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Abstract

This paper discusses the problem of separating out the response of substructures on larger bodies from the
full-body resonances which explicitly appear in the singularity expansion method (SEM). In some cases one can
formulate the substructure scattering as a perturbation on the larger body viewed locally as a perfectly conducting
plane. However, some important cases have the perturbation on or near edges for which allowance is needed in the

Green function. There is an experimental application of such concepts as well, separating out the substructure reso-

nances in the data processing.
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1. Introduction

In recognizing (identifying) an object (target) from a scattered electromagnetic wave, various problems
present themselves. Among these are low-frequency limitations on radars due to antenna size and associated beam
width in transmission and reception. As a result many scatterers have their major linear dimensions large compared

to the sensing wavelengths.

From the singularity expansion method (SEM) we have a target signature consisting of the aspect-
independent natural frequencies (pole locations in the s = Q + jo plane). For large scatterers the lower-

frequency poles may then not be sufficiently excited to be useful for identification purposes. However, there are

higher-order poles which may be in the frequency range of our radar.

The higher-order poles s, of interest have the smaller damping constants (—Q4), i.e., are more resonant.
These can be associated with substructures on the larger scatterer. By substructures let us think of these as local
perturbations on a surface (perfectly conducting or otherwise) with larger characteristic dimensions. It is then of
interest to have some perturbation techniques to develop the SEM representation of such substructures. This applies
not only to the scattering theory, but also to the data-processing techniques to be used to identify the presence of

such substructure resonances.



Protrusion on Perfectly Conducting Ground Plane

A simple form of substructure is something on (or near) a perfectly conducting plane, since it allows to use

image theory. Figure 2.1 shows the example of a perfectly conducting boss on this ground plane denoted by surface
Sp . Its image is denoted by S; and we define

S =8,US; 2.1
The response of the boss is found by the response of S to the incident wave plus its image in the ground plane.
The incident fields are given by
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.ZO = [&}2 = wave impedance of free space
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f(t) = waveform
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Note that the polarization is some combination of the usual radar polarizations 14 and 1y indicated in Fig. 2.1.
To this we need to add reflected fields
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Fig. 2.1 Boss on Perfectly Conducting Ground Plane
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Note that on the ground plane the sum of the tangential incident and reflected electric fields is zero. This is an

example of an antisymmetric field distribution (including images) [10].

We can find the surface current density from the impedance or E-field integral equation as [1]
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_ where integration is over all of S as in (2.1). The natural frequencies and modes are found from

S 5 -, -
Ze(rs,r S;S);jsa(" s))=20
5o = Qy + jo, = natural frequency (2.5)

-2 -
J Sa(r_g) = natural mode

These are aspect independent (independent of the incident plus reflected field). While the computation is over S, we

need to restrict solutions of (2.5) to antisymmetric modes for which

jog(Rs + Fo) = =Rz« j (Fs) 2.6)

Furthermore, we need to reject solutions for s, on the jw axis as internal (to §) cavity resonances.
\ _

The case of a perfectly conducting boss on a perfectly conducting ground plane is then a relatively simple
form of substructure, which readily lends itself to SEM analysis. The ground plane contributes no natural frequen-
cies other than in forming the image of the boss. Of course, infinite perfectly conducting ground planes do not exist
in practice. In time domain, however, we have a time separation (clear time) between the arrival of the incident
wave and the arrival of scattering from the ground-plane edges at the boss. While the formulation here is for a flat
ground plane, the solution should approximately apply to a curved surface approximating the ground plane in the
vicinity of the boss. The magnitudes of the principal radii of curvature of this surface should be large compared to

the characteristic dimensions of the boss.



3. Indentation in Perfectly Conducting Ground Plane

Unlike the protrusion above the ground plane the case of the depression below a ground plane does not
allow for a simple analysis by image theory. Figure 3.1 shows the example of a perfectly conducting bowl in this

ground, now defined by surface S3. The hole in the ground plane is denoted by S, on the z = 0 plane connecting

the exterior world to the bowl.

This problem can be formulated in terms of integrals over S S, for the bowl and over S, with a half

space Green function. Without going into details, it has been shown [6] that one can formulate an integral equation

over S only for the surface current density on the bowl. For this purpose we need scalar Green functions
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The surface current density on the shorted aperture S, is
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Fig. 3.1 Bowl in Perfectly Conducting Ground Plane
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From this a source term for the integral equation is formed as
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The integral equation over Sj takes the form
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Natural frequencies and modes are then found from

1 S - - g
Ty P) + (X (PP ais) j, (T} = 0

2 3.1

Re[sy] = Qp <0

similar to (2.5). Again the perfectly conducting ground plane contributes no natural frequencies of its own. As in
Section 2 a curved ground plane, with radii of curvature large compared to the characteristic dimensions of the bowl,

will still allow (3.7) to give a good approximation.

The reader can note that there are yet other ways to formulate the problem, suitable for numerical solution

[4].
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4, Protrusion Near an Edge

The more general case has a protrusion (or boss) on a nonflat perfectly conducting surface. Suppose that
the ground plane is bent to form a wedge as in Fig. 4.1. The Green function for a wedge is quite different from that
for an infinite plane [9 (ch. 9], even in the limiting case of a half plane. While not a resonant structure there is a

branch cut in the complex frequency plane.

As in Fig. 4.1A we may have a boss sufficiently far from the edge (compared to the boss size) that locally
the boss resonances may be analyzed as an infinite perfectly conducting ground plane. However, as in Fig. 4.1B and
C, if the protrusion is near or even on the edge the problem is essentially different. The Green function for the
wedge represents the fields resulting from a current element near (but outside) this edge. Varying the position of

this current element over the surface § p of this protrusion, and setting the tangential electric field there to zero

gives an integral equation similar to (2.1). Setting the incident field to zero gives an equation like (2.5) for the
natural frequencies and modes. However, there is the complication of the branch cut with which to contend. As

usual the internal (cavity) resonances are excluded.

- 11



protrusion

(boss)

A. Protrusion not too close to edge

protrusion

B. Protrosion on edge: view along edge

protrusion

C. Protrusion on edge: view perpendicular to edge

Fig. 4.1 Protrusion Near an Edge
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5. Separating Substructure Resonances from Full-Body Resonances

From a target-recognition point of view one would like to consider the substructure natural frequencies
separately from the lower-frequency full-body resonances. An isolated scatterer has an SEM response characterized

by a scattering dyadic, which for backscattering has the form [1, 3]

S o Is-saltp - —

As(15,8)= E f o 24(1)3a(1) +entire function

S—Sa
&

Ao (Tit)= Zew‘u@ ~t,)a(T1) 2a(Ts) + entire fanction (temporal form) (5.1)
o

—
1; = direction of incidence

tp = turn-on time, typically retarded time of first signal return to observer

As discussed in {1, 3] the scattering generally does have an entire-function contribution. In time domain this is an
early time contribution. Just when is late time so that only complex exponentials need to be considered is now

reasonably well understood.

For simplicity let us assume that the substructure of interest is on the illuminated side of the target. This

(inc)  _(refl)
lets us model the source field for the protrusion as E + E as in Section 2, at least for times before scatter-

ing from other parts of the full body reaches the substrcture. (If the substructure is in the shadow region, then
creeping waves and diffracted waves assume the role of the incident field at the substructure.) Then, deconvolving
the incident-field waveform to obtain the delta- or step-function response, let us think of the backscattering as the
sum of the substructure response in the form of (5.1) plus the response due to the larger body on which the sub-

structure resides.

In scalar form 2 measurement will take ihe form

0= K@+ @)
£ () = Z Raesﬂtu (t-— tp) + entire function (temporal form)
o

substructure response
(5.2)

fr(t) = full-body response

I3



What form should fr(#) take? While we don’t wish to make a detailed model, let us look for some general form

that will be valid during the important times in the late time of f;(¢), i.e., after the entire function (temporal form)
is over, and including afier the identification time (the first time signal returns from the farthest part of the

substructure).

As an approximation let us assume that the full-body response is slowly varying during the important sub-
structure-response times. This is certainly the case for the dominant low-frequency resonances of the full body. If
there are higher order resonances of the full body or significant scattering from other substructures, we assume for
present purposes that they are not significant during the time window for identifying the particular substructure of

interest.

For this slowly varying background let us assume that it can be well approximated during the time window

of interest by a series of the form

fr@y = Zf,, [T (53)

n=0

where we will use only the first few terms and ¢ 7 is chosen at our convenience (say at the beginning of, or in the

middle of, the time window).

The problem then is to fit the exponentials for f; plus a few terms of £ to the measured (decohvolved)

data. An important current approach to this is the matrix pencil [7] which is gaining more accuracy, but currently
only includes the exponential terms. In principle one can take, say the first three terms from (5.3), add these to the
fs series for a least square fit. By shifting the time window and insisting that the same functions and coefficients
apply to all the time windows, perhaps the matrix-pencil technique can be generalized in this form as well. Thisisa

potential direction for future research.
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6. Implications for & -Pulse

An alternate procedure for target discrimination uses a filter on the data to remove the late time resonances

if the proper target is selected from a library. This goes by various names including E-pulse, K-pulse, and ¢ -pulse
[2, 5, 8]. Coenvolving such a temporal pulse for each target in the library with the data one looks for the minimum

late time residual to choose the correct target.

Beginning with an elementary pulse (annihilation pulse)

ar(t) = 5() - N5
Ty = sampling interval in time (6.1)

£th natural frequency

14

one forms a & -pulse as

£ = ay@) © @) oo ay(1)
L
) o = H[agm B
=1

o
i

convolution with respect to time ¢ . (6.2)

These convolutions give closed analytic forms for £(¢). Here L can be even or odd including both conjugate pole

pairs and poles on the negative real axis of the s plane.

Applying this to (5.2) gives

g) = &) of tt) =450 » If.s' O + &) o fr(® ' - S (6-3)
If &(¢) corresponds to the correct target then

o - =0 6

at late times (after the entire function plus width of £(¢}) noting that practically only a finite number of the s, can

~ be included. This then leaves at late times
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glt) = &() o fr(t) - (6.5)
Expanding g(¢) similarly to (5.3) gives

oo

gty = Zgn [t-tf]n (6.6)

n=0

Now one can take the first few of these to approximate the full-body response (filtered by £(r)) during the time win-
dow of interest. One can choose gy, g, and perhaps gy based on certain moments of the data, or such that the rms
value of g(f) less these terms is minimized to form some kind of corrected residual. Comparing the corrected
residuals using the &(#) for the various targets in the library then leads to the target choice with the smallest

corrected residual.

An alternate procedure uses a discrete derivative operator

b(tyo = [80)-8¢-T7)]o
Ty =integer multiple of 7y (1,2,...) (6.7)

Applying this to a term in (6.6), we have

b(t)o[z—tf]" = [t—tf]" ~[e-tf —-Tf]"
= an [t—tf]n_l— iriz——l]sz[t—tf -2

(6.8)
+--'—[—Tf]n forn=1, 2,
0 .
b()o [:mzf] =0
Applying the operator successively we note that
o™ =t/ = 0 | o | ©9

- So, ifwetaken =0, 1, ..., N terms in (6.6) we have
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N
[b(ye} ! Zg,,[z—tf]" =0 (6.10)
n=0

and we do not need to compute gg, g1, N -

With the £(¥) chosen for the correct target then we expect

[y e gy = [p@yo]" ™ &@yo £ (1) | (6.11)

to be small. However, when applied to the total data with £(¢) chosen for the wrong target we have

[0 ™ og) = [p0)] Holwo £i(0) + [ oE@e £ ) (6.12)

Looking at the first term we see that the discrete derivative operator also operates on f; (¢), changing the residual in

the case of an incorrectly chosen target. This should still be nonzero, but allowance needs to be made for this.

There is some flexibility in our choice of Ty . It can be as small as our basic sampling interval Ty, but one

may elect some number of sampling intervals if this gives better performance.
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7. Concluding Remarks

This is just a beginning on the subject of substructure SEM. It would be helpful to have calculations for
various canonical substructures. Equally important are the data processing algorithms for experimental implemen-

tation.

I would like to thank L. Carin and J.-M. Jin for discussions and assistance in locating some of the -

references.
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