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Abstract

This paper first summarizes previous results concerning the entire function in the singularity-expansion-
method (SEM) representation of the currents on a scatterer and of the scattered far fields. These gave lower bounds
on the time width of such. The present paper extends this to find an upper bound for the temporal width of the

scattering (far-field) entire function.
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Introduction

In the singularity expansion method (SEM) one of the hardest things to pin down has been the entire

function (in the s = Q + jw plane). In time domain, this is an early-time contribution not representable by
complex exponentials (poles). This is discussed in some detail in [1] with extensive references. In the present paper

we revisit this matter and gain additional insight into this entire function.

As usual we have

two-sided Laplace transform over time ¢
Laplace-transform variable or complex frequency (1.1)
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Q+ jo =

t
I

for going back and forth between time and frequency.



2. Class-1 Form of Interaction Representation

In [1] the currents on a body illuminated by a plane wave (an interaction problem) were considered.

Summarizing we have an incident plane wave (electric field)
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Referring to Fig. 2.1 we have

- - -
1 ¢ = polarization (some weighted combination of radar coordinates 14 and 1v)
- - -

1. = direction of incidence, 1l « 1; =0

f(t) = incident waveform

y = LA propagation constant (2.2)
c
1
¢ = [uoeg] 2 = speed of light
The interaction of this incident wave with the body is described by an integral equation of the form

- . ' <> , 4 —y
Et(mc)(_"_)s,s) = Zt(7s, rs;s)ds(ros,s)
~(inc)
N S5
= 18(rs)« E (rs,s)
o Ld A S SN
1s(rs) =1 — 18(rs)1s(rs)
=
= transverse dyadicto 1 §(rs) 2.3)
- - - . -
1 s(rs) = outward pointing normal to surface S at surface coordinate rg

. . . . . . . -
In this form the scatterer is treated as perfectly conducting so that the integration is over S (coordinates ry ).
However, this is not essential to the development. The above is also in the form of the E-field or impedance integral

equation, but other forms can be used as well.
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Fig. 2.1 Finite-Size Scatterer in Free Space Illuminated by Plane Wave



The formal solution to (2.3) is

;)—l _ ;(inc)

sy =(2Z1 Fs.75i%Er (7 5.9 2.4)
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In class-1 SEM form the solution is

N . - = - e—[S-Sa]li
Js(rs.s) = Egf(s) E NMe(li, le) jsa(rS)— + possible entire function
S—Sgy
o
N A SR S
Js(rs,t) = Egf(@) » E Na(lite) jsa( rs)e®u(t—t;) + possible entire function (temporal form)

o
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; = initial or turn-on time, typically taken as ¢ the time the incident wave first touches the body

o
1}

convolution with respect to time

Lad ’ - ’ —
Zt(7s,7s;sa); jsa(7 s) )} = 0 (for natural frequencies and modes)
-1
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Here first order poles have been used, appropriate to perfectly conducting bodies. Special cases of loaded bodies

can have some higher-order poles, but this does not impact the argument.

As discussed in [1] a critical role is played by U, . As one proceeds to sum over terms with more negative

Re[sq ] there is the asymptotic behavior

Uz = 0. (7alo) = Oc (sat) as Re(sz)— oo



Ly = maximum linear dimension of object (2.6)

L
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Where the exponential order means a bound of the form ¢@’0 times a function which grows more slowly than any

exponential. We also have

- -
Ca(li) = Op(=sq 1p)

1, = time for wave to reach all of the body (¢ back, positive) 2.7

Ignoring Eof(s) , the residues then take the bound

O, (5¢:20)0¢ (=51 )Olsatf) = Op (s,,, [to +tp - tb])

t¢ = time for wave to first reach any point on the body (¢ front, negative)

-
Note that for all 1; we have

g 2ty — ty (2.9)

Then with a bound on the number of poles smaller than an exponential as s, sweeps to the left in the s plane the
pole series converges. In time domain this implies convergence for all times > ¢ f - Inorder to avoid problems with
convergence to a 6 function (although this is often handled in the case of Fourier series) one can treat the step (or

ramp) response by choice of f (s) as s

etc., and including this in the pole residues.

While convergence of the class-1 series for all times >t f is a necessary condition for the series to be an
accurate representation of the current, this does not preclude ipso facto the absence of an entire function to complete
the representation. However, for this purpose we can appeal to the numerous calculations that have been made to
see how many poles (damped sinusoids) are required to approximate the currents to some degree of accuracy. (See
[3-5] and references therein.) For the various bodies (usually, but not always, perfectly conducting) it does not take
many (say 10 or so) to reasonably agree with the numerically computed step response (often calculated by solution

in the frequency domain followed by inverse Fourier transformation). Based on this let us define:



Simple scatterer (object) = one for which the currents can be represented by class-1 poles

(damped sinusoids) without an additional entire function.

Higher order poles can also be allowed. This recognizes that there may be exceptional cases of finite-size bodies in

free space for which this does not apply.



3. Class-1 Form of Scattering Representation

In [1] the far fields scattered from a body were also considered. In that paper the convergence of the class-

1 pole series for these fields was also considered, with different results from those for the currents.

The far scattering takes the form

S5 > e VTE > > linc)
Egf(r,s) = A(lo,1i;8) « E (0,3)
4zr
. eVrEH > o -
= Eof(s) A(lo, 1i8) « e @3.1)
4zr
- : N
1, = direction to observer (at r) _

The scattering can also be described by

e 7T -5
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Ef(7s) = -2 __(1,er 1ot T, 7 5(Ps,5)
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© R I -
lo = 1 = 15 1, = dyadic transverseto 1,
© e -
1; = 1 - 1;1; = dyadic transverse to 1; (3.2)
o 5 o - > - -
1 = 1x1x + 1y1y + 1z 1; = three-dimensional identify

From the integral-equation solution (2.4) we then have
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ol &5 o
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which for backscattering (monostatic) reduces to
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Ap(li,s) = A(-14,145)
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Writing the scattering dyadic in class-1 form as
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(3.5)

In [1] it is shown that the turn-on time ¢, for the poles is, in typical cases, after the first signal to reach the observer

at a retarded time 2t (negative). Otherwise the pole series diverges as one sums over poles with more negative

Re[sy ]

Specialize to the worst case for this divergence problem, namely backscattering. Referring to Fig. 2.1 we

have

L . . -
n = -~ = retarded time corresponding to the closest position
c
on the scatterer to the observer (negative)
L2 . . -
to = — = retarded time corresponding to the farthest position
c
on the scatterer from the observer (positive)
I3 = —q
L
0 s = =0
c

Comparing to (2.7) the case of backscattering has

t1=tf , I = 1

From (2.6), (2.7), and (3.5) we have a bound for the residues as

(3.6)

3.7



O (st )Oe (5220 )0 (=502 )Oc (=5at2) = O, (sa [tp + 19 =219 ]) (3.8)
This gives convergence with

tp > 210 — 1 3.9)
Now the first signal from the target to reach the observer is at 2 (negative) in retarded time. So we have a time

to =tp =21 >2[1n -] -1 (3.10)

as a time window when the pole series does not converge and gives a bound or how large ¢, should be. Note for
_.-)
thin bodies (compared to L) that z, can be negative. However, in a worst case sense 1, is aligned with L

giving ¢, = f5. So we have

0t <19 (3.11)

including a limiting case in the case of worst-case alignment. The point is:

For a time window of width 7, tan entire function (temporal form)

is required to adequately represent the far scattering.

Now let us approach the entire-function question from a different (new) direction. In Section 2 we defined
a simple scatterer as one for which the currents can be represented by class-1 poles without an entire function, and

noted that this has found to be the case by many examples. From (2.5) we then write in time domain,

- - e =
Js(r,0) = Egf(t) © zna[l,, ]jsa(rs)esatu(t—tf) (3.12)

[24

An alternate form is the step response from f (s) = 1/s as

> ~[s-sa ks
Js(7 E TiLe ,S (75)5————— + pole at 5=0
sa[s=sa]

- t
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(3.13)
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It is this form that has been used for many of the numerical-verification examples. Note that the low-frequency far
scattering is proportional to 52 [2], making the step response in far scattering proportional tos. This insures that the

late-time step-induced far scattering goes to zero at late time, even with a pole at s = 0.
From the formula for the far scattered fields (3.2) then we have
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So for times (retarded at the observer) greater than ¢ f + 1z the scattered field (for f() a delta- or step-function)
can be represented by damped sines only. The temporal form of the entire function exists only for times less than

this and after the first scattered signal reaches the observer.

Applying this to backscattering we have
- -
lo

=-1; , tf = tl (316)

with pure damped sines for

11



t2n + 1 (3.17)
and first signal reaching the observer (retarded)

t = 21 (3.18)
This gives an upper bound on the temporal width of the entire function as

H+ty -2 =1 -4 =R (3.19)
which is one transit through the body in the direction of thve observer. Noting that for thin bodies

03 <y (3.20)

we have a result comparable to (3.11). Now we have an upper bound on the entire-function width, whereas

previously we had a lower bound.

Summarizing we have for backscattering:

S S
The entire-function (temporal form) of Ap(1,t) for simple scatterers has a temporal

width of no greater than t3, one transit through the body. This window begins at the time 2¢;, the

time of the first scattered signal.
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4. Concluding Remarks

In [1] a lower bound was found for the temporal width of the entire function in scattering. Noting the lack
of an entire function in interaction (currents on the body) for simple scatterers, we now have an upper bound of #3

(one transit of the body) for the temporal width of the entire function. These results are complementary and more

tightly pin down the scattering entire function as an early-time phenomenon.

There are related issues discussed in [1]. In particular there is the identification time t; , defined as the
retarded time for the observer to receive a scattered signal from all points on S (or more generally V for a volume
type of scatterer). This occurs at a time of 2f3 in backscattering after first scattered signal in the simplest cases.
Accounting for r3 (at most) for the entire function this gives a time of t3 during which a unigue pole series does not

apply, since more than one scatterer may give exactly the same scattering during this time, the differences between
the two scatterers having not yet been “seen”. Afterwards the pole series can correspond to only one target, unless
we include various parts (e.g., inside) which experience no fields. For more general targets 4 can be longer, e.g.,
for perfectly conducting targets for which waves have to travel around the scatterer by non-straight geodesic paths

(fat targets).
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