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Abstract

We apply a recently established geometric expansion method to the construction of the
electric current on a curved transmission line segment which is excited by a current wave.
This construction involves an advanced thin wire approximation and a regularization of
the Green's function that describes the current/current interaction on the wire. In
particular, the damping of the exciting current wave at the bend can analytically be
described.




1 Introduction

Within the framework of Electromagnetic Compatibility it is often necessary to analyze
the coupling of electromagnetic fields into complex electric and electronic systems. This
usually undesired coupling often takes place at transmission lines and can, in case of
uniform, almost-uniform, or highly symmetric transmission lines, be described by (gen-
eralized) transmission line equations to obtain the dynamics of the electric current on
the transmission line [1, 2]. For transmission lines which strongly deviate from unifor-
mity and carry high frequency signals the assumptions of the (generalized) transmission
line theory are usually no longer valid and one has to rely on the basic Maxwell theory.
To obtain in this case analytical solutions for an actual problem is a mathematically
demanding task which usually can only be solved in an approximative way.

We have recently proposed a general expansion method which is suitable to consider-
ably reduce the mathematical effort in explicitly constructing the solution of Maxweil’s
equation for problems which involve arbitrarily curved transmission line structures {3].
The expansion has the physical meaning of a scattering expansion which yields low fre-
quency corrections to the geometric theory of diffraction. The subject of this paper is the
application of this method to the analysis of the current/current self-interaction of an
excited curved wire segment which is due to its own electromagnetic radiation fields. We
note that differential geometric methods in electrical engineering have already proven to
be useful in the context of electromagnetic lens design [4].

The organization of the paper is as follows: In Sec. 2 we will review our expansion
method which consists of a scattering expansion that can be simplified by a further
geometric expansion. In Sec. 3 we will introduce the curved wire model considered and

describe how the electric current on the wire can be explicitly constructed. The main
steps of this construction are a thin wire approximation and a regularization procedure.
Some conclusions are provided in Sec. 4.

2 A geometric scattering expansion

The geometric scattering expansion which is the basis of this study has been outlined in
detail in [3]. In this section we will sketch the main steps of its derivation.

2.1 Derivation of a magnetic field integral equation

We start from the wave equation for the electromagnetic vector potential A in frequency
domain with time dependence exp(—jwt) = exp(—jkt/c),

AA+ KA = —pud, (1)




where the Lorentz gauge and SI units have been assumed. The retarded standard solu-
tion of this equation is

Alr) = ,u/G(r, r)J(r') d*r, (2)

with G(r,r') = exp(jk|r — r'|)/4x|r — v'| the retarded Green’s function of {ree space.
The corresponding magnetic field is given by

H(r) =V, x f G, v) T () & (3)

The coupling of the electromagnetic field to the transmission line current can be ex-
pressed by a boundary condition for the magnetic field on the surface of the transmission
line. To this end we assume the transmission line to be a (fairly) good conductor and
thus may assume the transmission line current J to be of the form of a surface current
k. Then the required boundary condition is given by

nx H =k (on the surface). (4)

The current k& is the sum of an (initially known) source current k, and an (initially
unknown) induced current k. which is due to scattered electromagnetic fields, k& =
ks + k.. In the same way we have the magnetic field as the sum of a primary field
H,, which is due to k,, and an induced magnetic field H ., which is due to k., that is,
H = H, + H.. With these splittings the boundary condition (4), together with (3},
yields an integral equation for the determination of &,

ko(r) =7, x H, — ky + f n, x [V, x (Glr, ¥ ki) ] &% (5)

2.2 The scattering expansion

Let us define the current

ki i=n x H, — k, (6)
and the functional
F.. = ‘/n.r X [V, X (G(r,’r')...('r'))] d*o’ . (7
We write (5) in the form
ke(r) = kuo(r) + (Fke)(r), (8)

and obtain by iteration
ke = ki + Fki+ FPhie + -+
= kic+ ko +k3c+--- (9}
with kni1)c = Fkne. It is straightforward to recognize that (9) constitutes a scattering

expansion where the nth term k.. accounfs for contributions of electromagnetic fields
which have been scattered (n — 1)-times at the transmission line structure.




2.3 The geometric expansion

The scattering expansion (9) involves terms of the form (Fk,.)(r) which have to be
evaluated in order to construct the induced current k,.. But even for transmission lines
of rather simple geometry this cannot be done in closed form.

An approximate evaluation can be performed if we observe that the surface inte-
gral (Fk,.){r) usually receives its main contribution from the vicinity of . It is then
reasonable to expand its integrand around r. To that end we introduce a coordinate
system with its origin at =, i.e., 7 = (0,0,0), in the following way (3, 5]: As z- and y-
axis we take the principal axes of the surface at » with principal curvatures &; and ks,
respectively. Their orientation is chosen such that we obtain a right-handed coordinate
system at r if the outwards pointing normal vector n, is chosen as z-axis. Then a Taylor
expansion of the third component of ' = (z', 3/, 2’} yields

22,9 = ¢ (m()2” + o)) + o (10)

The dots indicate terms of third and higher order in the distance |r — r'| = [¢/| = ¢/
and also contain derivatives of the principal curvatures. It is important to note that the
scale of ' must be seen in relation to the principal curvatures, i.e., the expansion is a
good approximation for x£,7' <« 1 and kor’ < 1.

With the expansion {10) it is possible to show that
Gﬂ r‘l r’ ’ ] I
(Fkpo)(r) = kni1)e(r) = /—(ﬁ-nlknc(r)(fcl(r)va“ ('} +s2(r)w () + ) d*o’ .
(11)
Here we defined G'(r, r') := 8G(|r —¢'|) /([T — 7’|}, knc(?') := |kn(r')], and the vectors

z'*(8in 6, —cos Oy,

v (1) := | 2 (sin O +c086,) — 22y (5in B, —cos 6,) | {12)
0
—y'%(sin§, —cos 8,) +-2x'y'(sin O, +cos b,,)
w (r) .= —y'*(sin 8, +cos ,) : (13)
0
with &, the angle between the unit vector
1
e = E(l,l,mr'+m2y') (14)

at 7" and the current vector k,.(r).

The result (11) is applicable to two-dimensional transmission line structures like the
surface of a wire. However, it is often convenient to approximate such a structure by a
one-dimensional line. In this case it is possible to derive the formula (3]

G'(r,r")

K'ry.r?-

2
—q /&) n(EY_ . dy'
k(nmc(r)—af = knc(r)( g+ )dy- (15)




Here the factor a is an (a priori undetermined) geometry factor which reflects the geom-
etry of the (small) cross section of the line, 3’ parametrizes the line such that the tangent
vector J/0y’ along the line is a unit vector, x denotes the curvature of the line, and &’
denotes the derivative 8x/3y'. Of course, formulae (11) and (15) should be related by a
thin wire approximation. That this is indeed the case will be shown in Sec. 3.2.

3 Application to a curved wire segment

3.1 The excited curved wire segment

We will focus in the following on a transmission line segment as shown in Fig. 1. The
segment is assumed to be of the form of a curved wire which consists of two straight
parts that are continuously connected by a circular arc of radius R. Its cross section is
circular and of radius p. We parameirize the length of the wire by y. Furthermore we
assume on the surface of the wire a source current of the form

ks = koexp(jky), (16)

i.e., a current wave which travels towards increasing y. (Note that we assumed a time
dependence exp(—jwt) = exp(—jkt/c).)

k=k exp(jky)

—— e

()

o)

Fig. 1: A current wave travelling on a curved wire segment.

The problem consists in the determination of the induced current k. on the wire which
we expect as a consequence of the bend of the wire. Once k. is constructed on the basis
of Maxwell's theory the electromagnetic problem is solved.




3.2 Thin wire approximation

Though the main result (11) is applicable to currents on arbitrary surfaces, like the
current on the surface of the curved wire segment, it is convenient to first perform a thin
wire approximation in order to keep things relatively simple.

The geometry of the curved section of the wire can be described as part of a torus
which is characterized by a central radius R and an internal radius p, as in Fig. 2.

Fig. 2: The geometry of the curved section of the wire.

The surface of the torus, and thus the surface of the wire, is parametrized by two angles
¢ and . This is also indicated in Fig. 2. An explicit parametrization reads [5]

T(9.9) = (T2(6,0). Tu(,0), Ta(4,9))
= ((R+ pcos(i)) cos(4), (R + psin(¢)) sin(6), psin(y) ) ,

with the T3-axis the axis of revolution and the Ti73-plane the symmetry plane of the
torus. The angle w ranges from 0 to 2, the range of ¢ is from 0 to 2w for the full torus
and, of course, smaller if only a curved section of the wire is considered.

From the parametrization (17) it is possibie to derive the principal curvatures «; and
k2 of the torus and the curved wire segment- We first notice that at each point of the
surface of the torus the two principal axes are tangent to the coordinate lines ¢ = const
and ¢ = const. Let us take the principal curvature which corresponds to the coordinate
line @ = const as k; and x; as corresponding to ¢ = const. Then it can be shown that

1
K1 = — =const, K= cos(¢) (17)

T R+ pcos(yp)




The angle ¢ is measured as indicated in Fig. 3. Note that in particular we have

Ka(p = m/2) = ka(p = 3m/2) = 0, (18)
ro(p=0)=1/(R+p), (19)
kol =) = —1/(R ~ p), (20)

as intuitively expected.
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Fig. 3: In contrast to the principal curvature x; = 1/p of the torus the principal curvature
k2 depends on the angle ¢ according to (17). ’

Now we introduce at each point of the surface of the curved wire segment an zyz-
coordinate system as described in Sec. 2.3. An appropriate choice is determined by unit
vectors

148 1 5]

= T80 T R+ pcos(y) 68
This means that e, is tangent to the coordinate lines ¢ = const and oriented in the
mathematically negative sense with respect to ¢, e, is tangent to the coordinate lines
v = const and oriented in the mathematically positive sense with respect to ¢, and e;
is a normal vector on the surface which points outwards. For e., e, this convention is
sketched on the right hand side of Fig. 2.

After these geometric preliminaries we are now in a position to apply the desired
thin wire approximation to (11). Qur assumptions are as followa:

e, =€z Xey. (21)

1. At each point the current &k and its single contributions are parallel to e,,.

2. There is no current/current interaction transverse to e;. This means in particular
that distances |r — »'] = ', as they occur in (11), do not depend on .




3. The value of the current k and its single contributions do not vary with ¢.
4. The radius R is considerably larger than p, i.e., R > p.

The first assumption implies that #,, as it appears in (12) and (13), assumes the
value w/4 or w/4 + 7. The second assumption yields z' = 0 in (12) and (13). Therefore

we obtain
s

von (‘r') =0, wb (r') = $%ey, (22)

with the upper sign for 6, = 7/4 and the lower sign for 8, = n/4 + m. It follows that
(11) reduces to

(Fra7) =75 [ S5 bt sy ey 0 (23)

The volume element d%c’ explicitly reads

d*c’ =dr'dy' = pdyp' dy’ . (24)
Clearly we wish to integrate out ¢’. From the second and third assumption of the thin
wire approximation we conclude that both G'(r, ') and &, do not depend on . Also,
for geometric reasons, the Green’s function G'(r, r') contributes to the integral only if
both » and ' are within the region x; < 0, i.e., within the region 7/2 < ¢ < 3w/2.
Otherwise the path determined by r — r intersects the curved wire segment and is
forbidden for the freely propagating electromagnetic field. Therefore integration over
involves the computation of the integral

3x

3x 1.4
; O cosle)
f; mipldo= [ 1 gty (25)

This integral can be solved analytically to yield
¥ cos(¢p) oo — [_ 2R (R—p) tan(ap/2)) N f] ¥
. R+ pcos(p) p/RE— p? VR p? P

However, for our purposes it is sufficient to take the condition R 3 p > pcos(y) and
compute (25) according to

2

T

arctan (
¥

¥ cos 2
f% R —f(?;f:‘gs(tp) ¢ f (‘p “TR (26)
This yields
(P r) = +2 [ HET g (or)e, v ay (27)
We define x := 1/ R, note the redundancy of e,, and finally obtain
nene(r) = 2o [ SE kg (28)

With a = 2p we thus recover the lowest order term of formula {15) which was directly
derived from a one-dimensional geometric formulation.




3.3 Determination of the first order induced current

Now that we have performed a thin wire approximation, we reconsider the curved wire
segment of Fig. 1 which is modelled as a one-dimensional structure, compare Fig. 4. We
still assume the wire to be excited by a current wave of the form (16). This current has
to be understood as a zeroth order current that does not take into account the curved
geometry of the wire segment.

ks=k.exp(jky)

Fig. 4: The curved wire segment as reduced to a one-dimensional structure.

We now use the curvature expansion, i.e., in particular formula (28), to determine
the induced current k.. We have

k=Fk,+ki+kot.. ., (29)

with k, explicitly given by (16). The first order induced current k. was defined in {6)
as

ki.=nxH; —k,.

In our case it receives contributions from electromagnetic fields that are represented by
H, and generated by k,. More precisely, if r is a point on the wire the current &kq.(r) is
induced by the magnetic field H’,”é" which is the sum of the magnetic fields at r that
are generated by k,(r’} for all ' 3% . That k,(r) does not contribute to k() but is
compensated by the outgoing field H ’,'=’J is deduced from the observation that there is
no induced current k. if the wire is straight. In this case the boundary condition (4)
reduces to

0=mn, x H= (r) — k,(r). (30)




Therefore we obtain

kre(r) = n x HT#" (r) = / x [v, x (G(r,r')ks(r’))} 4%’ . (31)

r
Within the approximation provided by the curvature expansion the last term can im-
mediately be rewritten by means of the result (28) to yield

G’ Y ! ' i} '
belr) = o [ T ke ay (32)

where we have used 8, = 7 /4 and thus chosen the positive sign. According to Fig. 4 the
points on the curved section of the wire segment can be parametrized by vy = yo + Ro.
We note that the corresponding tangent vector 8/0y = 8/R3¢ is normalized to unity
such that—y — yp is a measure for the length of the arc between y and yo. Thus we have
in (32), to first order, |¥'| = r’ and obtain

fro(r) = pn/G'(r,r') ko(r)|y'| dy' . (33)
This is already a very compact formula. The Green’s function reads explicitly
. : iy _ exPlIk|Y])
Glr.r') = Gllr — ') = Glly)) = H LT, (34)
and its derivative is
G(ly']) _ .. exp(ikly'])  exp(Gkly'])
G’ ! — — k _ - 35
(i) Bly'| 4m|y'| Arly'|2 (39)

With the ansatz-(16) the integrand of (33) becomes

cos(k(ly'| + y’)))
vl
452 (I cos(k(ly] + /) -

G'(1y)) ku(y)ly'1 = =2 (Ksin(k(ly[ + 1)) +

sin(k([y'| + ')
Kl )  (30)

where we have separated the real and imaginary parts.

3.4 Regularization of the Green’s function

The real part of (36) exhibits a singularity at |y’| = 0 where it diverges proportionally
to 1/y'. This divergence is due to the singular behavior of G(r, r') for ¥’ — r. However,
it is not a physically meaningful divergence: In the limit & — 0, i.e., the low-frequency
limit, the induced current k. should vanish since in this case the electromagnetic field

10




becomes static. This is not in accordance with the recursion formula (33) where in the
limit & — 0 we end up with a diverging integral that contains a 1/|y/| singularity at
[¢/] = 0. It is thus obvious that our formalism does not work in the low frequency limit.

The reason for this failure is rooted in our ansatz: The derivation of the scatiering
expansion is based on the boundary condition (4) which, in turn, is based on the notion
of a surface current and a sufficiently quick decay of the magnetic field within the
conductor. This assumption is reasonable for sufficiently high frequencies but no longer
fulfilled in the limit & — 0. Therefore we have to eliminate the quasistatic contributions
which make k. diverge. One of the following two regularization schemes can be used for
this purpose.

1. “Subtraction scheme”: We define a regularized function G, = G’ — frey Where
freg has the same singular behavior as G’. Conceivable choices are of the form
freg = exp(—7l¥/[}/]¥'|- The parameter v must be chosen such that in regions of
l'] which do not correspond to the quasistatic regime fi; is small compared to
Gleg- That is, a large value of -, for example, can make frg small even for small
|y'|. However, for all values of v the singular behavior of G' gets subtracted out.

2. “Cut-off scheme”: We introduce a cut-off parameter € and demand |y'| > & such
that smaller values of |¢| which do correspond to the quasistatic regime are not
integrated over.

Both schemes introduce a free parameter (- or £), the value of which is a priori not fixed
but characterized by a certain length scale £. The length scale £ is the one at which, for
a given frequency f, the electromagnetic field appears to be quasistatic. It is connected
to the decay length of time harmonic electromagnetic fields in a conductor and can be
estimated from a diffusion equation for the vector potential, see [6], Chap. 5.18. The
result is

1
Vo]

with o the conductivity of the conductor. This approximation has to be understood as
a rough one which gives only the order of £. As an example we take the conductivity of
copper, 0~ = 1,7-107% Qm, and set f = 10 GHz. This yields £~ 1,2-107% m.

In the following we will use the cut-off scheme since, for an analytical treatment,
it is easier to use. Furthermore we will take for a frequency f = 10GHz the cut-off
parameter £ = £ = 107 %m.

f ==

(37)




3.5 Explicit evaluation of the first order induced current

It is now instructive to focus on a specific example: Let us set f = 10GHz (as above),
R = 10cm, and p = Ilmm. This yields, in particular, & =~ 210m™! and x =10m~!.
Moreover, we have within the curved region of the wire ¥ = R¢' and dyf = Rd¢'.
Putting everything together yields

klc(y = 0) =
or [ G ki 1dy = 2 [ |

—(0215in(21(1¢| + ¢)) +0.01 ELILE H)))

|¢']
+7(0.21 cos(21(|4 + ¢)) - 0.01Sin(21([|§:|| O]
= 2 [(#6)+308)) a6 )

Let us first investigate the real part f(¢’) of the integrand. It is plotted in Fig. 5.

ot 02— ¢
S

-5
F(¢") = —0.21sin(21([¢'| + ¢')) — 0.01==ZEze))

Fig. 5: The real contribution to the integral in (38).

It is immediate to recognize that f{¢’) significantly contributes to the integral only for
small values of |¢|. For larger values of ¢ the function f(¢') is practically sinusoidal and
positive and negative contributions cancel out. For negative values of ¢ the arguments
of the trigonometric functions of f(¢’) vanish and f(¢') behaves like 1/¢'.
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Let us now consider the imaginary part g(¢’) of the integrand which is plotted in
Fig. 6. ' ‘

——=0.2 ~—f8.1- 1 01—~02 _ ¢
o—

-5
9(¢') = 0.21 cos(21(|¢'| + ¢')) — 0.01 ==(2KleLl+))

Fig. 6: The imaginary contribution to the integral in (38).

The function g(¢") has no singularity at ¢’ = 0 and does not significantly contribute
to the integral around this point. While for positive ¢ it basically behaves like a cosine,
it is a counstant for negative ¢’. This second property is an artifact which is due to our
approximation ' =2 |¢'|. This approximation means that the length of the arc between
points ¥ and y, for ¥’ < y, is taken as the linear distance between ¢’ and y such that the
travelling wave current is in phase with the electromagnetic field which it emanates at
y' and receives at y. This is only true to first order and a more exact calculation leads
to a (slow) variation of ¢g(@') also for ¢’ < 0. We should remind us at this point that the
curvature expansion was derived under the condition sy’ = ¢’ €« 1 such that values of
F(@'). g(¢") for “large” arguments ¢’ are not meaningful.

The integrals in (38) are quite elementary and can be easily evaluated. Let us define
3

—10—*%
F@) = [ f@)as, Fu@)= [ RGeS

10—3

P —10-3
() = f o(#)d¢, G(@)= [ e,

0-3

with the cut-off parameter ¢/R = 10~%. These functions are plotted in Fig.7.
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Fig. 7. A plot of the functions F,, F_, G,, and G_ which describe the integrated
contributions to the first order induced current &y..

We qualitatively recognize that the functions Fy, F_ strongly {all off for values ® < 0.05
and behave rather stationary for larger values of ®. Similarly, the function G, quickly
reaches a stationary value which is less than 20 % of the stationary values of Fi., F_.
Only the function G_(®) exhibits no stationary behavior for larger values of &. As
discussed above this is due to the first order approximation |¢/| = r’.

Let us take as integration limit & = 0.1. As is evident from Fig. 7 for this value
the dominant functions F,, F. become approximatively stationary and the condition
¢ < ® <« 1 is fulfilled to a satisfying extent. This value corresponds to an integration
domain of length R® = lem. We then find for the first order induced current

kre = f—;(p+(o.1)+ﬂ(o.1)+ 3G.+(0.1) + G_(0.1)))
ko :
a2 ZEE(“O'”." 70.04) (39)
~ —0.02k 3% (40)

In (39) the minus sign in front of the real part indicates that the first order current
k. basically yields a damping of the incoming current wave k,. The imaginary part is
responsible for the nontrivial phase factor in (40).
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The result (40) is valid for points on the curved part of the wire segment that are at
least 1 cm apart from the transition to a straight part of the wire. If a point is closer
to such a transition either the upper or lower integration limit has to be adjusted to a
corresponding value ® < 0.1. In this way it is immediate to compute k;. for any point
of the curved wire segment. Once this is done it is possible to derive the higher order
currents according to

kane(r) = pr f G/ (r, 7 Kne (P (41)

compare {33). These integrals, with a function k,.(r') which will usually be different
from k,(r’), can be evaluated in the same way as it was just demonstrated for the
evaluation of the first order current.

4 Conclusions

With the construction of the induced current on the curved wire segment we have demon-
strated that the geometric scattering is a powerful tool for the study of electromagnetic
phenomena in the vicinity of curved transmission line structures. Though we started
from the basic Maxwell theory it was possible to perform the calculations in a purely
analytical manner. The approximations involved were clearly spelled out and can also be
used to control the quality of the curvature expansion. There was no need to explicitly
calculate radiation integrals for electromagnetic radiation fields in order to describe the
current/current interaction on the wire.

The example of the curved wire segment should still be worked out in more detail.
These details include the explicit calculation of the higher order induced currents, their
explicit dependence on the frequency, the effect of the induced current on the straight
parts of the wire segment, and the radiation characteristic at the bend. We will report
on these points in a forthcoming paper.
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