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Abstract

This paper follows up on previous quadrupole considerations for magnetic singularity identification (MSI).

Using the 2-norm over the unit sphere one can find an optimal center of a natural mode for minimum quadrupole

~ contribution. ' Symmetry considerations are also extended to discrete two-diinensional rotation symmetry. A set of

Appendices is included for many of the mathematical details.
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1. Introduction

This paper continues the treatment of the quadrupole terms in magnetic singularity identification (MSI) in
[4] which we can conveniently reference as Part 1. In that paper the magnetic-dipole formulae were extended to
magnetic-quadrupole terms as certain integrals over the magnetization vector, particularly in the form of natural
modes. Then questions were addressed conceming optimal choice of coordinate origin to “minimize” the
quadrupele term associated with modes having a magnetic-dipole moment. The present paper (Part 2) further

extends this development, including the use of norms and the point symmetry groups.

Summarizing from Part 1, we have

- -
X o(r) = magnetization (or magnetic-moment density) nautral mode

r_n)a = })a(—?)dV = magnetic (dipole) moment
Vv

Slsed) L (d)
Hy = h (r)s mg = magnetic-dipole part of magnetic-field natural mode

- - 5 o
ho(F) = 13[31r1r~1]

Azr

- ¥
| » 1p =—(forr = Q)
¥

“ 3 - =
1 = E 1¢ 1¢ = three-dimensional identity
£=1
i A 4
11, 12,13 =any set of real orthogonal unit vectors
- (se.9) @ :
— <> r :
Hy (7) ={h (—;,? % ,_y)a(?) = magnetic-quadrupole part of magnetic-field natural mode
@ (T
« - ' 2> 2 ] Py =D “ ,
o7y |1 e TS50 11 =17 -7 0=k (. 7)
4zt :

Refer to Part 1 for details, including assumptions.
2. 2-Norm Over Solid Angles (Unit Sphere) _ '



Part of the problem in choosing the coordinate origin (location of —;)

e
0) for minimizing the quadrupole

term concerns its variability as one considers different angles around the object. This is contained in the dependence

- - -
on 1,. Which 1, should one choose? One approach to this problem is to take a norm over all values of 1,

. i o - ) .
since a value of zero implies zero for “all” 1,. Various norms are possible, such as the co-norm (peak). For

present purposes and convenient analytic properties we will use the 2-norm.

So let us form

1
RO _(se.q) 2P
He (r) = Ha (r,1p) d5

2 5
51 = unit sphere

.+
where r is held constant and 1, varies over the unit sphere. This gives

2
167%r% —(se.q) -

Ug = —5—|Ha (1)
2

< — - —!
= V(lrr); zg(r)) d5

St
© ’ —> r - — x4 —y .
v Ty= |1, T 51, 1r-1]|-1,7 -7 1s =
as the thing to minimize.
Rearrange (2.2) as
: A ) —> ' 5 e Y
Ug = WV (705 2oF)) - (VIRT); 2o(F) ) ds:
S

> A JY € s >
= N xa(r)s Ve r )« V(1rr ), 2o(r ) }ds

@2.1)

(2.2)

@3



. . . . ' 3 .
Interchange the order of integration over S; with the integrals over 7 ad 7 to glve

- - S >
Ua = Za(r ) Wa(r H );Za(" )

> ’ ” > —> "
wr, 7 ) = Iz(ir,?”,?)d&_
5
> —> ' " > —> —> — »
X177, 7)) = V(1,7 VT
- o )

- = = e o >
1, F 51,11 |-1,7-7 1,

—> - =2 & - " "~
—> ; =2 =
. lr LI & 51 1 1

¥ lr—=

T
O Dty € ~—>ﬂ—>f
X (]-P's F,r )=X(1?" )
T
b —t _)n __)n —3f

W (r,r)y=Wr,r)

Let us divide this into four parts for analysis as

FEGUEN o™ r —m
X(1, Z (1r, 7,7
2 o(m)
> r " r ”
w7 7 =Nrw & ?’)
’ m=1
om ;,, SR ¥ CO N

woF,r)= |X (1,,‘;’,r)a'sl

2.4)



m
D e S - , s ¢ - - o - "
X (1,7.7)y=|1,.7 [5 L, Tp=1 a5 1, 1p=1]e|1,-7
@ 5 5t ym [ e > e >
X (].r,r,r)= lpo7 + F 1z cllpepr + F 1,
3) ) @3)
oV 5, - , - = o -
X (107, 7)==|1r 7|51, 1,-1].]1,7+7 1
PINC) RN ot -y > - -5 o= s
X (1,—,r,r)=— lpr + r ].r . SIrlr—'i lr’r
The first term gives
<—>(1)—-+_),_,,, ”_),—>—> —n s
X (lpyr,ry=1Fr slp1prF 151, 1,+1
- o . | P "
= '}"-1,1,-?’}1 +15F e 1plplplrsr 2.6)
o0 3 4 > 0 B LI e A
W(r,r)=Tr-rl+47rrr + F F 4+ F s F
using the results in Apendix B, specifically (B.1) and (B.16). The second term gives
@ R A " A I I e e —r
X (Lpy,r,r)=rF ¢« lplpepr +F lyplper +r or lplyp+r v
4 <> r i r i ' ; . n<_> ' ”
G S -y ar . AN S A SN i S Q2.7
3 3 3 S : -
437 —r —yr .'_)JH
=—|5Frr +r «r 1
3 .
“The third term gives
©) [ 1
PR . - - _yn - N e S
X (U7 7)) =~1, 75 7 «5|1, 7|1, 1r =1,7.7 1,
(N - - " 4 - > | ”
[ b= N | O ot Ry IR [~




—yr - = " r—> —> —yr —yr - = =
=47 1, T AT Lplp s 7 —5F « 1p1p1,
3
O o 16w > =" 4g ="' A A T U e
W(r,r)=—TE r+—xr?—§£7r +Fr r +r «r 1 2.8)
4 R R R R e e A
= — Fr+r r—|rr+r r+r «r 1
The fourth term gives
o® -t r_,, B e e "
rd (lr,f',]‘)=—5?' 'lrlrlr—lrl’ + 57 lr—r lr lr'f
: . i I i | e
=47 1r=1,7 +57 o« Lol 1| 1s 7
= > o > Dy ¢y = e
=47 1plp o 747 s1plp 7 =57 o Iplplply s 7 2.9)
4
oW 16 > =" g " Az oo v o 2
W(r,r):——-rr+——rr-—-3—-rr+rr+r-r1
dg | " Pt | Sty et €
=-5——4rr+rr—rr+rr+r-r
Summing these gives
< [ © <
— 4 — T - —y —" = -
W(r,r):—;r-w3rr+2rr+r-rl+rr+rr+r-r1
- (2.10)
4 IV L) ' n > .
=—31r- 27 7 437 T +437 o7 1
" Going back a step to U, we have
3 - >
.Z;Ua_“‘:_z Za(r ): Za(r)
- 3 e
FHx(r ) oror s oxa(r) (2.11)

) ;o m—» ” - '
+3 jj? e 7 2,(F ) 2 (FHavTav
VV '



Using

ma = |z2,(F)av
%

Ga = > . o (Ddv | - 2.12)
v

Oy = |7 ZaGav
z

with all parameters real valued (scalars, vectors, dyadics), we have

— -3 — _>ﬂ‘

- —r - = =T =
Zalr ) ror 5 oxa(r)

Xalr );7' r i xalr)

e —yr _,_).r — -y P — . '
Xalr )s v 1 x,(r))= .[Iza(r Yeor zo(r ) rdvtayv
4
—> ey «> 3 s (—)T — ,
= X7 ) Qper dV = |r « Q4 2,(r)adv (2.13)
v v '

. ’ "5 " — 13 )
'”'?' e P 2 Ty g (Fydv v
Vv

— <> —> —r .
= J‘r s Oy * xolr)av
V

Combining these gives
U, = %”[-2:;5 + 3%
ol (2.14)
Y, =

'y e =
Ir 1 Qa+ Q|+ 2a(Fra¥
Vv

as the thing to be minimized by optimal choice of coordinate origin.



-3,

Optimal Shift of Coordinates

.= - - .
Replacing » by F-7 0 sothat r( is the new coordinate center, we have

- - = - 7 - 2
9o = _ﬂr—rt)} * Za(H)dv = _[ + ()Y = T0 e
v ' v

Sdg’ — ro - ng
- - = [ - —
Qu = -ﬂir—-ro}za(r)dl’ = Ir 2o(F)V - Fonmg
V 4
SO
= Qa - rQmg
= [ = o . . .
Mg = X o(r)dV (unchanged in the coordinate shift)
v
(0) T
- = Y - - > -
Yo = ["_ro} ‘|1Qa + Yq —1‘0_?;1)0: —Ee)aro © Xglriav
SO Lor - -0 SO
= + G, s Xog(r)dV—ro <10, + O, . Mg
I;
- B D d 2 2 -> e 2
o L Mg D ;:a(r)dV+ r()mo + | FO » Mg
V

S0 Lor)

0 - -
)= |7 1y + Qa | ¢ o(Pa¥
V
—_
- g ro
ro =|rof , lo=—
. Crg
>
—> - Mo
my =|mal , la = 2%
Mg

The zero superscripts indicate parameters evaluated before coordinate shift. Now form

(3.1)



Uy = f‘sﬁ[-zqg + 3Ya]
4 - = 2
T
) _2[q¢(;50)"r0 . ma:|

PN (O IR ()74
+310-F0 clo, + 0, |- ma

= (= - - 3 -
- Jr . [roma + mg roil « ¥ (r)dv
V
2
- -
+r02mc2z+[r0-ma}

2
4 - -
-l Fo R

&0 LOT
+3r0 270 . |o, + 0, |-ma

2
R [?0 : ;‘a]
4 - - 2 |
- Tx my —2[7112161((10) + FQ e la] ' . 3.2)

0 (YA
+ 3wy 27 o P T
Mg Yg ' =2rg «|my | Q, + @, s 1y

2
2 7.7
+}‘0 + )"0 "_la

So as to find a minimum of U, , let us take a gradient with respect to r ¢ using various vector/dyadic

identities (similar to those in Appendix B) as

10



st S0 -0 Jse

&0 LSO I:

—=> | = = |=
+3|1-2|Q, + Q4 -ma+2m§r0 ro-mo}mo

3 [4(}( )IHQ + 2_??'_1)“-?;1)“ . ?0
SO gor|

~6{0, +Qp |+ma+6miiol (3.3)

Setting this to the zero vector we have

- e N
0 =2m7'¢Q i+ 1a1a- 7o

[o® Hor] 5
—3m; Qa +Q(X '10{'}'3!‘0

(3.6)

(3.4)
o - o N 19(0) SOT |
31 + lalg|s ro=3my|Q, + Q, e g
- 2my q&) la
The reader can verify that
A R -1 L s
1 + =141 = 1 -=lgl
3 [+ &@ 4 o 74
(3.5)
o o o 71 e 1= = 1 < 1= = '
3 + 11 ==1 -~ =1lgl == 1 ~-=—1gl
| ala 3 glele 3 zlele
This gives our solution (only one) for the optimum choice of _7?0 as
= S s <—>(0) 0T -
rn = 1 Zla ].a . Qa + Qa v 1g
- _ma (0) 1o

This minimizes U, , but does not in general make it zero.

1



4, Conditions for U,, =0

From Part 1 (Section 4) we have an expression for the magnetic quadrupole term in (1.1). Setting this to

zero for a natural mode gives

—lrr —r 1p xa(r) “@.0

—y
which must hold forall 1,. Rearranging the integral gives

F— oyt b d ,
* Xg(Fdr o Ly = lpr oy (r) =1 g r)e 1,|dV
v 4.2

=51r1r—1r 'Qa'lr—qua‘—Qa'lr

- l: - = - =y -3 —)__;r -y —y
Ly

. | o
Split (4.2) into two parts. First operate by 1, » on the left giving

5 ol 4 -5 o o :
0=41"Qa'1""9a_1"'ga'1" ' (4.3)
- o - :

31re Qg+ lr~4qq

>
Second operate on the left with 1, + where

4.4

> > - =
l_rE 1 —-lrlr
giving
— — T = - —
0=—1r'Qa'1r— lr'Qa'lr
' ' 4.5
- - “ T —
0 =

Lrel Qg + Qg 1r

12



We see various combinations of terms that have appeared in previous sections. Now we require that both (4.3) and

—_
(4.5) hold independent of 1, .
<
From Appendix C we have the general form of Q g In(4.3)as

«>T

> “> > > B
1 +C , C =-~C 4.6)

Qnp = a

Substituting this form in (4.5) gives

> 4 «T - > > - -
I-Qa+Qa'lr=1-201'1r=0 “.7)
showing that this form also satisfies (4.5). Rethrning to (4.3} we have from Appendix C
o o -
1 L] Qa L] }r = a . (4.8)
which implies
gy = 3a ' . 4.9
For comparison we have the optimal choice of coordinate origin in (3.6) giving
< - = ol -
7o = [1 —-}10, Ia] . [ma12a1:| .« 1g
1--1 — o '
- -é—ma lalg : : - (410)
2 .
=0

as we might expect. Furthermore, the 2-norm considerations result in (2.14) to minimize U, giving

13



' , « - p
Uy = -Z 2[3af + 3-[?’ . [Za 1] - 2o (Fav

3
. V
- 13’5 ~184% + 6%] @.11)
=0

) ’ >
So the general form for Q,, in (4.6), together with the associated form for qq in (4.9) give us constraints
on the form of ?a (7) to have zero resulting quadrupole term (U, =0). Remember that all parameters here are

real valued scalars, vectors, and dyadics.

14



Special Cases

5.1 Displaced magnetic dipole

. S e - .
Consider a magnetic dipoleat » = 71, ie., mg at ri,with

Z2a() = a6 - 7)), me = j}’a(?)dw 0

4

Then we have

- -
rl

(5.1)

g0 = |7 - mad(F-FDA = F1 -+ ma
Z
@ *
s
0y = |7Had@-70a7 = Fima
v
- 0  SOr
0 L, e - = o
< 718+ 87 Fuaz-70a 52
J - .
V
= Fi e Flmg + mg ril " Mg
2 2 2
- = - g
= ri = ma +[rl . maJ
: - —
n=l71l, me= Wy ma
Then we have
ax| ’ A
_—)
Uy = az —2l:-;)l . —?;I)Q:l + 3 r2m2 +‘:r1 * ma:‘
_ .3 1 o :
(53)

I 21

F 2
- -
= i{ 3r2m2 + [r; . ma}

Both terms being non-negative (squares of real numbers), this is made zero by the unique solution

i5



-
-
r 4]

1= (5.4)

This result can also be approached via the coordinate shift discussed in Section 3. This gives an optimal

value of ?o from (3.6) as

rog = l-=1lglg|e|rilg + lgri|s lg

4

1 = -
~=lglg «r

5 ala i _ (5.5)
- - - - = = - - — —
-“‘-—?‘I+lala'?‘I——'lala'f]——'lala'rl

4 4

—
=r1

which checks.

~
Comparing the result for a single magnetic dipole to the general allowable forms for @, and g, in

"Section 4 we have

dg =3ay = r1 - m =0 '
(] r (5.6)
o e © o < - :

o =aql + Ci=rim ) Ci =-C

~ which implies

aq =0
C, = m171_¢ ?1;;1)1 -C1 . _ T o 6D
C1 =10

. . — .
since even ;z)l and ?)1 parallel (required for equality) the sign is reversed unless ?1 = (. Itisthe requirement

~of a single dyad which makes both @y and C1 zero. (See also Appendix D.2.)

16



5.2 Two displaced magnetic dipoles

Let

> = ~{ - - —>(2) - -

Xa(t) = mg §(r—r1)+m1 d(r — r2) .8)
N SN RN ) N L) BN NP RN .
Mg =mg +mg =0 , mg #0 , mg =0
— -

Constraining rg = 0 we have
NG, 5 _,_(2)

o = F1 » Mg + r2 « mg

Nig - >0 —(2)

Qg =risma + r2e-mg

> |e T O ' 5.9

T =_[r N0, + 0, |+ Za(Prar %

F .
- < T N0 — «T T -2
=r1-Qa,+-Qa-m.a+r2-Qa+Qa-ma
From Section 4, for zero quadrupole we have the general allowable form

© o o ©T ' :

Qp a1l +C2 , C =-C g ' : (5.10)

da = 3y . ' '

giving

17



Ug

-
re

e T .

=3ay = ryem + ra » my
6 o L0 0
=ayl + C2=rtmg + r2 « my
— L —>(1) - pagl B
=ay| ¥l 2a21 -ml + F2 e 20’21 s m (511)
=Za§“qa
=.-335[—2q§, +3Ya] =0
4
-
=0

From Appendix D we have the result (D.31) for the most general form that the sum of two dyads can take
" consistent with (5.10) is :

hxd
Qq

-
r2

by’

o 5 o L5504 5@ 47
=Ca=ca2x 1 =vrimg + ramg = Co
(M -0
=bmg , mg =bri (5.12)
= -1 » ap = 0

o
This makes all four vectors comprising the two dyads that make up ¢}, coplanar, this plane being determined by

- (D

rlandma.

< <>
This generalizes the result in Part 1 (Section 5) which has the four vectors all collinear ( C2 = 0 )

as a special case of {5.12).

Our solution is illustrated in Fig. 5.1 where the plane of the page is taken as this plane. It may 'seem strange

that »1 and 72 are not necessarily collinear through the coordinate origin » =0 to null the quadrupole term.

~ One way to view this is to consider components of the magnetic dipoles. If z is perpendicular to this plane, then the

© X components

cancellation.

do give a quadrupole, while the y components give the negative of this quadrupole for a net

18



—(1)
Mo

~y

All vectors are in the
plane of the page which
also contains the origin,

—(2)
Mo

Fig. 5.1 Case of Two Displaced Magnetic Dipoles with Zero Quadrupole.
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6. Symmetry Considerations

Part 1, Section 6, considers the effects of symmetry planes and two-dimensional continuous rotation

symmetry. Here we delve deeper into the various point symmetries (reflections and rotations).

6.1 Symmetry planes

A single symmetry plane, say z = 0 is characterized by the two-clement reflection group with dyadic

representation

6.1)
- —
1212

As with any symmetry group ?(7) and (Z("r?) must be invariant to this transformation for it to apply.

A symmetry plane divides the electromagnetic response into two noncoupling parts, designated symmetric

and antisymmetric. For magnetization natural modes, these being magnetic parameters, we have [3]

- 2 2 1 2 (1 - |
ZasyP ) = 1 RGO (r”) - 70y ©2)
as ﬂ'S
For the magnetic moment Part 1 shows that
- - =
Masy = 1z 1z » J‘?a, (Fyav
v
R :
= Mgs = 1z (longitudinal) : (6.3)
. :
za,as = 1z J‘—;?a!as("r?)dV (transverse)

4

20



This analysis also applies to multiple symmetry planes, which also give a symmetric/antisymmetric
decomposition. As discussed in Part 1, _n-z)a cannot be symmetric with respect to two (and, by extension, three)
perpendicular symmetry planes. Furthermore, Tga can be antisymmetric with respect to two symmetry planes (say

x =0 and y = 0) and necessarily symmetric (if nonzero) with respect to a third (z = 0) symmetry plane.

Similar considerations apply to the quadrupole term. As in Part 1 divide V as

V = V+UV_
V, = portion of V for z > 0 (6.4)
V_ = portion of V for z < 0

for the case of az = 0 symmetry plane. Then for the quadrupole terms we have

- - - - -,
. qa:s}' N re xa’z Foe xasa‘s?;(r)dV
as v v
= - - 7 - -
= |r xa,sy(r)dV + 7 * Rz »|FRz|-~ Za,w(")dV
as as
v, v
- -
= [1 1] J'r X g, sp(r)dV
as
9asy =0
« - — > T e - —
Ou sy = Ir Ko, (r)dV + J‘r . R{;Rz] * Xa,(r)dV
as as as
v, V.
© o o xS
= Q(+) TRy » Q(+) . R
3 » Sy
as as
© o 77, v
a,sy _[ x“’g( av. (6.5)
as V+

where the @, result is found by writing out the reflection dyadic s_tnd collecting terms.

21



6.2 Inversion symmetry

This is described by the group
>
I=41,-1 ' - (6.6)

N .
Again, y . can be split into two parts (labeled as +)

Zax=7) = £ 2,0(F) | ©.7)

.noting that the plus subscript (like symmetric) is associated with the magnetic dipole (unless higher symmetries
force it to zero). Again dividing ¥ as in (6.4), but with the division by any plane passing through the origin, we have

Mg = [1 £ 1] [ Zou(Prav |
7, | | (6.8)

-
ma,... =

=

So only the plus part gives a nonzero magnetic-dipole moment,

For the quadrupole term we have

: - - > - -
ot = J.r . ?a’i(r)dV + Ir . Za,i(_")dV

v, A
= [15 1] I? * Zoa(F)av
V+
da+ = 0 .
6.9)

< - — > - (
Qgy = Ir Yoz (r)av - J.r Za’i(—r)dV

Vs “ Vs

Ir

[z |77 ,(Fhar

V.

22



Thus we have:

+ subscript = nonzero dipole, zero quadrupole

- subscript = zero dipole, nonzero quadrupole

Again, “nonzero” terms can also be zero in special cases.

As an example an object with three (mutually perpendicular) planes (intersecting at the origin) also has
inversion symmetry, and the above applies. These additional symmetries can have various modes ,?a with
symmetric and antisymmetric parts with respect to each of the symmetry planes, as discussed previously. An
example of such an object is a mgtal brick. One might think of some —ﬂ_;g as antisymmetric with respect to some
plane (say z = 0) and symmetric with respect to the other two as some kind of principal or lowest-order dipole mode
with zero associated quadrupole. There are two other such dipole modes, antisymmetric with respect to the other

two symmetry planes (x = 0 and y = 0).

6.3 Cp,; symmetry with N even

Before considering more general rotations let N = even (N-fold rotation axis) with a transverse (z=10)

symmetry plane. Examples are in Fig. 6.1.

. . . - . s
The existence of a transverse symmetry plane means that there is an associated z .57 with the additional

property that

— - < s S5 5
. xa,,sy(_r) = —RZ * Zsy’a(r) = za,lsy(r

) . S ‘ (6.10)

for N even. This is because every point on the body for z > 0 corresponds to a point for -7 , thereby giving
the object inversion symmetry. The mode in (6.10) might be termed a principal longitudinal mode with no change
on rotation by 2a/N. Note that this applies only for N > 2. The magnetic dipole has only a z component and the

) _+ - 13 .
associated quadrupole is zero. Note that 7 =0 is defined at the intersection of the rotation axis with the transverse

symmetry plane.
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A. Cg; symmetry (transverse symmetry plane parallel to page).

planes

___________.___'______N@ e e e Y

1 3
B. Cg, symmetry (addition of N axial symmetry planes).

Fig. 6.1 Cy; Symmetry: N-Fold Rotation Axis with Transverse Symmetry Planes
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These simple considerations also apply to transv.erse modes for the case of axial symmetry planes for N
even as illustrated in Fig. 6.1B. Again, a symmetric ?a,sy with respect to any of these axial symmetry planes
implies inversion symmetry with plus sign, giving a magnetic'dipole perpendicular to any chosen symmetry plane
with zero associated quadrupole. Recall from Part 1, Table 6.1, that for Cy with N > 3 the transverse modes are

doubly degenerate, i.e., two independent modes with the same natural frequency s, .

6.4  Cp; symmetry for general N
With cylindrical (P, ¢, z } coordinates with

x == Yeos(h) , y = ‘Ps_in(géj - ' (6.11)

let us consider the properties of the natural modes. Figure 6.1 gives examples of such rotational targets. The
reflection symmetry pairs points (¥, ¢,z ) with (P, ¢,—z ), which is not so simple as inversion symmetry. Let us
then consider summing the integrands over the 2N points at +z and ¢ +—2—~§£ for £ =1 toN (ur_ zero to N-1). For

cases that such sums are zero the corresponding integrals are zero.

Cy symmetry is given by

. V >
Cy = {C'(;ﬁg)f =0,1, -, N—l}

o cos(dy) -sin(gy) 0
C(de) = (Cum () = | sin(gp) cos() 0]
' 0 0 1
_ [cos(gy) —sin(dy)
- (sin(gsg) cos(dl) Je(“’ D,

2ml
o=
(1) = 1 x 1 unit matrix
- o 1 00 o
CO=C@2r) =101 0|=1
0 01
+—>‘"1 7

<>
C @=C (@ =C-9)
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©
det| C(0)| =1
- < >
C@)  C@) = C¢' + ¢
This also has a convenient exponential form as
0 -10
gl 0 0 [0 -1
€

>
Cg=e @1 ! "Jeau)

6.4.1 Longitudinal natural mode

This has

- © — < - -
;(.a,;y[Rz . r} = ~Rz » Za,sy(")-

- - > - '
Masy = Myg lz = J.;(a’sy(r)dV _

| 4

> - -
Myg = 1z o .[Za’sy(r)dV

V

The Tongitudinal natural mode of interest is that with the rotational property (for all £}

. Exd >
Zag (04009 = Z00(CH) + 7) = CG) » T o)

Noting that

o - N o - e
Foe za,sy(r) + Rz = rFleo|=Rz « l’a,sy(

the sum over £ to form g, sy Is zero giving for the integral

Ja,sy = 0

(6.12)

(6.13)

(6. 14)

(6.15)

6.16)

: (6.17).



o _
The dyadic term O a5y is more complicated. Define longitudinal (z) and transverse (7) parts by

- _)(f) g - 7
ro= r +zlz , #» « 1z 0 _
' (6.18)
- - O () N '
as (M =20 D+ 2,1, 29 . To =0
Then form
- o
TE P =700 s P LT,
(6.19)
_)
+ 2T T + 2 1: 200
Notingthat
o - S0
Rz e r = ¢ -1 .
: - E | . (6.20)
: -> - —>(t) — (2)
Rz » Za,w(r) (")"Zasy
then sum over points at z and —z for the same (¥, ¢ ) giving
-> > - < - -
r Zo:.s:v(") + I:Rz . r}[—Rz . ;ga’sy(r)]
{6.21)

> 0
= 2,8, )—>() g +2“z}>my(7)

Summing over £ we have

N-1
] 4 >
Qlasy = 225N Y | Sy + 7O [cc@) - TZJ
S 4=0
Nl o - PO __>(f) N
+ 222[0(@)- u] ) » Zapy(™
ST |
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£=0

(;) N— l(_)
=2 Zg5y(7) ZC(@;)
1

6.22)
(r
+2z lzz“y(r) C' (¢e)

£=0

In Appendix E, it is shown that these sums of rotation matrices are the zero dyadic for N > 2. Thus we have

> >
Qasy = 0 for N2> 2

{6.23)

with these sums zero then the integral over ¥is

PES
Qa’sy= ¢ for N2 2

¢

(6.24)

and the quadrupole term is zero for all N > 2, both even and.odd.

6.4.2 Transverse natural modes

These have

- >
Za,aS(RZ *

— —>
Maas + 1z =0 =1

(6.23)

<e.

- « -
Ma.as = _lr . J.xa,as(?)dy__ -
4

The lowest order ones (having a nonzero magnetic-dipole moment)} are doubly degenerate.

Dividing such modes into transverse and longitudinal parts as in (6.18) we have summing over points at +z
and -z '
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- <> - - < > -
aas{r) + Rz o o005y =21z » g, ()

- - e sl oS - - -
* Zaas(r) + [Rz . r}- [Rz . xa,as(r)J =27 ¢ Xoas

(6.26)
7 L oras(F) + [Rz . r:”:Rz . ;(am(r):l

(t) —)(t) (r) + Zzz(z) )_].)z?z

N

<
These need to the summed over the ¢y to find Qzas a0d O 0.

Details concemning these rotatioﬁal symmetry modes are given in [3]. .Since these modes are also
eigempodes of the integral equation for the object response (with complex frequency s evaluated at the natural
frequency s, }'then rotation of the mode by ¢y gives another natural mode. For N > 3 there are two independent
modes, in terms of which the remainder can be constructed by linear combination. As a consequence of the
nondepolarization theorem for axial incidence {8] we have that Za,as is collinear (parallel or antiparallel) with the
transverse part of the incident magnetic field for N > 3. In this case we interpret ﬁa,as as the resultant magnetic

dipole moment from some combination of the degenerate modes.

In [3] the Volume V occupied by the object is divided into & volumes Ve. Startiné from some angle, say

' £
¢ =0, define ¥, as lying between ¢y_; and g;. The coordinates 7 can be written as -r'?( ) for each ¥y where

70 _ C@p) 7@ _ M) - - (627)

Then eigenmodes, and thereby natural modes, are constructed in the form .

70 GO = 2y - 3OO e

u=1,2,...,N (or0,1,...,N-1) ' : o . ©(6.28)
= modal index (part of )
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Knowing that for MSI the natural modes can be taken as purely real, we can also take real and imaginary parts as
eigenmodes, showing the double degeneracy of such modes, except in special cases, including u =0 (or M), and u =

N/2 for N even. This is associated with the fact that u and —u (or N - u) give the same results.

At this point we can note that the case of ¥ = corresponds to the longitudinal natural mode for Fr)sy

discussed in Section 6.4.1,

Now form the magnetic-dipole moment summing over terms from (6.26) and (6.28) for all £ as

N-1
’ >
Maas = 2 L2+ Clgpye ™t

£=0

0
. }’les 7O (6.29)

In Appendix E it is shown that this sum is nonzero only for u = 1 N —1. This corresponds to an aligning of the
4 a( r) from the various ¥, in a “parallel” fashion as one goes through all the £ values. Here, for simplification,
we have summed over the complex form for y a( ¥ ) in (6.28). This sum can also be split into real and imaginary

parts with the same result.

Consider then the quadrupole term for the same choices of # that give a nonzero dipole term. Sum over £

to include corresponding points in each Ve gives for the scalar term

N-1
£ £
sy = E 570, (;"( ))
N-1 o : o ©
‘ i —(0 .y
=2 E Clgr) - 7O [Cla) - Zg Poye 630
=0 . | o o
N-I
-2 E : o Tude -’—}(0) —>g?) (—>(0))
£=0
=0forN=z2andu=1,N-1
using the result of (E.1). This gives for the integral
9a,sy = 0 for N>2 and non zero dipole . o : T (63D

30



For the dyadic term we have

' N-1 -
g (1.0) —(,0) O | _;
O asy = 22 Cwpy - 70 || Capy - TEORD) |t
£=0 (6.32)
22T T D az
This has two parts. The longitudinal (z, z) part has
N-1
Ze‘fﬂ@ =0for N>2andu=1,N-1 (6.33)
£=0

which corresponds to the nonzero dipole case. The transverse part involves only the x and y indices of the rotation

dyadics. This corresponds to the case in Appendix E (E.26) giving

N-1
o o | _.
D e - 70| [Cun - Zan @O |
£=0
Zor o 0
= 7N ) Ca Cape |- 790@Y) (634)
£=0

<
0 foru #0and N=2 and for w = 2, N -2 for¥N =2 3

and the quadrupole moment (associated-with nonzero transverse magnetic dipole moment) is zero provided N=2 or
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7. Concluding Remarks

This paper (Part 2) has extended the basic properties of magnetic quadrupoles in MSL. For minimizing
such terms associated with natural modes with nonzero magnetic dipoles, the 2-norm over the unit sphere is formed.
This has led to the definition of the optimal coordinate center (or center of the natural mode) for minimizing the
quadrupole term. The case of two displaced magnetic dipoles has been generalized for zero quadrupole. The
symmetry considerations have been extended to clisérete two-dimensional rotation with a transverse symmetry

plane.

There may be other cases to consider, but this should help in optimal employment of MSL
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Appendix A. Some Propertieé of Polyadics

- > S
We are familiar with vectors a (or monads) and dyadics 4 (sums of dyads of form a & )} [7 (App. 3)].

This is generalized to polyadics or n-adics of degree m by sums of the form

LA BN (O RN () .-
P = Zal az dap ’ : (A1)
|

This s equivalent to a tensor of rank n [6 (ch. 16)], but we prefer the use of the term degree n to distinguish from the

rank of a matrix (or dyadic). While the use of the vector symbol = is used for vectors in 3-space, the above can

apply to any number of dimensions. The dyadic symbol
- 2
D I S

= = _ (A2)

. n
- . —>
.is generalized to .

~y =

>3 _
Consider the partly symmetric form f P f . If we dot product on both sides by arbitrary vectors we have

»> =55 5 - =5[> o 5 213> =
a-fPf._.b:a.fPf.b=b.fP f.a
| - | | | (A3)
i .
- oo
=b + fPf+a
e . . - .
In particular we have for tetradics involving 1, (the unit vector in the r direction)
- > =5 o I A B . S
Do lplplplpeb=boel,lplplrea o . (A4)

Including the dyadic identity
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=1

e )

11, 12, 13 =mutually orthogonal real unit vectors
B ™Y - 3 — Py .

G lrl1lpeb=belpllired
D D J— -

@11 eb=2ab

More generally we have for polyadics

14
-2 o -
b =b og fo?z.)

—»5o
_)
a Pg

- f

n

: z . '
This is transpose-like, except that P is nof transposed, keeping the order of its vector constituents.
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Appendix B: Some Polyadic Identities

With S as the surface of the unit sphere we first summarize some identities from [2 (App. B)], including

(B.1)

(B.2)

Dividing 5] into

e
[

= S US-
- -> -
lx + y1ly + z 1z (Cartesian coordinates)

(%3:2)
Sy = S for z
5. = 8§ for z

x (B-3)
0
0

A IV

. . -
and pairing points at » and - 7 on S we have

7 2 55 5 '
jlrdSl =0 = 00--0 (nterms) formodd ' _ o ' ) (B.4)
5 - . : |

35



. . LD
Consider now the integral over the tetradic 1, 1 1,. Compute

- S - - - S ]el- -
a = lr 1 IrdS] « b = a -« ].r 1 ].r' b dS{
1 St :
oy, = - — o, "> - —
=1 fas+ 1,1y «bdSy=1a-| |1,1,d5]|+ b (B.5)
§ 51 |
<] - - oo
= lgol:fgl]-b=%a-bl

- .
Outer (dyadic) multiply by ?:) on the left, let ?1) = 1y successively with £ =1, 2, 3 (as in (A.5)), and sum over £

to obtain the dyadic identity giving

- - —> >
J.l,-l 1,dS) -b=4T”E”-b1 _ (B.6)
A .

.. L -
A similar construction gives ( ¢ general)

R FEY . ' . -
a - J.I, 11,45 _=4T”1E’ o (B.7)
; | |

Going a step further, in (B.7) again take the outer product with a on the left, let 7 assume the role of the unit

vectors and sum, giving

. . 3 . )
> o> > o . S _
' J.lr 1 1,dS) =f‘3£ E 1¢1 1g . _ . (B.8)
8§ =1 : _ : :
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Ifdesired 1 can be expanded in terms of the same unit vectors.

Begin with the dyadic integral formula [7]

Now consider the tetrad 1, .

£
5
2 2
rIIJS
1l
e
A,
T
T
nl..V.l'le \W

(B.9)

outward pointing unit normal on S (which encloses V)

ls =

Let

(B.10)

= constant vectors

- =
a,b

Noting that

(B.11)

this gives

ﬁ.b | I
+ | eu—]

— T
Tx .

. g
Tt
| | X :

> T
T~ +

ta | ox
o 1O
q”. P

(B.12)

T
T
T

+
o
T8 -

f o,
T .
EYSIE
re T

+
;.—...D _\ﬁla.._
| I 1 +
4. "~
te T

i ﬂI_
— P
7., +
to T2
e
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Specializing to 57 and #{ and noting that

— —
»

- —
=r11"9 1521)"

, dn = r? sin(&)dgd¢ (spherical coordinates)

gives

'2—>-—~>
re 1y 1rdh

~)
~]
R,

—
It

(22 2 5
= |r* 1y 1, r?sin(0)dpdodr

1
1
"4 > — > -
= Fdr lrlrdSI = — IrlrdSl
6 5 - S
_
15
= . e e
Vv(r)diy =|ab + bal|- Jrrdhf
" "
> —>—> -
+ la- J.rrdVl - b
"
—>— —>— - >
=%—[a +ba+a-blif

5 52 _
.4
- —
=aq- IlrdSl < b
5
> 3
= b = lrdSi - a
S :

Combining, we have
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(B.16)

Note the consistency of this symmetric result with (A.4)

As before, let @ be outer multiplied on the left and assume the role of the orthogonal unit vectors which

are then summed, giving

4 = gl oo 3—>—>——> '
I rdS; b=——~lb+bI+Elzb13 : (B.17)

_)
Outer multiply on the right by 5 and repeat the procedure to give

i 4| O 3—><->-> 3—>—->—>—>
1rd~5‘1=gll+ E g1 1 + E E lelglsly (B.18)

3
£=1 £=1 &=1

Comparing this to (B.16), we see that the former is a more compact result. This last result can be verified by taking

- ‘
the dot products by Fe and % on left and right to recover (B.16).
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Appendix C. Implicationsof 1, + 4 « 1, =Constant
Begin with
- & -
1 A

. 1, : | (C.1)

a =

- <> .
independent of 1, and where aand A are a constant scalar and a constant dyadic, respectively. First note that by

- e :
choice of 1, asthe unit vectors 1, 1 ¥ » 1 z of Cartesian (x, y, z) coordinates we have the diagonal components

G
of A as
a= Ay = Ay’y = Ay 5 - (C2)
So we can write
PES < o
AdA=al + C _ (C.3)

&
where C has only off-diagonal elements. Substituting in (C.1) gives

2
il

—> > > - - - —
1r°al+C'r=a+1r'C'1r

(C4

- e
0=1p+C - 1,

Expanding ?,- in terms of the Cartesian unit vectors, using (8,4) of the usual spherical (r,6,¢)
coordinates, we have ' ' ' ' o

- -

1r

R N E _
= 1y sin(@)cos(g) + 1ysin(8)sin(g) + 1z cos(d) _ (C5)

Applying this to (C.4) we have
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0 = [Cry + Cyx]sin®(@)cos(y)sing)
+ [Crz + Crx ]sin(8)cos(9)sin(g) (C.6)
T [e Cy,y | sin(6) cos(8) sin(g)

Requiring that this apply for all (6,9 ) (or simply by choosing three appropriate pairs of @ and ¢) we find

«T i34
c =-C C7
which is an arbitrary (constant) antisymmetric dyadic. This completes the form in (C.3).
As an antisymmetric dyadic it can also be written in the form [7]
0 -

A - N 2z Sy
C=c¢cx1l=1x¢=|g¢g 0 -

¢y e 0 {C.8)
T > “r >
C =-C=-Fx1=-1x2¢

This can be seen by writing out the components.

Note that the orientation of the Cartesian coordinates is arbitrary. Rotating one set of coordinates into
o o oT < © <
another leaves the general formofa 1 + C with C = - C unchanged. Note that for real A, both g and C

are real. _ .
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Appendix D. Implications of Real @ 1 + C Constructed from Two Real Dyads

©
Let us take the form of A4 from Appendix C and try to construct it in the form

e o o SHo 2
Ad=al+C=3070 3020 o
> A Axd T
C=Cx1l=1%x¢d=-C

following (C.8). All above scalars, vectors, and dyadics are assumed real valued.
D.1  Removal of identity dyadic

- As one should expect, two dyads are not adequate to span a three-dimensional space. To see this construct

a ?(3) such that

20,28 _

3
, 7P .39 | | ®.2)
. R
this always being possible since ?])(1) and 3(2) are at most constrained to a plane. Merely choose a }3)3 #0
perpendicular to this plane (or line if 7, and 7, are not independent). Then we have
p 71 q2 :

1297 | | (D.3)

R
and A is singular, implying

<
det(A) =0 = | ¢, a oy
€y & a

a[az' + c§:| + cz[cz a — ¢y cy:l

It

+cp |:cz oy acy] | _ : (D.4)

_a[a2 + c,% + 2 % cg':l

- - o=
a[a2 +. € - c]= alia2 +|c!]

42



With all these parameters real-valued we have three solutions:

a=0, +7| 7T D.5)
Since a must be real-valued we have
a=0 | . D)
Consider now the Zero diagonal elements in

& o
L= C = -1;(1) 70 4 -3(2) i N (.7

giving

0= b D + o
= gD + D S | (D.8)
- DD+ o)

Summing over these implies
0=20.30, 3@ 20 | - ' (D.9)

but (D.8) is even more restrictive.

In addition we have the trace

o o | _ N
r(d) = 1(C) = Cy x + Cyy=Cpz =0 :
' 3 N oo :
= E Ag : (D.10)
B=1 N : o o :
Ag = eigenvalues

The eigenvalues are found from
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- _
det(C-Ag (T) =0 (D.11)

Noting that this has the same form as (D.4), we have

ig =0, xj|7| (D.12)

D.2 Case of single dyad

©
If any one of the four vectors comprising A4 is zero (say 1_7;2 or ?z ), then we have

«>T

A d <> :
A=C = ?(l) 'a)(]) =-C =- ?([) ?(1) (D.13)

M)

implying that ? and ?(l) are collinear (one being a scalar times the other). In turn this implies that

R <«
A=C=0,c=0 (D.14)

' —
must alsobe 0 .,

and one of Tu)(l) and T])(l)

S0 a single dyad implies (D.14), and this is a simple special case.
D.3 Case of two nonzero dyads

<
Let us now assume that all four of the vectors comprising A4 are nonzero. Then we have two cases to

consider. Either ¢ = 0 or ¢ % 0. Letus consider these two cases in turn

- =
c=0

D4 Case of

In this case we have
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- o
C =0 = ?(1)?(1) + ?(2)?(2) (D.15)

—
Taking some nonzero vector d and dotting on the right side gives

L d ’ — - .
0 =307V . 3], 3?79 . 3 | | ©.16)

N .
Orient d such that neither dot product is zero (always possible). Then we have

20 - 120 4l D.17)
From (D.12) we then have
hig 2
0 = 7;() f‘a)(l) + ?(2)
-
0 = r3®0 43O | (D.18)
/@ = _ 50

This case then reduces to a single dyadic with ?(I) and ?(2) parallel or antiparallel, and similarly for

7])(1) and —q>(2)_
-
D.5 Caseof T %0

-
Since the case of ¢ = 0 corresponded to -3(1) and ?(2) , collinear and similarly for ?(1) and ?_{)(2) , let

. us make the opposite assumption for the present case. So let (D.17) and (D.18) be replaced by inequalities. Then

(D.15) can be replaced by

- > “ - “ . . i :
e x 1 =1xoe = ?(l)?(l) " ?(2)?(2) %0 - . ®.19)

x X
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Dot product with ¢ on the left giving

—)ﬁ—>—)-—>
c 1 ¢ =c c

X X

_) .
0o =|2.30|70 . 12. -3(2) 7@

Since ?(I) and ?(2) are not collinear and are nonzero we must have

—_
c .-13(1)=0 , ?_?(2)=0
Since ?(I) and '3(2) are not collinear they determine a plane peérpendicular to 3(1)

that T is perpendicuiar to this plane and

—
c = g_?(l)?@) £ 0

g#0 (g rea)
Similarly dot product with ¢ on the right giving

-
Cx1.20=3x3=08=3030.21,+3®3@, 2

X

leading to the same conclusion for }3)(1) and 3(2) namely

2= h?(l) « ?(2)
h =0 (A real)
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- (D20)

(D21)

We then als_o have

(D.22)

(D.23)

(D.24)



=D

Then the plane determined by g~ and E(z)

@

is the same as that determined by 3 and '}:)(2) . Thus all four

vectors are coplanar,

Without loss of generality let us rotate the coordinates 3 ¢ is aligned with the z axis as

_)
C=c, 1, (D.25)

- D
Then the four vectors comprising 4 all have only x and y components, i.e., they can be considered as lying in the

(x, ¥) plane where they can be considered as two-component vectors.

Now by rotating the coordinates >

1 e 4
2O - 0T, (D.26)
we have
o - —
U xc=p®1,70 4 3220
- < - - — - :
ly x IX?J=I})X?=I};XIZCZ=—IJ:CZ (D2

—
=1y 3(2) 3(?)

Thus ?(_2) has only an x component and we can set

-(2) —>(2)
g =bp , b =0 (b real) _ " (D.28)

Similarly, by rotating the coordinates 3 q(l) is parallel to the x axis we find )

FP=v3%  bs0 Gy S o

Then we have
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c =700 L pp3030

(D.30)
or S0 (D) (1) (1
= - =—-gq ?( —bbp()q()
This in turn gives
bd' = -1
“ :
Ad=cC =700, [b' q(‘)] 530 (D.31)
- =11y M) -0
s q() —q()p()
9 - * 3
as the most general solution for 4 constructed from the sum of two dyads. By a coordinate rotation this applies for
arbitrary orientation of the axes. Note that if _p?(l) = v?(l) so that the vectors are collinear, then we obtain

> > - — .
A=0, ¢ = 0, consistent with the previous results in Appendix D.4.

Again aligning the z axis with 2 we find

Cz
0

0 o)

P

?

o o 5= & - 0
CeC=c;lzx1x1lz=|-
0
< .
= C . ?(l) f_i')(l)— —;(1)-5(1)
1
) (4
= c,|{ PV q;(pl) ~ | 4P
0 0 0
v
PJ(}) 49) - Pg) ‘?J(cl)
= ¢, 0
\

o = BP0~

0

> -
- as one way to compute ¢ from p

arbitrary coordinate orientations.

0

0

o
0

Cz
Q]
%

®
v

0
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z X

0

pg(;l)qg) -pﬁ})qg) 0

0

2
CZO CZOO
0 0|l=-]0 ¢z 0
0 0 0 0 0

3(1) -q+(1) _ ?Z « -;(1) 3(1)

(D.32)

-
and q(l) . Of course one can write out the components of C in (D.31) for



Appendix E. Certain Sums of Rotation Dyadics

Similar to [1] we have the sum of a geometric series of scalars (N>1as

N-1 __j27ru£ _j2m¢ 1
E e N = [l—e_jz’w] 1-¢ * N
£=0

N 0 for u#0 and N=>2
TN otherwise

u=0,1,2,-,N-1 (or 1 to N)

Consider the sum of dyadics

0 -1 0
N—1(_) Nl @1 0 0
0 0

C(4) = E e \0 0

N1 (cos(dy) —sin(gy) ©
sin(gg) cos(dy) O
0 0 1

This can be reduced to

N-I] N-1

O N eos(ds) singy)
o= z[sin(m cos(@)) ® ()
£=0 £=0 '

)
]
(=
o
Il
o

- So we need the two parts of the direct sum. The second is simply-
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(E2)

(E.3)



N~}

Z (11,1) N(t) = (¥ 11,1) (E4)
=

The sum of 2 X 2 matrices can be solved by noting that it is a geometric series of matrices. In general we

have for N x N matrices

k-1

> (o) = [(m) - o) ] - ten) )]
£=k o1 (E.5)

(ln,m) - (an,m) = nonsingula;' matrix

This can be verified by moving the inverse matrix to the left and rearranging terms. Note that all matrices here

commute,

Evaluating (E.5) for k= N> 1 we have

0o 1)

- -1
N-1 0 -1 0 -1
Ao 267 /(i 7)
‘ (1 Oj—e 10, (1 O)—ee 1o = [0 g] for N 22 (E.6)
£=0 | :
To see this note that

0 -1 _' '

1 0) 2”[1 OJ (1o cos(2z) -sin(2z)} (0 0 _ o '(E7)
¢ "o 1) " (sihem) eosemy ) T (0 o) W

and

0 -1

1 0 —eﬁ(l 0) _ (l-cos(¢} sin(gy) | _ | o (E.8)
| -sin(gy)  1-cos(gp) o '

which is singular (no inverse) provided the determinant is nonzero giving

50



sol o) ) N o st + sn()

= 27[1—cos(¢1)] =2 [1-«:05[-2]-\[’-’-]] | (E.9)

=0 only if N =1

For N=1 we have

ANl p [0 —lJ
(3 1
e 1 o). ( {1)} for N = |

E.10
0 (E.10)
£=0
So we have
00 0
00
. 00 0f=nN ® (1,1) for ¥ 22
N——l@ 00 N 0 0 '
C ' (E.1D)
(42)) 7, 0 0
£=0 hig
0 1 0| =1 for N =2
0 01

As symmetric matrices for the sums, the same applies to the sums of the transposes.

Another sum combines the scalar and dyadic terms as

0 -1 0 1°0 0
N-1 N-l #1 0 0 —jugg 0 1 0
«> o,
E C(¢O)e—"u¢f E e \0 007, 001
=0 =0 ' o
-ju -1 0

N-L & 1 —ju 0

=Ze. o 0 - | | e

£=0

- E;ﬁe(—l” _}u] @ [{ju@ (11,'.1)].._
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(Note the commutation of the 3 X 3 matrices.) This leaves two sums to find.

The scalar sum ((3,3) element in (E.9) is given in (E.1). This leaves the sum of 2 x 2 matrices as

N-l | [—iu —1J N-1 (0 —I)
ZJ&{] ~Jju =Ze—ju¢ze¢£1 0

£=0 £=0
T 0 -1 0 -n\T! ‘
{7 ) (i 3
=[O A o) (Y0 e M0 (E.13)
01 01 |
0 -1
s 0 0 . ﬁ( J
_{° for 1 —e~ g\l 0 hon singular
0 0 01

The above result then does not apply if [5]

_ 1 0 __—jug [cos(d) —sin(¢y)
0= det((o 1) ¢ [sin(m cos(¢1)D

— [l_e-juﬂﬁ COS(¢1)]2 + e‘j2u¢1 Sm2(¢l) .

C 1+ eI oI sy o | ) (E.14)
0 = cos(ugy) - cos(g) |

2

_2sin([“+;]¢ljsin[[”“1]¢lJ

This requires either

u=mN-1= N-1 (fom u=0, ---, N-I)
or

[u+1]¢1
2
#=mN+l=1or0if N =1 (from u=0, -, N-1)

=[u—1]f—=:rm', m’ an integer ' o .
N (B.16)

Note that the case of # = 0 for N = 1 corresponds to (E.10).
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For these cases that (E.13) does not give the zero dyadic we need for u = 1

N1

2 _ []_e—ij][l_eﬂﬂﬁ]—l
£=0
-1

i
= [I—-e‘ﬂx] l-e ¥

0 for N23
=42 for N 22
1 for ¥21

Similarly foru=N-1

AN _ i2NGe 28y _ i

N-1 N-1
2 : 20 _ z : 2
£=0 {=0

Then we have foru =1

e e

g I9esin(de) - jdycos(dy)
£=0 £=0

Ny, /2 j[l _ g2 }

1+¢~ /2

l H
[SEE SR
ME M
—
| |
- .
—
o
—
~— o
o )
)
ST ho¥
M
1
<
I
-
']
3
VSR
T
-
——
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(E.17)

(E.m)

(E.19)



Foru# = N—~1 we have

N~] 0 -1 N-1 ¢ -1
Z —AN-1pe ﬂ{ 0) - Zefﬁfejg(l OJ

£=0 : £=0

rN I -—j
— for N 2 3
2(]‘ 1) o | (E20)

which is just the complex conjugate of (E.19). Dividing the sums into real and imaginary parts we have

N-1 0 -1 N—1 0 -1
¢z(1 0] ¢z[1 0]
Zcos(gﬁg)e = Zcos([l\f —1]¢e.)e
£=0 £=0
| (ﬁr- ! 0] for N z 3
210 1
=<2(1 0]forN=2
!
;
! OJ for N =1
o1
Gl )
¢ 0
Zsm(@)e Zsm{N -1]éede
£=0 £=0

(E.21)

Substituting from (E.1) for the (3,3) term, and (E.13), (E.19), and (E.20) for the2 x2 block gives the final

answer. Instead of complex sums, real sums in (E.20) can also be used.

‘Another kind of sum we can encounter involves the form

54



N-1 N-1

«>
Z{C(W) . aJ[C(@) . b]e Judy Za . C (¢e) C(;zﬁg) . Be by
=

£=0 E.22
N—I@)T o - =
=31 0 Cgpei| .
=0

. , — - \
so that we have a sum of tetradics. If we limit our consideration to the case that @ and 5 are both transverse, i.e.,

- - - -
lz-a=0=1;45 (E.23)
then it is only the transverse (x, y) parts of the rotation dyadics that we need consider..

So let us consider the two-diménsional case

' N-1 _

© 2 cos(de) sin(gy) \(cos(dy) —sin(de)) _ | LT

Dpm = 1p » . s im

~sin(gg) cos(dy) )\ sin(dy)  cos(dy)
=0 (E24)

N-1

Z [cos(qée) —-sin(¢£)}(co5(¢£) —sin(¢e)) . “fm e

P sin(@g)  cos(gy) J\sin(dp) cos(gy) :
4

%
where n and m take on the roles of x and y giving four pairs to consider. The tradic D is comprised of four 2 x 2

dyadics.

Thex, xor 1, 1 term is

N-1
) cos(dy) \( cos(de)) _ jug,
D Z[sm(m)] [sin(sﬁz))e

» y
( cos®(gy)  cos(gy)sin(gy )] RN
C

2:

os(dp)sin(g)  sin®(dy)
(E.24)

._.

(I +cos(2gg)  sin(24y) J o—Judy

1
2 sin(2dy)  1-cos(24p)
f=

- o

B -

N~ . , . .
2 —j2 N . — 3
2+e.] ¢f +e 7 ¢£ _Je.12¢£ +je J ¢f e_ju¢£.
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So we need to consider sums of the form

N-1 Nl - j2mup
Ze_juﬁ: N ={{) for w = 0 and N =2
N otherwise

£=0 =0
Nt N-1 for u # 0 and N=2

Ze‘f"¢fef2¢f - ze‘f[“‘2]¢f =0 {for u#2and N33 (E.25)
£=0 2 =10 N otherwise

N-1 N1 for « = 0 and N =2

Ze_ju¢fe_j2¢f = Ze—j[u'i‘z]‘ﬁg = {for uEN=2and N=3

2=0 =0 N otherwise

This gives a set of conditions for the various elements in (E.24) to be zero, Writing out the other three terms gives

the same sums as in (E.25) and thus the same conditions to give zero. We can then conclude

B (3] - (000

0yf0 0O ‘
=(0 ]( Jforu;anndN=2andfor-u;eZ,N-ZfoerB ) (E.26)

0 0/{0.0
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