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L. Iniroduction

For the identification of buried targets symmetry plays an important role. In this paper we restrict
ourselves to the case of electromagnetic singularity identificaiion (EMSI) for which wavelengths in the external
medium (soil} are of the order of the target dimensions. For typical mines and other unexpioded ordnance (UXO)
this implies 100s of MHz to several GHz for the pulse or set of frequencies used to illuminate the target ffom some
sort of ground-penetrating radar (GPR) [8]. In contrast to the low-frequency magnetic-singularity identification
(MSI) for which the magnetic-polarizability dyadic and its associated symmetries are important [9], in the case of
EMSI much more geometric detail and associated symmetries are important [10].

An important result is the vampire signature of zero cross polarization (hv) in the usual h,v radar
coordinates for the backscattered fields Fom a target with Oy (= Cypa) symmetry as in Fig. 1.1. {I1, 15]. Note
here that the rotation axis is required to be perpendicular to the surface Sg of the local earth on which or in which
the target resides. Smeali deviations fom this symmetry split the Z-fold modal degeneracy applicable to most of the

resonant modes [13, 14].

The local earth is even allowed to be layered in the sense that for the permittivity

>

3 -~ > = ~
e(z,9) = E{z.8) 1z 1z + E(z,5) 1,

> +r —_ = _1;.

—
]z!l—*lzlz= l

- - )
x1x + 1, 1y = transverse (io z) dyadic
~ = 2-sided Laplace transform {over time ) (1.1)

s = O + jo = Laplace-transform variable or complex frequency

and similarly for the conductivity and permeability. This type of earth possesses T, symmetry (transfation in two
dimensions: x and y) as well as Oy symmetry (rotation and reflection in two dimensions) [18]. Note that Cy
denotes an N-fold symmetry axis (z axis in this case) and that an axial symmetry plane can give R, symmetry (say

Rz or Ry ). Combining the two gives

CNa = Cy @ R, (1.2)
as an N-fold rotation axis with & axial sytnmetry planes. Letiing &N — =0 we have

0; = SO{2) = C, =continuous rotation in two dimensions

02 = O{2) = Cypa = continuous rotation plus ali reflections in two dimensions (L.3)

So our soil has T, @ O3 symmetry Into which the target is to be placed. (It can have other symmetries, such as

dilatton, but that need not concert us here.)




Sg (ground surface)
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Figure 1.1, Target and Radar Coordinates.




2. Symmetries of Target in Presence of Earth/Air Interface

Since our target by hypothesis has finite linear dimensions, then translation does not apply to it, but point
symmetries (rotations and reflections) potentially do. So the T; translation of the earth do not apply, but O5
rotation and reflection may apply. Furthermore, any subgroup of O is then of interest. The fundamental point is
that any target symmetry group which is a subgroup of the earth symmetry group is retained as a symmetry group of

the target/earth combination.

So now our attention is limited to Cp and Cpy, symmetry. Note that the symmetry of a single axial

symmetry plane, say R, is equivalent to

Cia = Ry (2.1}

More axial symmetry planes (¥) induce C pr4 symmetry, e.g.,

C2a = Ry ® R, 22)

where the coordinates have been rotated {(about the z axis) to align the symmetry planes with the x=0 and »=0

planes.




3. Cross Polarization and Symmetry

3.1 One or more symmetry planes

As discussed in [2, 4, 5, 10, 11, 18, 19], the presence of a symmetry plane in a target separates the currents,
fields, etc., into symmetric and antisymmetric parts. Then if the incident wave is symmetric, so are the induced
currents and scattered fields, and similarly for the antisymmetric case. Referring to Fig, 3.1 if ?,- (the direction of
incidence) is parallel to a2 symmetry plane S, then a horizontally polarized incident electric field (parallel to Th .
perpendicular to Tz) is antisymmetric, as is the scattered electric field on S,,. Similarly a vertically polarized

— —
electric field is the symmetric case (parallel to [ v, perpendicularto 1 p } giving a symmetric scattered Beld on S,;.

For C p 5 symmetry with ¥ axial symmetry planes located on

¢n =L m=1,2,N (3.H

the backscattering dyadic with ¢; = ¢, or ¢,, + 1 (2N angles) has the property that

s 1; 0
< - By
A At

b(14,8) = (3.2)

> -
0 Abyy(14,3)

i.e., zero cross polarization referred to the A, v coordinates. Figure 3.1 shows the case of three symmetry planes. In
general there are N such planes S, for # = 1,2,---, ¥. In each of these 2V cases (3.2) holds. Note that with the
azimuthal angle of incidence ¢; constrained as in (3.1) there is still continuous variation of the polar angle of

incidence &; (asin Fig. 1.1) allowed over 0 < &; < /2 for plane waves incident above the ground surface Sg.

The zero crosspol now holds for discrete @; instead over all 0 < @; < 2x, sort of a discrete version of

the vampire signature. For large N all ¢; are ncar some ¢, , #,, + x,and one may expect the same results to

approximately hold for all ¢;. In some sense then we can regard C 5, as approximating Oz symmetry for large N.




r Example with N =3
————— symmeiry planes

Fig. 3.1. Interaction of Incident Plane Wave With a target With Axial Symmetry Planes.




However, one needs to temper this in terms of wavelength. For wavelengths smaller than the physical spacing of
these planes near the target extremities (farthest distance from the z axis) one may expect significant variation with
#;. So the continuous (with ;) vampire signature should be better approximated at low frequencies than at high

frequencies.

Looking at symmetry planes from the viewpoint of causality, consider an incident wavefront passing over

the target. As the wave first reaches the target with S, constrzined to any of the ¢, or $, -+ &, the illuminated
" —> . -

portion of the target has a symmetry plane, one of the S, parallel to 1;. This property holds for every snapshot in

time as the incident wave passes over the target.

3.2, Cy symmetry for 8; 20, »

—
Now let there be no axial symmetry planes, leaving only discrete rotation symmetry Cp . Also restrict 1,

so as not to be parallel to the z axis (&; =0 for waves incident above the ground and 8; = & in more general cases).

From a causality viewpoint, as the incident wavefront first reaches the target the illuminated portion of the
target does not have Cy symmetry. Only after the incident wave completely envelops the target is the Cpy
symmetry operative. This is in contradistinction to the case of the incident wave propagating parallel to a symmetry

plane as in Seciion 3.1.

As an example consider the case of a C4 propeller in Fig. 3.2. Let the incident wave be propagating in the
Ty direction. The wave first reaches blade 3. As seen in Fig. 3.2B the blade is canted at some angle away ffom
the x and z axes. As such the scattered fields on the y z plane of incidence have a large crosspolarized component

received back at the source on the —y axis. Only later in time do blades 1, 2, and 4 enter into the scattering.

33 Cy symmetryfor ;= 0, x

—»

If, however, 1; is made parallel to the rotation axis, a special thing happens. Wow, as the incident
wavefront on a plane of constant z propagates in the +z direction, the illuminated portion of the target does have
Cy symmetry (in contradistinction to Section 3.2) for every snapshot in time as the wave passes over the target. [n

this case we have for all time and frequency the special result for the backscattering dyadic




A. Top view

B. Side view

Fig. 3.2. C4Symmetry: Four-Bladel Propeller.




& — ~ — 1 0
Ap(li,z) = Ab(l,',s){o l) for ¥23 (3.3)

-
... no depolarization for any incident polarization. Note that for &; =0, 7 we cannot uniquely specify [, and

—»
1y since both are parallel to the z = 0 plane (i.e., horizontal). OFf course the transverse identity in (3.3) makes

this unimportant.

Note that for N = 2 the result (3.3) does not hold as can be seen by considering a two-bladed propeller, and
comparing the scattering for the incident electric field parallel versus perpendicular to the blades, especially for the
case that a blade is approximately a quarter wave in length, Viewed another way an invariance in the scattering on

successive rotation by 2x/ N implies enough independent vectors (2) to span the two-dimensional h,v space for

N 23 [19]. So for ¥ = 1, 2 one needs to consider axial symmetry planes, if any.




4. Eigenmodes and Modal Degencracy

The target/external-medium symmetry also has a great influence on the eigenmodes and associated natural
modes describing the currents. Following [9] we start with an integral equation of the general form

, ~ (inc)
(7-*,3)> -z (7.9 (4.1)

This is in the form of the E-field or impedance integral equation which has a2 symmetric kermel. Here integration
over the common coordinates rd is taken in volume form, but the surface form (say for a perfectly conducting

target) is similar.
Eigenmodes and eigenvalues are defined by
= P 3 o = 3
<Z(r, ris): Jg(r ,5)> = Zg(sy J g(r,9)

?ﬂ(?.s) = fth eigenmode
fﬂ(:) = fS1th ecigenvalue (eigenimpedance) (4.2)

<3’pc7-’,s) YI{CAED) > = Zp(0) T 5.9
(r.r;s)  (reciprocity)
The natural modes and natural frequencies are defined by

<'§'(?’,?';sa); }’a(?')> -0 = <}’a(‘ﬁ'); ~(?,7';sa)> (4.3)

These two sets of parameters are related by

a = (8,5
Zglspp) = 0
sgp = Sg = F'th root of fth eigenvalue (4.4)
Ta(?y = 7 p(7.55p) (times an arbitrary scaling constant, if desired)

11




One can treat the eigenmodes and how they are sorted by the symmetry, and the natural modes will have the same

properties.

One usually orthonormalizes the cigenmodes as [7]

3 = 3 -
<jﬂ](r!5): jﬂz(r!3)> = lﬂl,ﬂz (4-5)

For distinct eigenvalues the symmetric product of the modes must be zero. For degenerate modes (equal
eigenvalues) the situation is more complicated [7, 9]. In the present case we have two-fold degeneracy of various
modes, but these can be constructed as two orthogonal modes via Gram-Schmidt orthogonalization. Then one can

write the integral-equation kernel as

> — =3 S ard flard
Z(r,ri9 = 2. 2p9) 1 (707 (7.9 (4.6)
4

If we have a symmetry group G with

G = {Gglt=12,-, 40} 4.7
with dyadic representation

“r

Gy Gy (4.8)

then our target symmetry implies
2 “
7P G0
(4.9)

27@ 2@

o o
Z{(r 7, r Yy =G » 2(

- 3> () .. . —(2) . ey s = .y .
and G¢ - j(r ’,s) is also an eigenmode (at r ) associated with eigenvalue Zg(s), this being true for each

“
G ¢ in the group representation. For the point symmetry groups the dyadics are orthogonal, i.e.,

12




(4.10)

and real, and their eigenvalues are roots of one.

With 1y the smallest positive integer such that

— - = ) .
1 Iz 1z = identity

y +
L xd
(4.11)

ny = corder of group element representation G ¢

_}
Ty

>
then #; operations of G ¢ on the target as in (4.7) brings the target back to its original configuration. Applying this

to the eigenmodes we have
en
(4.12)

7T 5 o -
Ge - jﬁ(r,s) = cigenmodes for n=00,1,---,ny -1 evalauted at G¢- r

but these n, solutions are not necessarily linearly independent. Any such linear combination is also an eigenmode

with cigenvaluc Z (S) . There are v IiIIWI indepcndmt clgem:nod&s with
8 f y

l svgsm

which span the space of these eigenmodes. For point symmetries the dimension dg of the ireducible

representation may be 1, 2, or 3. So the eigenmodes may now be written

:’(V) - —~—
J  (r,s) = vih independent eigenmode associated with Zg(s)
v = Ldp (4.14)

and similarly for the associated natural modes.

For present purposes we are concemned with two-dimensional rotations and reflections. The associated

dgs arethen 1 or 2 only.

13




5. Rotation in Two Dimensions: Cp Symmetry

Consider now C  symmetry with [19]

C N

(CN)g

fcw) Je=12,, N}

(5.1)
rotation by %?— = (CN)f

with matrix (3 X 3) representation

o cos(gdy) -—sin(g,) O
C(ds) = (Cpm(de)) = | sin(ge)

cos(dy) O
0 0 i
2t
= > £=1’21"':N
#s N
1 0 0
Ld « A —-+ — - = - —
CO=C2mn) =101 0|=1=1x1x+ lyly+ l z 1z = identity (5.2)
0 01

1-"" oT -
C (P =C (¥ =C(-#

det(C(#) = |

from which we see that inverse and transpose are the same as rotation through the negative angle. Note that the
Py
various C(g) commute with each other and have the property of adding rotations as

hnd by d +r
Cg) - C#") = C@ +9M

(5.3)
We also have an alternate form using [1, 3]
0 -
e‘{. 0 J 3 (cosw) —s‘m(¢))
sin(g) cos(#)
(5.4)

0 —_
,{1
Lo
Cig) = e \0

oo L
- o
———

14




While our targets are three-dimensional, we are considering only two-dimensional rotations about the z

axis. We can write our matrix representation via a direct sum of the form

@ _ [(cos(®) —sin(é)
€@ = [sin@s) cosm] ® ()

{0 Voo Al o
et O O = e L 0 ®e¢(01,1)

showing the separation of the transverse (x, ) and longitudinal (z) parts. As discussed in [12 (Appendix A)] one can

(5.5

diagonalize such a direct sum by considering the blocks separately. Simple calculations give et /% as the transverse

eigenvalues, and |1 as the longitudinal eigenvalue, giving three eigenvalues total. The dyadic expansion is

“ 1 (1 1 {1 - 1 1y 1 (1
o[ 0 e
” [ E-EGTST BUEE
i 1 1 1 0o
=e’."7[. ~ 71- j +e'f."T1= j :lT —jf+ (0[O0
2 0 2 0 2 0 2 0 1711
=[T(—i )50 l)m'“)
o170 et S0 00 0
=5 |~ 1ol+Z—|/ 1 o/+|o 00
0 00 0 0 0 0 01

15




6. Rotation and Reflection in Two Dimensions: C y, Symmetry.

Axtial reflection symmetry R, can be given by the group [19]

Ra = {(D. (Ry)} (6.1)
Such an axial symmetry plane contains the z axis. Without loss of generality let us take such a2 symmetry plane to

define ¢ =0 (thereby also lying on ¢=x). Such a reflection then consisis of reversing the sign on the y

coordinate. Qur matrix representation (3 X 3) is then

1 0 0
¥
Mm->1=[01 0
0 01
(6.2)
1 0 0
“ “—
(Ra)—) Ra-‘zRy =10 ~1 0
0 0 1
Combining the two-dimensional rotation and reflection we have
Cna = {(Cn),r (Ra}(Cw),|E=12, N} (6.3)
In the matrix representation the elements in (5.2) are augmented by
o o ( cos(ge) —sin(ge) O
Ra » C(#g) = | —sin(dy) -cos(gy) 0
0 0 1
[ - T or Y
= | Ra > C(¢g)| = C (#g) - Ra (6.4)

P “
C(—¢¢) * Ra

With N independent values of ¢, this gives ¥ additional group elements for a total of 2/¥.

Note that the presence of one axial symmetry plane implies z total of N axial symmetry planes. The ¥
symmetry planes are described differently for odd and even N. For odd N the planes are described by ¢, , ¢, + 7
for N =1,2,---, N. For even N two choices of ¢,, related by ¢, 4 x/2 give the same plane (N/2 of them). The

remaining /2 planes are positioned between the firstsetat g, + /2, g, +x+ /2.

16




7. Eigenmodes for Scatterers with C p; Symmetry.

Define a set of NV volumes
[V |n=1,2,-+, N} 3 V, = portion of scatterer contained in ¢ -%ﬁ < § < d +2l¢1 (7.1)

so that V; is centered on #y , with

$o = 0= dy
sty = $2 forallinteger ¢ 7-2)
Let 7' bea position in Vyy with
m e
77 2 Cigyy - 7O (1.3)

Varying 7(0) over Vg =V varies 7 over V,, for all n due to the target symmetry. In cylindrical coordinates
‘¢, ¢, z) wehave

wim @@ glm) - 6O . br » £m _ (0

(m 0
700 = win) T‘{J + 0 T, ' (7.4)
IR )TN S0 M o SO O
lw =C{gp) - 1y, lg =C(dg)-14 ., 1z =1z

See also Section 5.

Define

Zun(P 759 = 20,7059 (7.5)

r

eV, , F €V

—
r m

This divides the kernel into N2 kernels so that the integral equation (4.1) can be written in the altemate form

17




n P ’
Z <?(?(n).7(m) 35); J(r(m) .i‘)>—' E (_r"(n),s)

- , 5 , S line)
{?n.m(?,?’ ;s)] @ [Jn(‘r’ ,s)] = [En ) (7.6)
, F ‘ s = | £ ? i

where now the vectors are supervectors of N vectors and the dyadic kernel is a supermatrix of ¥ 2 dyadics with n,
m the dummy indices as needed. Note the operation of generalized dot product together with integration over the

7' coordinates, over each V,, as appropriate.

Similarly eigenmodes (eigensupervectors) can be defined via
(?n,m(?,—;r;s)J 9 [?,,(?',S)] = Zg(s) (?”(—:)J
Fij B
] ® [?n,m(?’,‘r":s)D - Zp(s) ['?,,(7',5)]
B B
<(?,,(?,s)) e (‘E’M(‘r’,?';s)] © [?,.('r".s)] > = Zg(s)
), 8 &)
<['j’n(?’,s)) c ['j’n(‘r’,s)] = 1,5, (orthonormal)
B Fip)
[-}ﬂ(_r’,s)} = eigenmode (supervector)
B
?n;ﬂ(?'s) = 715(—;(.':)15) = eigenmode portion in Vp

Recall the symmetry condition (4.9)

> A
Z@0 200 - Cigp - 267 M9 = Codo) (
7.8}

o —a(n) —>(M)

Z(r C( #) * Z(

<@ —(nt+l) -y(m+£)

>
- C(de)




where ¢ can be chosen 25 any integer. Rotation by $, moves 7 in Vy t0 Yy ¢ and 7 in Ve 10 Vypy g Special

choices of £ give

o ’ > prary _ - “r
ZEM P — ) - 2,25 O,

(7.9)
> ) >
- Cltn) - 2O ) B
More generally choosing ¢ as —m+ * we have
& - L) - & lmmrtl) (Y -
Z(r ,r 3)=C(n_r) Z(r 38 Clfp-m) (7.10)

with ¢ as any integer. So as a supermatrix we can see that at the level of the n, m indices the individual dyadics
can be rotated into forms which are functions of #-m only. In this form and at this level (outer inddices) the
supermatrix is then circulant. Note that if the dyadic kemnel were instead scalar the additional rotation dyadics
would not be needed.

identifying in (7.9) (first form)

n-m= u-1

Fptrm 2O o G 207,y | § 26D 20 G-ty
we have the dyadics in the circulant form in (A.11) and the results of Appendix A apply. Then the form
20 20V 0 2 Cgn) - 2R 29 - Bl 7.12)
is precisely that in Appendix B.
Form (as in (B.8))
— ug
F.00,20 = 3 B - FunPO, 700 W (7.13)

u=]

19




—{0) and ;*(0)'

noting that the ~ variables extend from Vy to all V,, via (7.3). Like (B.5) let us lock for eigensuper-

vectors of the form

[7,,(?,:)} = [‘;’(‘r""’,s)J - [C(m T 509 xg (7.14)

B A

«>
where the C(#,) rotate the current-density orientation to the various V,, and the x,;., weight the currents in the

various V,. Then we form (from (7.7) and (B.9))

s Vati
_<[C(¢n)' 2,707V T g, 7 .s)an] (7.15)
Vo
Lo d Fard r ’
= | Com -<‘?q(?(°’,?‘°’ 195 T 5q (7 ,s)x,rq> Y
Vo
N
Vair = UV,; . Vv =V
n=1

Here the subscript V,y; indicates that the integration is taken over the entire target volume. The various ?(") have
all been rotated to Vi so this is just ¥ times the integral over a single V,,, but this factor is just the N appearing in

the summation of the N terms in (7.13), the order of summation and integration also being interchanged.

—
Now require that the j 8q diagonalize the integral operator, i.e.,

~ - 1 ‘ 5
<?q(‘r"°’,?"°’ 91 T g7 Y 9)=75,00 T 5,7 %) (7.16)

20




The index & now generally has en infinite range (infinite number of eigenvalues for § = 1, 2, ...), instead of just
three, but this is not important for the present discussion which concentrates on ¢ and n. [f one wishes one can
orthoncrmalize the modes based on either (7.7) or 7.16).

Retumning to (7.15) we have

3 om © 3 oy
[k(?( ).S)J = Z5q(® [C(ﬁn) . fa;q(’w) +5) IHWJ
s ) .17
= Z5q(s) [;‘(?""’#)J
8

so that in (7.7) we have
Zp(s) = Zpal®) (7.18)

giving now both the eigenvalues and eigensupervectors of our scattering problem for C p; symmetry.

To illustrate the spatial properties of these modes, consider the special ¥ = 3 target in Fig. 7.1. This is
composed of thin wires, ane on the z axis, and three carved wires all connected together at the coordinate origin.
Consider first the properties of the Nth or Oth mode for which we have

—jlxn) —

1 1
(xn)lv =(x,,)o = W(e = W(L L---, 1)

- - - (7.19)
4 = —(n) 1 | < -+ )
G 5w =G 050 = 7—-—[0(&,,) -7 507 ,s))]
N
Interpreting these modes as currents on thin wires near the origin we have
1, = = . N
n=Iy for nm=12,---, (1.20)

Igp=—N I, for all »

The other modes have (see (A.5), (B.7)

21
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[§]

h

A. Angular view

g = | (g =2 similar with
reversed sense of phase
rotation)

B. Top view
Fig. 7.1. Characteristics of Eigenmodes for ¥ =3.
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(xn)q = W (e

N (7.21)

Z Xpg = NN lgy =0 for g= N0
=1

Thus enly the n=0, & mode has nonzero net current on the z~axis wire, as indicated for ¥ =3 in Fig. 7.1

For the case of N = 3 we have

L 2
(X)) = 73-(8 3, 3.,D
L iE
(x5)2 = 73-&: 3.7 3,D (7.22)

(5)3 = (i)g = %(l, 1. 1)

giving the struchure {with respect to n) of all three modes. The ¢ = 1 mode has no (net) component on the z wire,

and has the three wire currents (sum zero) with relative values (phases) as in (x,); so that

2r 2x

-f— —

J
!1==e 3 13,12'-':83 13 (7.23)

This is shown in Fig. 7.1B. The ¢ =2 mode has a similar structure, considering only the (x,), . There is, however,

3(0) (0

also the question of the J 5;q(r ,5), particularly whether any two g values give the same current density

distribution in Vj. For the moment modes such as (x,); and (x,)2, which are reflections (not rotations) of each

other, will be comsidered to have generally different current distributions in Vg such as _j’gﬁ (?(0)

S3(0
—;5,-; (?(0),.:) . We may also expect that natural frequencies associated with such modes are, in general, different.

,5) and

(An exception to this occurs if there is a transverse symmetry plane say z = 0. Then reversing the direction of
rotation of the modes is the same as looking from opposite sides (+ z directions) for which spiraling in one direction
(say + ¢) is reversed when viewed from the opposite side.) Diagrams like those in Fig. 7.1 can also be constructed
for other N usig (7.21).




8. Eigenmodes for Scatterers with Cy, Symmetry

Now add ¥ axial symmetry lanes as discussed in Section 6 to give Cpy, symmetry., Without loss of

generality one of the planes is takenon ¢ =0, 7.

The case of ¢ = 1 in Fig. 7.1 is now extended to include symmetry planes. In Fig. 8.1 consider the
symmetry plane described by ¢ =0, . Reflection through this plane is described by

I 0 O
—+ hnd -+ —
0 0 1

which corresponds to inversion of the target with respect to the y coordinate. As is well known [2, 19] the
eigenmodes and natural modes can be decomposed into two sets with respect to such a symmetry plane: symmetric
(5} and antisymmetric (as). These have the property for the current density

_f?m = Ry d —.f"

[?W’(‘r’m,s)} - &, -[?"’”G’.s}} 8.2)
5 P

[7(‘“)(_’?‘“!") = —(;y ° ?(m)(?’s)
5 5

An example of such modes is given in Fig. 8.1.

The mode index in (8.2) is given as #° to distinguish it from 8 for the rotational modes in Section 7.

However, they can be related to the previous modes.

The axial symmetry planes allow us to reflect the rotational modes in Section 6 to give ather rotational
>
modes. Specifically an cigenmode as in (7.14) gives another eigenmode, noting that R, maps V, into

V_, = Vy_, with the transformeations

CUI L

Ry - , _ _9
' ” g 8.4)
“—» i 0 ~ 0 - 0
Ry - _;5;‘7(?5")"‘) = ?5:—4(—;( )--’) = ?é‘:N—q(?( ).s)

24




current pattern

A. Symmetric mode with respectto ¢ =0, x

N ==I

B. Antisymmetric mode with respectto ¢=0,n

Fig. 8.1. Characteristics of Eigenmodes With Axial Symmetry Planes for ¥ =3, Combining g = 1, 2 Modes.
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This corresponds to reversal of the direction of rotation: ¢ = —¢, 2x—¢ n—>-n ., N-m g—>-q. N-gq. The

transformed eigenmode is

“> fard - 0
(Ry-Ctn) T 5q(Ry T 51xmg)
e o5 —+(0)
= (C{gp) Ry-J qu(rm -s)x—n;q) (8.5)

w s
(€@ T 5gP P 5hng)

“— ar 0
(C(gn)- 7§;N—q (?( )"T)xﬂ'v-'v—q)

Note that for ¢ =0, N this is a symmetric mode (with respect to all N symmetry planes). For the case of distinct ¢

and N —g there are two distinct modes with the same eigenvalue

Z5q(s) = Z5,q(s) = Zsn_q(®) (3.6

This is the case of two-fold degeneracy [9]. For special cases there is only one cigenmode with a particular
eigenvalue. One case is ¢ = 0, N. A second case occurs for even N with ¢ = N/2. This is analogous to the

eigenvalues of bicirculant matrices discussed in [6].

For cases of two-fold degeneracy we can take any linear combination of the two eigenmodes as an
eigenmode with the same eigenvalue. We can form symmetric and antisymmetric modes (with respect to the

¢ =0, £ plane) via

— . 1 L d > —(0
(7(”)( F.Nsitg =5 [(C@n) . 76;(; (r ( ),s)xn;q)
< “ =
+(Ry « Clg_n)* j’?6;‘;' (-ﬁy 7O )I—n;q):|
@7

3 1 < = 0
(_}(m) (-?.S))J;:tq = 5 [:(C(¢n) * jﬁ;q(_’?( ), )xn;q)

L) > 3 —» 0
-{(Ry - C(F’—n)'_J?J'.q(R.V e ))I—n;q)}

These can be left as above or renormalized in whatever form one likes.




Figure 8.1 illustrates the symmetric and antisymmetric modes for the case of C3, symmetry formed from

the g = | and ¢ = 2 modes. There can be a conductor along the z axis as in Fig. 7.1, but the net current (as distinct
from the detailed distribution of the current density) is zero here. Note the three axial symmetry planes bisecting the
three arms (which in general have no transverse symmetry plane).

Referring back to (7.22) we have the (x,}, part of the modes for this symmetry. The symmetric mode is

formed as

%[(’r"’)l + (x,,)z] = ﬁ;(co{%ﬁ], cos[i::-r—]. IJ

(8.8)
=7'3.(—05, —05, 1)

which is illustrated in Fig. 8.1A. Note that (8.8) only gives the relative amplitude of the net currents [, on the three
] 5 0
arms, the current-density distribution fom the 7 &g (?( ),s) requiring a more detailed calculation. The antisym-

metric mode is formed as

1

2 [(xn)[ - (xn)z]

4(2) 3)

which is illustrated in Fig. 8.1B. Note that the net current /3 = 0 on the third arm, while the ¢current density is not

in general zero there, merely being antisymmetric with respect to the y = 0 plane.
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9, Natural Modes Appearing in Backscattered Fields

Section 3 discusses the polarization properties of the backscattered fields in the h,v radar coordinates (Fig.
1.1). As discussed in Section 4, the natural modes are special cases of the eigenmodes. 3o the natural modes have
the same symmetry properties. The presence of a natural mode in the scattering can be detected by the presence of
the associated naturai frequency (pole in the s plane).

The symmetry properties of the natural modes are given by the geometrical symmetries, i.e., Cp and Cpyp
in the present case. From a polarization point of view one can distinguish between Cpy and Cp, symmetries for
8; > 0 by the lack of ¥ symmetry planes for which the crosspolarization is zero. This is also detected by the lack of

the target natural frequencies in the crosspolarization when the observer lics on such symmetry planes (also thereby
discovering the locations of these symmetry planes). Note that a target in real earth (as distinguished from the ideal
layered earth in Section 1) lies in the presence of various clutter (rocks, etc.). Nulling the target natural frequencies

in the crosspol signal is then a potential technique for reducing the influence of clutter in the target identification.
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10, Concluding Remarks

Here we have considered the cases of C y and Cy, symmetries in the targets of interest, as appropriate to

targets in the presence of a layered medium such as near the earth surface. The symmetry of the target appears
directly in the symmetry and associated description of the cigenmodes. This does not actually give a detailed
calculation of the eigenmodes, but decomposes the problem in 2 way that reduces the computation to a subset of the
target geometry. The present approach should be applicable to targets with other symmetries such as can exist in the
absence of a halfspace such as an ideal earth. [n free space targets can have symmetries corresponding to the
various point symmetry groups (rotations and reflections in three dimensions) [10, 19].

While we have been considering electromagnetic scattering and modes, the same techniques should be
applicable in quantum mechanics. The quantum wave functions of molecules exhibit the point symmetries of the
molecules [16, 17], and the energy levels are analogous to electromagnetic natural frequencies. Quanfum wave
functions {Schrodinger eqn.) are scalar rather than vector functions, thereby being simpler in at least one respect.
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Appendix A. Diagonalization of Supermatrices Circulant in Outermost Indices

Following [6 (Appendices A and B)] circulant matrices (¥ X N}

X Xj X3 Xy

X Xp X3 - Xy
(X"-m) = :N :l :2 :N : A
X2 X3 X4 - Xy
are diagonalized with the aid of the Fourier matrix
{ 27 2x r W
focid 222 AN-1122
&N e N e -1l N
2r 2x 2r
j2— 4— S2AN-1]=
| ej N e N e [ ]JV 1
(Unm) T : :
' N
2z 2x 22x
—1]%% N—j“% NEE2
Sy AV AN (A2)
1 1 1 |
\
t [ smE r
= hi = [
vl (Unm)
—~1 .
(Urr.m) = (Un.m)T (unitary)
as
N
-
(Knm) = (Unar) - | @ | - U a3
q=t
where the direct sum gives a diagonal matrix (V¥ x N) with the xg running down the diagonal with
_;'2:51
(A.4)

N
Xq = qu+l e N = cigenvalues
u=1
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Note that the cyclic nature of such 2 matrix allows us to interpret indices u > N by subtraction of integer powers of
N and for u < 1 by the addition of integer powers of N to place X, with 1 Su < N. For convenience the Nth term,
mode, etc., may also be interpreted as the Oth.

Continuing, we can write

(Xn_m) ' (Xn)q = xq(xn)lq
(xn); - (’L’M) = x4 (x,,);

1 -—j'ZJr’—lg-

(xn)q = W € N

= right eigenvectors (n intexing & components) (A.5)

(x,,)"7E * (%n),, = lqi.q, (biorthonormal)

where the right eigenvectors are columns (also rows) of (U ,,‘,,,)' and the left eigenvectors are rows (also columns) of

(U,,,m). We now have the dyadic representation

N
(X,,',,,) = qu (xn)q(”n); (A.6)
q=1

Consider now a supermatrix of the form

“ o &)
X1 X2 X3---XN

- D T T

(x,,,,,,J - | Xy X1 X2 Xwo a7

-

> 4> >

-
(X2 X3 X4 X

/

This is like 2 circulant matrix except that now the elements are dyadics or matrices (3 x 3). Consider 2 scalar form
by considering one of ¢ elements as

I
b
»
R
3
.u-

Xpp =
b.pmnm (A.S)
- o

xp‘p:;q = IP'Xq‘lp’ . q=n—m+1
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Here we constrain the unit vectors to be at most a function of p so that (X, prym) is circulant (in 7m indices).

Then (A. 1) through (A.6) apply.

- - —
Let now the unit vectors take on Cartesian interpretation as Iy, 1y, and 1 in all combinations with

p,p = 1,2,3. Then we have

3 3—» — 3 3—+ — > — =
Zzlpxp,p.n,m'p’=zzlplp‘xn.m'1p"p’
p=1 p'=1 p=1 p'=I (A9)
I L, L - o 8 oo “ o
=Y Ilplp*Xnm Ll =1Xnm+1l = Xom

as a way of reconstructing the dyadic from the scalar form. We can rewrite the dyadics in (A.7) in matrix form as

A\nd L d

Xnm = (Xpp)  » Xu = (Xpp) (A.10)

Now we can write

5.

h

((xp.p' ),, ,,,,J

(xp,p')l (xp.p')z (Xp,p')_'i"'(xp,p')N

(A.11)
Xp.p N (Xpp Xp,prd2 - (Xp )Nt
(XP,P')Z (Xp,p-)3 (XP-P')'* (Xp.p')l
in supermatrix (dimatrix) form. The matrix elements are written from (A.6) as
N
Xp.p'inm = pr.p':qxn;qu:q (A.12)

g=1

Conveniently the eigenvector elements are common to {not a function of) all p, p’. The matrix blocks are then

N

(XP-P')H,M = z}("p.ﬁ')q Xnig Xmig
=




N iy o HG
Jjiam= . i
(X P )q = Z(x P, PP)H'{-I e N (like a matrix-valued eigenvalue) {A.13)
u=1
N o jard
= Z Xure N (like a dyadic-valued eigenvalue)

1

]
il

and the full supermatrix is

(("p.p')q *rmg x::r.q)

M=

[(xp-p’),.m,J =

i=]
(A.14)
N
= 3 (pr), ®[(3n), 5y |
p.r p nlg\Gnig
g=1
with the direct product ® convention as in [ 12 (Appendix A)]. Note that we can also write
>
*q = (xp.p') (A.15)

q
in dyadic form in all of the expressions.

Now we can recogrize the circulant eigenvectors in the eigendyads separated out by the direct product.
One can also diagonalize (usually)

3
Xqg = |x = X5alr 4
7 = p,p')q Z 5a p);-,q( p);;q
g=1

(rp)a = right eigenvectors
(! p)a_;q = left cigenvectors (A.15)

(rP)Jl g ) (Ep)é'z;q = '151,5[ {biorthonormal)
Then for (X p,p* Ynm) We have 3N of each of

(’p)‘;. @ (xp) . " right eigensupervectors

13




(fp)&q @ (xp); = left eigensupervectors (A.16)

x5q = cigenvalues (3N of them)

This is found from more detailed derivations in {12 (Appendix A)]. The superdyadic expansion is then

N 3

[(xPsP')n_m] - Z Zxé':q [("n),s;q (fn),s;q] @ [(xn)q (xn);] (A7)

g=1 &=l
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Appendix B. Diagonalization of Circulant Supermatrices with an Additional Rotation

Counsider supermatrices of the form
> < “ -
(Yam) = (C(#m) * Xnm + C(-¢p) (B.1)

>
with (X m) as in Appendix A. Essentially the elementary matrices (dyadics) of the mth supercolumn have been
rotated by ¢,,,. Recalling (A.7) we have

+> -
Xr;,ng = xk » u=n-m=+1 (B.2)

Lo >
exhibiting the circulant property (at the outer indices) of (Xnm). The rotation dyadic C(¢#,) is discussed in

Section 5.

From (A.13) and (A.14) we have

o N “>
Xam = Xppdam = z Xq *mg x;!;q
g=1
N ug
‘:q = (xp,p')q = Z‘}_{)LH-I ejsz-
=1 ®.3)
o N o
(Xnm) = ((Xppdnm) = 3 %a® [(in)g )]

g=1
1 —jZIn—g
(x,.,)q = —W(G N)

This, of course, gives

Lo > 4> L d
Ynm = C(dpy) * Xam » C(-8y,)

> N L - -~y

=C#m) * | 2, %4 ¥g ¥mgq | * Clbm)
g=I

N - “—r Lz d -«
=ZC(¢,,,) * xq * Cl-6m) Zrg Img
g=1
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“ N (s - “ .
(¥Ynm) = Z[C(¢m) *Xg C("#m)xn;q xm;q] (B.4)

g=I

with ¥¢ = (xp, pr)q giving the inner indices and #, m the outer indices.
MNow try potential eigensupervectors of the form

«r (0
g = g = Tsndg = (Cn * T 5g *ng)

B = (4,q) = eigensupervector index (B.5)
5=1,,23 ., ¢g=,2,- N

0 . . . .
Note the rotation of the vector Ty’t&)&, as one progresses along increasing ». In addition, there is the complex factor

Xpq associated with the circulant eigenvectors in Appendix A.

So now form

— > —
(kn)ﬁ = (Yn,m) @ (}'n)ﬂ

N i Al = - hid —=(0)
= | D (Cldm) * xq" » Cl-8ndomgrme)| @ (C(8n) = ¥ 54 %mg)
g'=1
NN o o - . - @
= Z ZCO#M) © xgq » C-pdXpq'Xmg * Cem) Y Y S5q g
g=hm=l (B.6)
Al Y o A —>(0) -
= Z ZC(¢m) CXg Yag tag " Emyg *myg
g'=Nm=1
N N
“> > ()]
= l:c(¢n) xn;q:l ‘ NZ ZC(¢m—n)'?4' x;;q iy’ x;:;q' *mq " ?5;17
g’'=1l m=I|
]
Ynq ¥mgq =

First we have

L » _
Xng Xmq' Xmq' Xmq =




rg-q’] ., _mq~q']
fir m J2x N

= —1—-e e
N2
, jzlromlla=a’]
= ——p N
Nz
| Nbm om e y N2l pemdl .
— e N = — Z e N (cyclic property)
Nt w2
m'=mg m=0

using a geometric series identity [6(B.10)]. Continuing we next have

hid Lad - -
C@m—n)* Xq' Xmq Xnq’ mq’ *mg

N
N2,
g'=l

=

N o -
D Clmn) Xurre ¥ ¢
g'=1

M=

z/- M=

i

u
V¥ 208 N g leonem) o'
1 - > e Jiz—= §ri
=72 2 C@mn)-Xurte N3 e N
u=l m=| q’'=1
N N & o @ jEe
= Z Z C@mn) Kurrte N lyp
u=1 m=1
N o < j2£uq
=2 Cl_)Xunne ¥
u=1
©
= ¥

=

So now we have

— e
(kmdg = (C(#n) * ¥ - T o5 *mq)
which is starting to look like (B.5).

@)

o Bq o Hq—q] [r-m]ig-q']
2 J2x N eij T,

®B.7)

(B.8)

(B-9)

Next let the _y';’q diagonalize the ?q' This has the same form replacing the ?q i (A.15) and (A.16) by

?q . Then we have
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e —=(0) —{0)
yq M yé‘;qr = ytqu yﬁ,

¥&iq = cigenvalues, in general 3 for cach g (B.10}

Finally we have

— — 0
(kn)ﬂ= Ys,q (C{dp) * 3”(5,; xﬂ;q) (B.1H)

= Yégq ¥ n )g

demonstrating that the (? n)p are indeed eigensupervectors. Completeness reuires the complete diagonalization of

-
the Vg
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