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Abstract

This paper presents a generalized transmission-line theory, which is useful to describe the wave
propagation along as well as the field coupling to almost arbitrary three-dimensional wire struc-
tures. In contrast to the classical transmission-line theory this new theory is a full-wave descrip-
tion based on generalized telegraphers equations. Whereas the mathematical structure of these
equations is preserved, the coefficients (the per unit length parameters) are redefined in order to
represent the intrinsic behavior of the wire structure. Due to the full-wave description all EM -
phenomena, e.g., radiation, are taken into account. Measurements as well as MoM simulations
were performed to validate the predicted data.




1 Introduction

The Transmission-Line Theory (TLT), as a tool for the analysis and the design of the electrical
interconnections between elements, components, and systems, plays an important role in electro-
magnetic compatibility. However, due to the limitation that only a quasi TEM mode is described
in the classical theory, it is restricted to certain cases, where the connection structures can be
regarded as parallel (althought they really do not have to be) and their cross sectional extent is
much smaller than the considered wave length. This also includes the nonuniform transmission
lines where the per unit length parameters become position dependent.

Otherwise full-wave techniques like the Method of Moments (MoM) or Partial Element
Equivalent Circuit (PEEC) must be used to analyze given interconnection structures.

In this paper a new method is presented which circumvents this procedure for a huge class of
interconnection structures. By now the new theory covers transmission-line like wire structures.
This basically means transmission lines built of thin wires. The wires do not have to be in parallel,
they can be bent, loops, however, are not allowed.

The method represents a generalized transmission-line theory and is based on Maxwell’s equa-
tions. In contrast to the classical TLT it is a full-wave theory (Full Wave Transmission-Line
Theory FWTLT) and therefore also includes radiation effects. However, the mathematical struc-
ture of the telegraphers equations is preserved, thus known techniques to solve these equations
can be used. Also the results are well suited for the treatment of interconnections on PCBs and
radiation losses at high frequencies of all wire structures.

Different from [8] no series development of the current is performed. The telegraphers equa-
tions are derived without any approximation (besides a reasonable thin wire approximation) from
Maxwell’s theory.

2 Basic equations for lossless three-dimensional wire struc-
tures

The electric field at an arbitrary point 7 in the vicinity of some scattering objects in a lossless,
homogeneous, and isotropic medium can be expressed as the sum of an incident field E® and the
scattered field E'®:

E(r) = EO(r) + E¥(r). (1)

The incident field is determined in the absence of the objects. The scattered field can be expressed
by the electric (¢) and magnetic potential (A), respectively:

E®(r) = —gradp(r) — jwA(r). (2)



Here the potentials are calculated by the following expressions:
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where the free-space Green’s function is given by:
G , e—jk‘r—".li 5
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If the scattering objects are solely thin wires the thin wire approximation can be applied
to (3) and (4). Along each wire the charge density ¢ becomes the charge per unit length g;, while
the current vector density J is represented by the current i;, with the direction of the tangential
unit vector e;,. The index i denotes the number of the wire. The integration over the volume is
reduced to line integrals along the length [; of each individual wire. Every wire is described by
a parametrized curve with the corresponding curve parameter s; (see Fig. 1). Now, placing the
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Figure 1: n-Wire Structure with the relevant variables.

observation point 7 directly onto one wire j the potentials read:
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where n indicates the total number of the wires. For further steps it is convenient to perform a
transition from the local curve parameter s; to a global coordinate, e.g. z. All position dependent
quantities are then expressed as a function of this new variable. Further, the tangential unit vector
is given by the derivative of the spatial vector r with respect to the curve parameter:
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If the wires are ideally conducting the tangential component of the electric field must vanish
(e, - E = 0). Applying this boundary condition to (1) and inserting (7) into (2), and (2) into (1)
yields:

n A
T2 =) [0k 0w )
The integral kernel then turns out to be:
k(e ¢) = T 8 g, 2) ) (10
and the per unit length voltage, induced by the external field, reads
v;(2) = e, (2) - BV (r(2)). (11)
With the (thin wire) continuity equation ¢; = —;};3—2 the electric potential (6) becomes |
e ‘“sz / Eso(z,0) dc. (12)

where the integral kernel kS is expressed by

B(2,0) = Glry(2), 74(0) oy

Equation (9) describes the inductive coupling of the wires. The Green’s function in k]’-; is multiplied
by a dot product factor of the tangential vectors of the wires, which takes the vector character
of the current density into account. In contrast to this, (12) describes the capacitive coupling.
Since the charge density is a scalar variable, k](f; does only depend on the distance, but not on
the direction of the wires. Only in the case that all wires are in parallel (like in the classical
transmission-line theory) the dot product becomes one and both kernels are, besides a constant
factor, equal.

Often it is necessary to consider wires, which are located above a perfectly conducting ground
plane. This can be done by using the image theory where the ground plane is replaced by the
corresponding wire images. The signs of all currents and potentials in the images are inverted. To
accomplish this it is sufficient to replace the integral kernels with:

Ki(2,0) =u[d’”‘z) d’““G( ri(a),mi(q) - T2 4 A0 )G( A ()

dz
Ki(2,0) =2 [Glry(2), m(0) ~ Glry(2), A - m(0)) ]. (15)

~



The matrix A is the "reflection matrix” and is given by the position of the ground plane. If, for
instance the ground plane is located in the y-z plane of the coordinate system, A is given by:

-1 0 0
A=10 10
0 01

The identical structure of (9) and (12) allows to combine both expressions into one supermatrix
equation:

28)= [ w0 7 [ o [47] oo

The supermatrices K and W :e given by
| O [ (17)
W = [_j“’é ;’] . (18)

The column vectors ¢ and % are composed of the elements ¢; and i;, respectively. The matrices
K€ and K consist of the elements kiLj and kg The prime denotes the derivative with respect to
the spatial coordinate z or (, respectively.

Equation (16) now becomes the basis for the generalized telegraphers equations. As can be
seen (16) already has some similarities with these equations. The unknown quantities are the
current and the electric potential and both occur themself or as their first derivative with respect
to the spatial coordinate. Further, the potential is regarded as the equivalence to the voltage as
in the classical transmission-line theory.

3 Generalized telegraphers equations

3.1 Derivation

In order to formally transform (16) to the generalized telegraphers equations, a function T (z, ()
is introduced which "transports” the current vector from position z to (.

{’z((g))} =W F(z0) W ["z((j))] | (19)

So far T (2,¢) is unknown. However, as will be shown later it is related to the solution of the
generalized telegraphers equations. Equation (16) becomes

58] - o [ ) .



where R is given by
R(:) = / () T(z,0) d (21)
Rearranging (20) yields the generalized telegraphers equations for lossless conductors

sal- ~Pe) [55]+ [0 22

where the coefficient supermatrix P reads
) [RuRm Ry, — R11R21 Rzz]

P = (23)
Ryl R Ry

The off-diagonal matrices can be identified as the inductance and capacitance per unit length

matrices, while the diagonal matrices are correction terms that occur due to discontinuities like

nonuniformities or terminations, and are responsible for the radiation effects. They vanish when

infinitely long, uniform transmission lines or wire structures in the quasi static case are considered.

3.2 General solution

The general solution of the generalized telegraphers equations (22) (with position dependent pa-
rameters) is obtained via the product integral as shown in [4, 1]:
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where the product integral can be expressed by the infinite series
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The evaluation of this series is mathematically challenging and only a few, but important practical
cases can be solved in closed form [2, 3]. Numerically the product integral can be calculated by
dividing the interval (2o, 2] into k segments and computing the product directly [5]:

z k
[[e7P@% ~ e Peac (26)



3.3 Determination of the coefficient matrix

For the determination of the coefficients it is sufficient to consider only the homogeneous part of
the equations. With the aid of (22), (24) can be rearranged to

7(¢) —— ¢ POE T T i'(2)
[i(g)] =W-Q(¢) H VL. Q)W [i(z)}, (27)
where Q is given by
O | es)

By inspection of (27) and (19) it can be seen that T is given by:
T(2,¢) = Q) - [[e7F®% . Q(2) (29)

Substituting (29) into (21) yields an integral equation for the determination of the parameter
supermatrix R:

zy ¢ _
R [R(:0-Q)- [[eP0%. Q)" & o

This equation can not be solved directly, however, an iterative procedure can be used to determine
the parameters. The quasi static parameters, which can be easily obtained are used as starting
values.

3.3.1 Quasi static parameters

In the quasi static case it is assumed that the wavelength is much larger than the extent of the whole
wire structure. Thus, the exponential term in the Green’s function becomes one (e 7*Ir(z)-m(Ol ~ 1|

K .= K (w = 0)). Further, for the calculation of the line parameters the potential as well as
the current along each wire is considered to be constant. Therefore, the product integral is the
unity matrix:

¢
[[ePo% -1 (31)

z

Moreover, doing a series expansion of @ (¢) in the vicinity of z,

dQ (¢)
d¢

Q) =Q(2)+

(C—2)+... (32)
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and neglecting higher than first oder terms, gives a low frequency approximation for R:
(0) +(0) -
/ R0 d (33)

Thus, the quasi static parameters of the generalized telegraphers equations are:

(0)
=(0) 0 2 (2)
P (z)= 34
(2 [ ot ] (349)
It is interesting to note that, if (33) is applied to a uniform transmission line the classical

transmission-line parameters , see e.g. {6, 7}, are obtained.

3.3.2 Full-wave parameters

In order to determine a full-wave solution with the proposed theory, (22) must be solved with the
exact parameters, which arise from the exact solution of (30). However, an explicit closed form
solution of this equation turns out to be extremely difficult for general wire geometries. Therefore,
an iterative procedure is used to get an approximation of the wanted parameters:

B (2) = / (.- Q@70 [[+P"0% Q") ac (35)

where P and ZZ(”) are given by:
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The quasi static parameters are good starting values. Thus, it is sufficient to perform only one
iteration to get very accurate results for most cases.

3.4 Equivalent circuit representation

It is well known, that the telegraphers equations can be represented as an equivalent circuit for an
infinitesimal segment. The same can be done for the generalized telegraphers equations (see Fig. 2).
The additional coeflicients in the main diagonal turn out to be a voltage and a current source,
just like the external sources in the classical transmission-line theory. However, these sources are
controlled by the current and voltage of the line itself instead of incident fields.
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Figure 2: Equivalent circuit for a lossless one-wire structure.

4 Applications and experiments

4.1 Single wire above a ground plane

In the first example a single wire is placed over a perfectly conducting ground plane. (see Fig. 3).
The wire is driven by a voltage source and not terminated (open far end) to avoid disturbances
from vertical elements. The angle o between the wire and the ground plane is chosen, such that

hg = 1mm
h = 200mm
= 500mm
r = 0.2mm
a=217°
|E]=1V/m

Figure 3: Wire above a perfectly conducting ground plane.

classical transmission-line theory is not applicable any longer. Since the wire is some kind of an
antenna it will radiate, and antenna theory or a full-wave method must be used to determine the
current through the driving source and the current distribution along the wire. Nonetheless, using
classical transmission-line theory and approximating the wire by piecewise uniform line segments
yields the result for the input current shown in Figure 4 (a). Additionally, the measured data and
the results computed using the full-wave transmission-line theory, but only with the quasi static
parameters (0. iteration) are shown. As can be seen there is a significant difference between the
piecewise uniform TL and the measurement even for low frequencies.

The resonance frequencies of the transmission-line solution are shifted to higher frequencies,
what means that the wire appears electrically shorter than it actually is. Further, the amplitudes
at the resonance frequencies are much higher than in the experiment. This is due to the lack of
radiation in the transmission-line solution. The solution with FWTLT (quasi static parameters)
shows some improvement of the results. For low frequencies there is a very good agreement of
the resonance frequencies which means that the electrical length of the wire is correctly taken into
account. However, there is still a large deviation of the amplitudes in the resonance regions for
higher frequencies, since radiation is not considered.
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Figure 4: Wire above a perfectly conducting ground plane: Magnitude of the input current of the
wire excited by a 1V voltage source, TLT (piecewise uniform segments), FWTLT (quasi static
parameters), and measurement (a); FWTLT solutions and measurement (b); Current distribution
along the wire at the resonance frequency of 974MHz (c); Magnitude of the input current of
the wire excited by a 1V/m plane wave TLT (piecewise uniform segments), FWTLT and MoM
solutions (d).

Figure 4 (b) shows the results of the full-wave transmission-line theory with the parameters
after the first iteration. Practically, there is no difference between the FWTLT and the measured
data. This is supported by the results shown in Figure 4 (c). Here the current distribution
determined with MoM and FWTLT along the wire is plotted. The real and imaginary parts of
the FWTLT are identical with those from MoM. The wire can also be excited by an external
electromagnetic field as shown in Figure 3. For this case the voltage source at the input terminal
is removed. Again, the current flowing into the ground plane is considered. Figure 4 (d) shows the
results for the FWTLT, the MoM, and TLT (piecewise uniform segments approximation) solutions.
Also here the FWTLT and MoM are identical, while the TLT solution shows a significant deviation.
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4.2 Crosstalk in a nonuniform multi-conductor transmission line

In the second example crosstalk in a nonuniform multi-conductor transmission line is considered.
Figure 5 shows the V-shaped wires which are placed over a ground plane. The angle between the
wires is 2a. One wire is at a constant height h, the height of the other wire changes from h/2 to
h. Furthermore, the wires are bent at the ends in order to reach the termination resistors which
are located below the ground plane.

The second wire is driven by a voltage source of 1V with an internal resistance of 50€2. All
other ends are terminated with 5082 resistors. The electrical connection of the transmission line is
shown in Figure 6. Figure 7 shows the cross talk current flowing into the termination resistor at

h = 20mm
do = 16mm
d; = 280mm.

a = 10mm

{ = 435mm

r = 0.2mm

a=17.7°

Figure 5: Nonuniform transmission-line configuration.

g 500

il il

Figure 6: Electrical connection of the nonuniform transmission line.

the far end of the passive wire. The plot presents the solutions from the classical transmission-line
theory (with piecewise constant segments) as well as the solution of the full-wave transmission-line
theory with the parameters after one iteration. Additionally, the current, measured with a network
analyzer on a real setup of the wire structure is shown for validation.

5 Conclusion

The presented full-wave transmission-line theory is a consistent theory based on Maxwell’s equa-
tions. While the mathematical structure of the primary equations, the telegraphers equations, is
preserved, the main difference to the classical TLT are the coefficients (per unit length parameters)
which become complex and frequency dependent (even for homogeneous and isotropic surround-
ing medias). Additionally, new parameters (which are zero in the classical theory) occur, which

11
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Figure 7: Far end cross talk current of the passive wire of the NMTL.

represent correction terms due to radiation and nonuniformity. These properties have to be taken
into account, if high power microwaves couple into complex multiwire structures or ultrawideband
excitation is considered.
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