generalization to multiconductor lines is straight-forward.
Also for finite lines our procedure can be applied in a kind of a perturbation approximation
and will become the subject of another paper. '
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