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Abstract

In magnetic singularity identification (MSI) of conducting and permeable scatterers one considers the low-
frequency poles with real natural modes and frequencies to represent the magnetic-polarizability dyadic. This is an
approximation neglecting the higher-order multipoles. This paper considers the magnetic quadrupole terms as a
correction to the dipole-only representation. This leads to the concept of the effective center of a natural mode to
minimize the quadrupole contribution. In the case of scatterers with certain symmetries there can also exist natural
modes with no magnetic-dipole contribution, but with a quadrupole contribution. One potential use of the
quadrupole information is in removing orientation ambignities of the visually obscured scatterer. By judicious
choice of the locations of the observer and the source of the incident magnetic field one can minimize or maximize

the presence of the quadrupole terms in the scattering data.
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1. Introduction

In magnetic singularity identification (MSI) one considers the natural frequencies and modes associated
with the diffusion of magnetic fields into highly conduciing targets [2]. This is used in turn to express the magnetic

polarizability dyadic to give a magnetic-dipole approximation to the scattered magnetic fields which are taken to be

quast static outside the target and fall off as ,—3. Higher order multipoles fall off even faster, but may still be

significant close to the target.

A related question concerns the center of the target. Where does one best choose 7 = —8 ? 1If this is not
appropriately centered on an elementary magnetic dipole, then higher order multipoles enter the representation. An
extended magnetic dipole (natural mode) in general also has higher-order multipoles. This paper explores the
properties of such magnetic quadrupoles with a view to “minimizing” them where appropriate, and using this

information to aid in target identification.
As usual we have the conventions

—~ = two-sided Laplace transform over time ¢

Q + jo = Laplace-transform variable or complex frequency

5 =
o o - - — - - . ] . )

1 =1yl + 1yly+ 1;1; = three-dimensional identity (1.1}
> e - = . . .. = .

Ip =1 — 1,1, = identity transverse to direction | ,, where n can take on various labels

Concerning the external medium we have for an assumed uniform isotropic medium [2, 5]

1
7i(s) = [S #o [o1+ 351]]’2’ = propagation constant

1

7 (s) = _SHo |2 _ wave impedance
o +581

a = characteristic dimension (size) of target
Fw»q (r=distance to observer)
|771 ( S)| r << 1 (allowing external scattered fields to be dominated by quasi-static terms)
o=ty = permeability of free space (allowing one to ignore the earth/air

interface when considering the magnetic field (quasi-static))



alnc) _, (e} _,
H (0,8)]>>

E {0,8)

fi (s)

{dominance of incident magnetic field at target, (1.2)
due to near field of loop source(s))

550

H  (r,s) = measured scaitered magnetic field (neglecting scattered electric field)

We observe that o and & have negligible effects on the quasi-static magnetic field (external to the target).

Concerning the target we observe

< ol < e

o= , =M assumed in dependent of s

<> >

e[ == 3| £ || = diffusion dominance in target (low frequencies of interest)

(1.3)

which leads to first order poles with real negative s, and real natural modes [2].
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Fig. 1.1 Scatterer in Uniform, Isotropic Medivm



2. Natural Modes in MSI

Ag discussed In [5, 9] one can formulate appropriate integral equations for the eleciric and magnetic

currents in highly conducting targets. Summarizing we have

~(sc)
5 , Bt
7 T FELEFY E (P9

(s0) , N
H (F5) = ={VGy(F, 7).V « H(F .5
—> &3yt = —
+{ VGy(r,r }xo(¥ )« E(¥ ,5)
5 = (inc) =(sc)
EFs)=E (F.9+E (V.9
Y =(inc) ~{e)

HE.=H (F.9+H (7.9

-y =3 i . . . -
Go(r, 7 }=————-— (transit times in external medium over target negligible)
’ 427 -7
¥y —F

In terms of a supervector field (six components) (applying to total, incident, and scattered) we have

[_I;)c(?,s)} - [E(?’,s) , N, E(?,s)}

/= 1= magnetic field
" |2= normalized electric field
N, = normalizing scalar {(e.g., [sya]'l)

The volume integral equations then take the form

~ (s¢) ~
— > — ’
Fo (7.9 = Xee(+)@ Fe(7 .5

by appropriate manipulation of the terms in (2.1).

2.1

2.2)

23)



Setting the incident field to zero we have

S FE , Sl -
Xee() - 16(7-7)0|Fe (Fy| }= (00 @24

as an equation for nafural modes and natural frequencies s, , by an appropriate numerical matricization of the

continuous functions and operators. As shown in [2] we have

8q < O (real and negative)
)
F¢ (r)]| = realvector {(natural modes) (2.5)

[74

Furthermore, the coupling coefficients are also real and the poles are all first order. The coupling coefficients can be

calculated from the formulas in [5] to complete the poles in the singularity-expansion-method (SEM) poles.

From the above natural-mode supervector we have

- = o e oo —~>(Sc)ﬁ\
Ja(ry= o(r) Eq (¥)= Nea a(r) s Fog(r)

PN oy —>(SC)_>
=So| p(r) -l |+ Fla (r)

(electric-) current-density natural modes

5> o (o — o] o)
Tp(r) = s p(r)y —ul )+ Ha (r)
| L . 2.6)
(& — o] oo N
=sg| u(r) —mlis Fla(r)

magnetic-current-density natural modes

Note that through the pormalization N, (N, evaluated at s =5, ) the electric and magnetic modes are linked

(sc)
_ — s
together, so that there is only one arbitrary coefficient determined in solving for | F¢ (7))

(24



The magnetic-dipole moments take the form

H]

2(5) f_;;e(s) o j;h(s)

r ,...-.-} r
7 x d(r - E(F ,5) |av @7

it

mg(S)

1 ;= ’
> I"ﬁ* x J (7 ,5)dV' =
vV V

=

Lxd

1 Y
— 1 | HEF ,s)dv’

Ma(s) T ) v =
S0
14 v

<——:~
y

In terms of natural modes these become

- — -
Mg = MQa + mha

N > ' (2.8
e, = %J.T? x o (V' my, = ! J.jha(“;’)dV' _

S HO
V v

From these the poles in the SEM form of the magnetic-polarizability dyadic can be calculated as in [5].

The quasi-static scattered magnetic field has the magnetic-dipole part given by

(@) 1 5o o] & slne) -
H (F,S)= 3 31r1r—1 'M(S)‘H (O,S)
Axr
M(s) = magnetic-polarizability dyadic (2.9)

, Y e . . . . . .
Where the coordinate origin (# = Q) is centered in the target. (Later we consider optimal choices for this.) _ This

dyadic takes the SEM form [2]

Ay <~ - = —1
M(s) = M(») + My MaMea[s—sq]

oS S M. = B
v = 1M(0) LMo Mo [s-sg]"
5 S

o



“ S -
M(f) = M) §(t) + zMa Mg Mg & un)
o

Sor

¢
“ & M, = =2 o
M{hdt =| M(0) + B M g Mg & ju(r) (2.10)
—o0 7

where all the constant scalars, vectors, and dyadics (symmetric) are real.



3. Magnetic Multipoles

Begin with our formula for the scattered magnetic field

=(sc) ~

1) .._) '
B (Fs) = —— (VGo(F. 7)), V'« Ta(F

S Hy
— = >
+ (VGo(F 7)Y % Je(7 15
< “"”)_),
5) = o(F) « E(r.9)

J
E?M={Z%—m?y§§ﬁ

‘We need to expand this in negative powers of 7.

5}

For the gradient of the Green function we have, following [1]

- 1 77
g =V = | T T = =3
dzfr—r | dzir—r |
i ] 3
— r
1 1, 7 27 22
= —|-— 4+ —{{1-=1, « ¥ + —
4zl » r 2
' @® 3
1T 7 A
= =~ 4o 2| ==y o F o+ -
A r2 r3 ’ ¥ ¥
£=0
-y \ et
e P =T
[p _ T{p-+1) _ P
q) T(g+)T(p~g+1) q'p-a]

Collecting terms we can write

o
- - .
g=2gnr”

n=2 '

(3.1)

(3.2)



- 1 7 .
gy = _4— 1+ {monopole term, gives zero)
Jr
N oo o '
g3 = 1 Byl 7 (dipole term)
4z
B 2
- — ' —> — r r
24 = Z_}:_ %r'z-—% 1, - 10 +3/ 1, rars {quadrupole term) (3.3)
T

Substituting these terms back in (3.1) gives us formulas for both dipole and quadrupole terms, the monopole term

giving zero for the integrals.
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4, Extended Target as an Ensemble of Elementary Magnetic Dipoles

An alternate formulation regards the electric and magnetic current densities in terms of a distribution of

elementary magnetic dipoles and integrates over this with the dipole formula to obtain the scattered fields. For this

purpose we have the magnetization {or magnetic-moment density} (see, e.g., [11])

Sy S S
Z(r ,S) = /Ye(r :S) + Zh(r sS)

S5 e
X (7 ,8) =

|
f
~
x
-
(o)
—~
~
ta
—
|

) . ?(?', 5) (4.1)

l

D 172 < hid =
Cxpr s = EJh(f‘ 25) = [#—#o 1} < H(r,s5)

. . . 3t . . . o
Here we Hist the spatial location as # , the coordinate of an elementary magnetic dipole. A magnetic dipole m(s)

at this position has a magnetic field at 7 given by [2]

Y © -
H(7.s) = - 3["‘_’; ]_[;_r I - L . m(s) 42)
L PT) -7 P

—-(SC) — ! Exd .
B o@e=(plerllrmrl 1 b 2@y (43)
4o d - 3l
| r=—r | ir—r |

as an alternate formulation as compared to (3.1).

As in the previous section, let us expand the present form of Green function in inverse powers of r, with
-3

¥~ as the leading term. This will give the quadrupole term as the next term in the expansion. We have

i1



__éf
R— w
- F ‘3=}‘3 ’....wr.m
r
3 __;1
%f "") ﬁ]
_{_r_ wI_21,~-r pr2
d ¥ r iy
~+ %I’
143t T L opR
-5
_)'
-
;=5 -5 ¥
- - - _ I
F—r | =F 1# -
-5 -3
Lz T
F * F ¥
-2 =11-2 L
F ¥ Py
— 3t
1 _
=1+5-L2T o™
%f __,)J
- - —
[rwr][rmr]:r2 Ir—r_ lr—r—
Is F

- = | e -
'—‘—FZ lrlr—rl 1ri"+f' lr +O(J“2)

Substituting these in the bagic expression we can write

_ (s¢) - (sed) (o)
H F=H (B +H (B +0e)

~ (sc,d) _{d)
H Go=h - J.})(?, 5)dV’ (dipole term)

V
~ (sc.q) (9) -
—> hd '
H (Fo={r (.7 25} (quadmupole term)
(d) -
> - S o
BO(F) = 31y e 1
4oy

12
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()
<« ] e d " e <~ — . ;>
.7 3 7 { }—1,.?—?’1,, (4.5)

in this form we have the quadrupole term as a single integral. The magnetization can be viewed as a
continuous distribution of magnetic dipoles, and can also be applied to sets of discrete magnetic dipoles. Qur choice
. . - = S - .

of optimum coordinate center » = 0 is that which in some sense minimizes the quadrupole term. For the natural

modes the effective center may possibly vary from mode to mode.

13



5. Two Displaced Magnetic Dipoles

Consider now a simple example of an extended source or scatter by taking two equal (parallel) dipoles as

> —
mo(s) at » 0

_7?1)1(5) = %
(5.1)

mals) = éﬁe’o(s) a 7o

The magnetic dipole is just

Y = 5
mp(s) = mi(s) + ma(s) (5.2)
The quadrupole term is
+(se.) ‘ )
> - , e TS Y B . =
Ho Gy = e Po|51r 11| =1, 70-7F01r |+ o)
8w
-3 . - = S o , o ~
L =7 015 1r L 1= 1,7 0l=[=7 01 1r | » mo(s) (5.3)

ol

The quadrupole term being zero, we have found that the optimal choice of coordinate origin between two identical
dipoles is half way in between. Looking at the above result we can see that for parallel dipoles of unequal strength,
but related by a real, positive constant we can still make the quadrupole term zero by an appropriately located effec-

tive center at a weighted position on the straight line between the two.

A related example is for antiparallel dipoles as

il

> —
mo(s) at r o

21 () 1
2 (5.4)

3 15 —r
“ﬁv}z(s) M—imo(s) at -r g

In this case the net dipole moment is zero giving

14



";(sc,d)
H (7,s) =0 (5.5)

We can have natural modes with this symmetry for appropriately symmetrical targets, which then have no dipole

terms appearing in the magnetic polarizability dyadic (2.10). There is now a quadrupole term.

~ (sc.q) -
Y - \ - - o = _, . =
H (7.5 = 1y« 70 {51,,1,,“ 1}1r7ow7olr . mo(s) (5.6)

Amr

This is now the leading term. Falling off more rapidly with r than a dipole term it is seen closer to the target. This

is fundamentally related to our original MSI assumption » >>a in (1.2). Now we are looking closer to the target.
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6. Effect of Symmetry on Magnetic-Dipole Moments of Natural Modes

Many properties of an electromagnetic scatterer are associated with geometric symmetries of the object [3, 4, 7, 8,
12, 13]. In particular the natural modes have the target symmetries incorporated in them. See the references for a
detailed discussion of symmetries in the targets (including <o_'> and (;z) in the present case) and the associated groups
with invariances on transformation by the group elements.

'This phenomenon can be illustrated for the case of one or more symmetry planes as in [3]. To illustrate this
consider the case that the scatterer has a symmetry plane which we take as the z= 0 plane. Then we have the reflec-

tion group for which we have the dyadic representation

1o 0 (6.1}
> “> - —> > - —
Rz=1—2lzlz=01 0=1z—1 1

00 -1

All electromagnetic parameters can be composed in the form

— <> - <> 1

BP0 =2k £, W0, 7P 2k, T

as as . (6_2)
— > —

sy(é(z) £y =FRz Hsy(—)(l) f)

as as

Remember that J(?) and g (7)) must be invariant to this transformation for this symmetry to apply. In this case

the natural modes all separate according to the symmetric/antisymmetric decomposition.

. . . . —> —
Referring to Fig. 6.1, let us consider the magnetization natural modes which we label » o:,sy( ¥ ) and
— r . . .
X o.as (? }. These are magnetic parameters so that these have same symmetry properties as the magnetic field in

(5.2), so that

2 A ‘ 1
;asy(?( )) = FRz - Za,sy(_)()
[2AY as

y, 7@ 2%, .70 (6.3)

These natural modes can be substituted in (4.5) to determine their dipole and quadrupole properties.

16
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A. Symmetric magnetization

B. Antisymmetric magnetization

_ Fig. 6.1 Magnetization Nafural Modes for Scatterer with a Symmetry Plane (z = 0)
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Consider first the magnetic moment. For the symmetric mode this is

e .—:» —>' . ~> —> '
Mesy = Za,sy(r Yav' + Jza,sy(r )dV
A v
& < - =
= {I—Rz:| . Za,sy(r Ydv
Vi
- = N ONN
=2 lz jlz . Za}jy(r )dV
A
—
= Mgsy 1z (a longitudinal term) (6.4)
V=V.UV¥
V, = portion of V for z>0
V_ = portion of ¥V for z<0

which gives only a z component. For the antisymmetric mode this is

—_ ._> -y . e 4 —>r A
Ma,as = Za,as( r )V + ‘[Za,as( rdv
v, a
< & ~3 3t '
= -i: 1 + RZ} - Za,as(r )de (65)

Vi

VES > .
21z « | Xpa(r ¥V (a transverse term)

vy

So the antisymmetric modes have no z component for the magnetic dipole moment. The above results from just one
symmetry plane. Note also that T’_n>a,sy will be excited by only the symmetric part of the incident magnetic field,

and ﬁn?asas only by the antisymmetric part.

This development can be extended to multiple symmetry planes. Consider, for example two symmetry
planes: x =0 and y = 0. Applying the above results consider the case that a mode is symmetric with respect to both
Ry and Ry,. By (6.4) then E)a must be parallel to both _1>x and “1:; , a contradiction. So E’a cannot be
symmetric to two perpendicular symmetry plane (and, by extension, three mutually perpendicular symr(n_stry plangs).

= . L . .
However, we can have m¢ antisymmetric with respect to both R, and &), symmetries, noting _that l1xand 1y

18



- -
(as in (6.5)) have the common efement 1z 1. In this case then Fga (if nonzero) is symmetric with respect to R,

reflection, having a z component (as in (6.4)).

In the above there is the assumption that the various moment components are nonzero. If we allow compo-
nents of —;?a to be nonzero while integrals over the appropriate components are zero, then such modes can exist
with corresponding quadrupole (but not dipole) components. For example, consider that ? o 1S antisymmetric with
respect to all three symmetry planes. Then from (6.5) the dipole moment is zero. However, such as symmetry is

also a special case of inversion symmetry
< &
I=1:i1,-1 (6.6)
for which

—
g = 0

?a(_?) = _:’?a(?) » Mg = (6'7)

which is readily seen to integrate to zero for the dipole moment. Such a mode may generally have a quadrupole

moment. Note that such a quadrupole mode is not excited by (not coupled to) a uniform incident magnetic field.

~{inc)
— v d
This is seen by forming y a(?) - H -(7,5‘) and integrating over V.

More general point syminetries are possible as discussed in |3, 8, 12]. For the magnetic-polarizability

dyadic, and hence for the y , with nonzero magnetic moments, this is summarized in Table 6.1. The SEM form of
hrd

M is given in {2.10).

A commonly encountered shape is a body of revolution (BOR) with axial symmetry planes giving
Oy = Cy, symmetry. This type of scatterer is a special case of the above case of two symmetry planes. How-
ever, the added symmetry is convenient for understanding some of the properties of the natural modes and their
dipole and quadrupole moments. In cylindrical (¥, 4,2} coordinate we let the z axis be the common axis for the

infinite number of symmetry planes.

In cylindrical coordinates we then require

19



Table 6.1 Decomposition of Magnetic Polarizability Dyadic According to Target Point Symmetries.

&
Form of M(s) Symmety Types (Groups) Symmetry
' Category
. & R, (single symmetry plane)
M1z 12 + M(s) 1
S = = Cy (2-fold rotation axis)
(Me(s) « 1z = 0)
~ - = - - = - - - (ha =R, ® R, (two axial symmetry planes)
RL() 1o Tz 4 Bg() T Un # Bly() Iy 1y | 20 70 2 ,
Dy (three 2-fold rotation axes)
- - - . = Cyn for N = 3 (N-fold rotation axis)
- fZ(SLI :lz M) 1z Sy for N even and N = 4 3
(1 =1 — 1z 1,= double degeneracy) {(N-fold rotation-reflection axis)
Doy (three 2-fold rotafion axes plus diagonal
symmetry planes)
- % O3 (generalized sphere)
M{s) 1 4
N T, @, Y (regular polyhedra)
(1 = triple degeneracy)
o = &) - >
o(r)= o ¥z + Tp.¢ (F,z)14 1p
N0 — -
o (F,z)« 14 =0
o) &Or (6.8)
o (P2} =0 (¥2)

opg(¥,z) 0 oy (¥, z)

= 0 0

0

o, p(t,z) 0 o, ,(¥,z2)

and similarly for g . Here the form is clearly invariant to rotation about the z axis (varying ¢ ). Full O symmetry

requires reflection planes containing the z axis which is given by the lack of ¥,¢ and ¢,z components in the

above. This can be compared to the form for O3 symmetry in [3].

A BOR has the convenient property that the various eigenmodes and natural modes can be calculated by

first expanding the scatterer response by separating out the ¢ dependence in the form of cos(m¢g) and sin(mg)

wherem =0, 1,2, ... . (See, e.g., the discussion in [4]'.)
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Consider the case of the m = ( modes. These come in two kinds: E modes and I modes as indicated in

Fig. 6.2. The E modes correspond to electric current parallel to the z axis, and magnetic current circulating around

—
the z axis. These are associated with the suppressed electric-dipole moment. By pairing y o for ¢ and ¢+, and

noting the direction reversal, then the results of Section 5 give a net zero magnetic-dipole moment. However, there
can be a nonzero magnetic-quadrupole moment. The H modes are more important and correspond to electric current
circulating around the z axis with magnetic current parallel to this axis. There is a nonzero magnetic-dipole moment

in this case. These latter magnetic-dipole moments are parallel to the z axis (longitudinal modes).

Increasing the symmetry, now add a transverse symmetry plane (z = 0), giving Oy, = Cpyy Symmetry.
The natural modes can now be divided into symmetric and antisymmetric modes with respect to this plane. Fig. 6.3
illustrates this for H modes with » = 0. As before the symmetric mode has a dipole moment. By pairing ,? o &t 7
with that at — » we find from the discussion in Section 5 that the quadrupole term is zero. The antisymmetric

mode has zero dipole moment, but a generally nonzero quadrupole term.

For a BOR the symmefry gives us an optimal coordinate origin on the z axis. However, there is still the
question of where on the z axis. The examples in Fig. 6.2 illustrate this problem. The case of a dominant magnetic-
dipole moment in Fig. 6.2B allows us to adjust the coordinate origin along the rotation axis to minimize the quadru-
pole term in some sense. However, this is not a simple scalar; the dyadic properties may not allow one to set this
term 1o zero for all angles to a distant observer. Noting that there are in general many such m = 0 natural modes, the
optimum choice of coordinate center may vary from mode to mode. This may be beneficial in orienting buried tar-
gets since magnetic dipoles with an assumed common “center” give an ambiguity {4 )} concerning the orientation of
the rotation axis (i.e.. which end is “up™ {7]. For the case of a trangverse symmetry plane the coordinate center is

placed on the symmetry plane as well as the rotation axis, uniquely specifying it.)
Calculations and measurements of BORs for these low-frequency diffusion natural modes are found in [6,

9, 10]. In addition some of these are for m = 1 modes which give magnetic-dipole morments perpendicular to the z

axis (transverse modes).
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zero magnetic dipole moment

>

X

generally nonzero magnetic
quadrupole moment

- =
A. Emodes: J// 1; onzaxis

Az
—> . -
¥ nonzero magnetic dipole moment
o
y @ >

generally nonzero magnetic
quadrupole moment

i —
B. Hmodes: J circulating around z axis

Fig. 6.2 Natural Modes Exhibited on xz Plane for Oy = Cy,, Scatterer: m =0
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Az

nonzero magnetic dipole
- moment
Xa
Symirnetry
""""" Plane ™ ® >
Zero magnetic
quadropole moment
A. Symmetric mode
Az
zero magnetic dipole
- moment
Yo
symmetry
““““ plane ™~~~ ® >

nonzero magnetic
guadrupole moment

B. Antisymmetric mode

Fig. 6.3 Natural Modes (H Modes) Exhibited on xz Plane for Oy, = Cyyy Scatterer: m =0
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7. Quadrupole Considerations

(g
If one wishes to evaluate the quadrupole term, the kernal %2 in (4.5) can be used. However, this gives a

more complicated angular variation and more complicated integral than the much simpler dipole term. In special
cases of inversion symmetry where antiparallel y o Pair up as in (5.6) the domain of integration is reduced. The
Og symmetry for m = 0 is such a case as in (6.7). The rotation and reflection symmetries also give these symme-

tries to the associated scattered fields.

More generally, from (4.5) we have

~(sc.q) (9)
- — DG Y S
Hy (rF)={(h (r,r); 2,()
@ {1.D)
>\ ' — . - = & — , >
h("f?,?)z 34 1r'f' Slrlr—l —lr_;)““—f? ¥
Ay

Now we would like to have some optimal choice of » = 0 to minimize this term in some sense. Equivalently we

. -
can move the scatterer by some distance (vector) r g giving

- (5) o@ | ,
Hy (={h 7 2,0 +70 (72)

Thus we need to evaluate
T A — r = '
{51,, 1,_—1} J Lr o 7 |27 + Fo)av’
14

N EN - ‘ '
= [sh 1r—1} .J‘h P =Fo (7, FHav
d (7.3)
—> f '] - t -3 ;
1y j? c a7+ Fo)ar = 1,'[ T -Fo| e 2,7 )av
vV Vv

f_> ’ g —> ! f
T By s Foar = T .[xa(;) 7o |av

14 14
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. . , = .
Neglecting coefficients (not functions of » | ?o ) we need to consider

T
— ¢ —
I F —ro ga(f' )dV' J‘za(?) r —?() av’
4 14 {(7.4)
— e .
Oy = J. P =Fo | 2g(rav
14
Consider first the scalar term. Setting this to zero we have
O =0
— r - 4 r r
7o - I}Za(? YAV = 1o - mg = J-? B (P av (7-5)
V v

Provided that the dipole term is nonzero, this is an equation for r 0 which can generally be satisfied. If, however,
ma = 0 , then this requires the quadrupole term (integral of r . a) to be zero, not generally possible. So
this gives one possible choice of » 0 for a displaced magnetic dipole. Note that 70 having three components this
gives a solution for ?o anywhere on a plane perpendicular to Z/) o (conveniently real valued). For a BOR the cen-

ter needs to be on the z axis giving a unique solution for

7o = (%0, »0.20) = (0,0, 29) (7.6)

. - . -
provided my is parallelto 1z (m =0, H mode).

Setting the dyadic term to zero gives

(7.7)
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Having in general nine components this condition is much harder to meet. With mg given (real valued) we have

three coordinates of » ¢ to vary to match nine conditions. This happens in only special cases, not general z a-

For a BOR with axial symmetry planes (Oy = C, symmetry) the natural mode takes the form form = 0

_> P")' [ l'—---> r l'-_>
Xo(r) = 2, (V2) 1w + gy (¥,2) 1

, - -

P =Wy 41y
— > -
Ty = cos(g) Ex + sin(d) 1y

The dyadic term then becomes

Ao N L, T , - =
r Za(" Yar' = Yy 1w 1y + Z,’gqlalz'ILI—"
V v

- - =
+ ¥ zt"r ILIJ' lg'+ Zr}'{z& 12' 1z dav’

Noting that on integrating over ¢’ we have

2z 2z
—> —
Twdg' = 0 , |df = 2z
0 G
2r
- - > - = >
1\P'Il{"d¢l=ﬂ' 1x'1x'+1y'1y’ =xzlz
<
0 =71z
- - B
lz'lz'=lzlz

,
=
[

= P AV d' d

The dyadic term then becomes

== = ,- , - > , - -
Ir X )V = JA[‘PZ‘P;Z 1w 1y + 7%, 1212
v V

< 2
=7 1z W W&(T',z'}d‘l"dz’
-4
RN

+ 27 17 1; IT'Z’ZZ& (¥, zNdV'dz’

r r
Y.z
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(7.8)

(7.9

(7.10)

(7.11)



- with remaining integration over the intersection of a plane of constant ¢’ (¥’ = 0) with ¥. For choice of optimum

coordinate origin on the z axis we can null the second integral as

0 = J“-P'[z'—zg]xzzx (¥, 2Nd¥V'ds’
L4

giving

zg I Yoz, (P, 20dV'dz" = I ¥y, (¥, 2 )Y e’

Tl}zl . LP’,Z’

(7.12)

(7.13)

which has a real-valued solution for z; provided the left integral is nonzero. However, the choice of zy has no

A d
effect on the integral proportionalto 1 z in (7.11).

Adding z = 0 as a symmefry plane, then the symmetric mode as in Fig. 6.3 (an H mode) has Xz, even in

z' and e, odd in z" making both integrals in (7.11) go to zero. This is consistent with the results in Section 6.
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8. Concluding Remarks

In this paper the MSI theory is generalized to include magnetic quadrupole terms. As the incident-field
source and/or the observer closely approach the scatterer (to dimensions related to the scatterer linear dimensions)

such quadrupole terms can become significant.

Some quadrupole terms (especially for symmetrical scatterers) are not associated with magnetic dipoles,

These can be minimized by making the incident magnetic field very uniform, thereby giving a zero residue to the s-
plane pole. Alternately one can move the observer far enough away from the scatterer that the r quadrupele

terms are small compared to the y dipole terms.

For quadrupole terms associated with dipole terms (same natural mode), these can be strongly excited, even
by a uniform incident magnetic field. By appropriate choice of the coordinate origin, or equivalently choosing the
effective center for the mode, one can minimize the quadrupole part, and in some cases (especially involving sym-
metry) make it go to zero. Note that each —];;g may have in general a different effective center. This may aid in
orienting a target since the magnetic-polarizability dyadic (pure dipole with common effective center) is invariant to

scatterer inversion and other transformations depending on the target symmetry.

Instead of minimizing the quadrupole contributions, one may wish in some cases to maximize them. This

gives some additional information for target recognition, location, and orientation.
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