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Abstract

Various forms of the BLT equation have been developed for modelling eleciromagnetic interaction with
complex electronic systems. This paper develops a form, BLT3, which is appropriate for efficient early-time
representation based on a geometric-series expansion of a supermairix inverse. The delays on the uniform-
multiconductor-transmission-fine tubes play a key role. For late-time purposes, an SEM representation is more
appropriate.




I. Introduction

For the analysis of multiconductor-transmission-line (MTL) networks there are various forms of the BLT
equation that have been introduced. The original form (BLT{) has been formulated in terms of uniform MTLs for
the tubes connecting the junctions characterized by scattering matrices [1]. This is the basis for the CRIPTE

computer code for calculating the electromagnetic response of complex systems [6].

The tubes can be shrumk to zero length by modelling them as junctions. This gives another form called the
BLT2 equation [2, 4, 7]. In this form, tubes can be replaced by more general structures which are characterized by
scattering matrices, as are the original junctions. Yet another form is the NBLT equation which allows the inclusion
of NMTLs (nonuniform MTLs) in the tubes with propagation on such tubes representable in terms of product
integrals [7].

Ir the present paper the BLT! equation is rewritten in terms of a series, giving what might be celled the
BLT3 equation. For lossless MTLs this gives a time-domain form which is convenient for carly-time computations.

For late times an SEM (singularity-expansion-method) representation is more appropriate.




2. BLT1 Equation

The BLT1 equation has the form

{(rm)u,y) = @Spm (D) @ (Tam(Nu)] © (Fuls)y) an
= (Spm(Muy) @ WV ())
This is written on a graph, the interaction sequence diagram, such as the example in Fig. 2.1. In this diagram with
four junctions .J,, there are six tubes, but we are more concerned with the wave indices w,, where z ranges from
one to twelve, as does its dummy-variable partner v in (2.1). Here u and v are topological indices ranging over the

interaction sequence diagram (or the topology). Now each tube has N . conductors (plus reference) with

N, = N, for uand v on the same tube (2.2)

One can think of the #, v indices as indicating waves with propagation directions as shown, except that for each z
there are actually N, modes (waves) based on an appropriate matrix diagonalization.

One can definc an N, x N, wave interconnection matrix (¥ ) with

Wyv =

{l if wave w, scafters into wave w, at 2 junction @.3)

0 otherwise

The importance of this matrix is that it is the structure of the scattering supermatrix ((§,,‘m(s)),,.v) which is block
sparse with zero blocks where wy, = 0. This is an important property in efficiently solving the BLT1 equation
[8). Note now that the S, m(5))y v blocks are the scattering matrices for the vth wave (', variables) into the uth
wave ( vV, variables) thereby identifying it asan N, x N, matrix.

There is a propagation matrix for the zth wave as
Form % = GhmlNu » Fim Dy

(f,'u,,(s))u = impedance-per-unit-length matrix (longitudinal) for the xth wave (2.4)

(?'n,m{s))u = admittance-per-unit-length matrix (transverse) for the uth wave




junctions

tubes

Fig. 2.1. Exampie Interaction Sequence Diagram




Diagonalizing the matrix product we find

N
G"c,, ” My = i? o (s) Wc,, (s)) pi (‘i'n (=) i
p=1 (2.5)
(Ve Ny = (5 (MNpyiw = p.n (biorthonormal)

where the eigenvalues ¥ 5., (s) are computed via the positive real (p.r.) square root. These results can also be used

to calculate

ey @i = G, D = T = G, D7 - @ m(o)
= (Z, " = &, )"
N
= 3 e, D pulTe, D i

p=l
= characteristic-impedance matrix for the uth wave

Forn M = TN * GopmVz! = Epms) - G, (N

= (&, 0" @6
Ny 5

> o (N e, ) o

p=1

= characteristic-admittance matrix for the uth wave

]

('\7‘.‘.'l ) pu = (2._."'m ) = () i (normalization between right and left eigenmodes)

in turn, this propagation matrix is used to calculate another term in (2.1), the supermatrix (block diagonal)

N, -
((Fn.m(s))u,v) = @ e‘(rc"""(m" b = delay supermatrix
x=1
(frz,nl(s))u_v = (On‘m) for u = v
L, = length of tube on which the uth wave propagates 2.7

where the repeated direct sum piaces the square biocks progressively down the diagonal of the supermatrix. Each
block can furthermare be diagonalized as

— N T
. (r‘n,.ﬂ (V) Ly - ie"?p;u(-') L, (‘TC,. (s))p;Il (z" (_')) pz (2.8)

p=l




We have the combined voltage vector for the uth wave as

FnzgyNu = Fn(zuns)) + (2, (N (T1(24.5))

z,, = distance travelled by the uth wave along its tube from 0 toward L, (2.9)

The subscript u on the combined voltage is important in that it identifies the positive direction along the tube which
in tum gives the convention for the positive direction for the ¥, curents 1,(z,.5). For the other wave on the
same tube, say the vth, the direction is opposite. So by sum and difference the voltages and currents can be
recovered from the combined voltage vector. In (2.1) the combined voltage supervector is the collection of all the

outgoing waves as they leave the junctions, i.e.,
(PrlsDu) = Wp(0,50)) (2.10)

There are, in general, per-unit-length sources alang each tube, which for the uth wave take the combined

form

T @M = T @uos)) + (2o D + T (24059 @i
analogous to (2.9). The uth wave has the solution

P M 7

P25y = A

+Tfe_(?cﬂﬂ(s))[zu_z"] " (p‘;f")'(z;‘,s))u ‘t&

0
<A > o 2u 7 (212)
= Z (_‘-"'c,, () g (fc,, (S))p;u - [e P 4 (¥p(0,5)y
p=t

Iy - ’
+ Ie_?‘p#(’) [“"""‘](’7,5’) (I""s))"dz']
0

This allows for the construction of the voltages and currents at arbitrary positions on the tubes. For use in (2.1) this

gives the source supervector as




((ffél)(;))") = [Tep{rcnm[-ﬂ][[‘uh:ﬁ'(l . (ffrsl)(z;‘,s))ué;‘]
0

. (2.13)
u jord ~ i~ r
= (Z(Vc,,(s))p;u@.(snm - Te_ PrulMbmsid L (o) (z;,,s»udz']
=1 0

Defining now the interaction supertnatrix as

Ty = Qpmduy) = (Spm(Nuy) © (T n(Nuy)
((nm)i,v) = identity supermatrix . (2.14)
l _{l forn=rm and u=v
IV T 10 otherwise

we have the formal solution of the BLT! equation as

(Ta D) = (T Nun) @ (SpmMuy) © D (s),) (2.15)

We will later explore some of the properties of the inverse of the interaction supermatrix. While (2.15) is expressed
in complex frequency domain it can, of course be represented m time domain via

V(D) = UKDy y) el © USpmNur)ol © (0
o = convolution with respect to {ime t

~ m two-sided Laplace ransform over time (2.16)
s = O + jw = Laplace-transform variable or compiex frequency

Frm V) = pm(uy) ™
noting that the supermatrices are also convolution operators in time domain.

Note at this point that the block-diagonal form of the delay supermatrix permits combining two of the terms
in the interaction supennatrix as

Ny
(Brem(Nupn) @ CamNuy) = | 2 Gnm@uw) * ComNury

i=]




= ((En,m(-’))u.v)
Enmuy = CamDay * T m(Nyy

@17 .

Sa this supermatrix has the sarne block sparse form as the scattering supermatirx.

So much for preliminaries. Additional details are found in [1].




>

3 BLT3 Equation

Now expand the inverse of the interaction supermaltrix in 2 geometric series as

(Kamun) = (TpmNun)™!
= {amday) = (Enm(Ny )T (3.1)

= Wnmdus) * Y, (EpmlsDun)’
=1

For this to make sense (X mm(S)}y v) must be-small in some sense of an appropriate norm small compared to I.

.One can verify the above formula by multiplying (dot-product sense) by ((7:.,_,,,(3))“",) and rearranging terms to

caircel all but the remaining identity.

[f we tnmcate the series in (3.1) with the {pth term, we gtill have the exact result

4
(Rrm(Dur) = Clrmduy) + i((f.,,,,(s))u,v)‘
=1

[ 4]
+ (Erm )0 © [((lm)u,v) + Z((Em(s))u,v)‘]

pr (3.2)

£
= Wl mduy) + i((z“,,,,,,(s)),,‘v)’
=1

+ (Epmu)0 @ (Rym(Niy)

which can be verified by dot multiplying and collecting terms. Rexrranging we have an alternate form

((E"”"(s))“ﬂ') = [npduy) ~ ((En,m(-’))u,v)!oﬂri

£o _ (3.3)
® [{(lm)u,v) "I'Z ((En,m('s))u.v)t
=1

Here we have examples of the usual geometric-series identities exiended to matrices.




To understand the convergence better, consider the propagation matrix. From (2.4) and (2.5) we have that

for a passive tube (perhaps loss, bul certainly no gain), the eigenvalues 7 pu(5) must be positive (or more precisely
non-negative) real functions, i.e, in the right half plane (RHP)

Re] ?p:u(s)] > © for s in RHP 3.4
More importantly as £ — o in the RHP the speed of propagation is limited by the speed of light ¢ {causality). For

our purposes we can limit this cven more by some v, of the fastest propagating mode in the wth wave (given some
model for (f,',_,,, (), and { P"’;,"m(s)),, using idealized dielectrics, conductors, etc.). We then have

Rc[?p:u(s)] 2 ?— as s — w in RHP

” | (3.5)

v, S c = [upgg] 2
In time domain this means that the fastest signal to reach the end of the tube takes a time

Ly

ty = —* (3.6)
Yu
{There may also be some attenuation.). This then says that for the associated delay matrix
Ao M by B —Fpls) L
(rn,m (-ﬂ)u,u =e amTH = ie V'S (vcn (S))p;u (.‘T:n (S))p;u
o 3.7
= Q,{-st,) as s> in RHP
where the exponential order O, (or O, ) gives a bound as [5]
0:(5(s)) = eXFO(e5)) as 5 59 (8)

for all > 0

Again since we are considering matrices with the bound taken in a norm sense,

Consider now the scattering matrix blocks. Assuming that the junctions are passive the associated
scattering-matrix blocks are bounded (in 2-norm sense) in the RHP [3]. Such matrices are also called bounded-real

scattering matrices [10]. Then we have




(1) for 5 in RHP
. 3.9
= O,(1) for s in RHP

('§n,m (-ﬂ)u,v

[f there are delays in propagating through a junction an even tighter bound is obtained in the RHP, but the above will
do for present parposes. Combining (3.9) with (3.7) now gives

(fnm(s))u,v = (gn,m(-‘))u,v * d:‘n,m(s))v.v
Og(—sty) as g-—» o in RHP

(@ rmNuy) = Oe(=stg) as s in RHP G-10)
i = min Iy for v = 1,2,'.", NW
¥
In the serics in (3.2) we then have
(Erm(Nuy)! = Ocl~tsi)

£
R Muy) = Wmdiy) + ﬁ(('f,,,,,(s».,_v)’ (3.11)
=]

+ O,(-{fp+1lsty) as s+0 in RHP

Writing the solution to (2.1) in the form

(3.12)

AGRE [«lm)u,v) +Z«Em(snu‘v)‘} O (SpmMuy) © TNy
=1

we have what can be called the BLT3 equation. The infinite series can be mmcated with remainder (error) as given
in (3.11).

An important aspect of this result is the form it takes in time domain, ie.,

D) = | {amdu)8@)e + ¥ (Enm@un | @ [(Snm@yy)el @ @TH)) (3.13)
£=1

i1




Noting that the exponential order in {3.11) represents time delay we have

g
K)o = iy ) 5@ + D U Emmlv )]
=1
for ¢ < [£g+1]ep

(3.14)

So in time domain the truncated series is exact up to some time dependent on the number of terms one takes. The

BL3 equation is then appropriate for early-time results. One also needs to know the sources ((¥,(?)),) from their

beginning (which we can take as / = 0 ) out to the same time. Note that [£y + 1]y is a bound, and depending on the

location of sources and observer in the network the time of validity can be somewhat longer.

Special cases can simplify the time-domain results somewhat.
dispersionless then we have in (2.4) and (2.5)

(Zpme = sWUpmdy » Fim() = s(Chm)

(Ln m)u = inductance-per-unit-twngth matrix for the uth wave
{Ch m)u =capacitance-per-imijt-length matrix for the w#h wave
!
6"(:,,,‘,,l N = 2l( L;:.m)u " (C;!.m)u]z
Ny
= Z ?p;u (s) (Vcn )p;u (icn )p;u
=1
~ s
Y pu(8) = 5 0 < Vpy S¢
Y pu
Vpu =speed {real) of the pth mode (wave) in the uth wave
Vy = max Vg, forp=12, -, N,

P

Various terms (including the characteristic-impedance matrix) are now frequency independent.

supermatrix now becomes

If the uniform MTLs are lossless and

(3.15)

The detay




Ny N
(Crmu,y) = @ i("cn ) piaaicy ) pu U~ 1 pia)

Ipy = = . (3.16)

so that each of the N, modes in the uth wave gives a simple delay,

Another simplification occurs in the cases of scattering matrices of ideal junctions [9]. This corresponds to
simple commections of the MTL conduciors through the junction to each other as short or open circuits implying no
less and no delay. Far such a junction we have -

SnmNuy = (Spmduy (constan) P
Snmuy = G pdu,v800) )
One can note that this property also holds if the junction includes resistors (frequency independent).
Combining these two results gives
Nu
ErmMuy = Sumduy * | 2. Ve) pivlic,) prydlE—tp) (3.18)
=1

This can be in turn substituted in (3.13) with various of the convolutions assuming the form of the addition of
delays.

I3




4. Late-Time Behavior

For late-time behavior it is efficient to utilize the system natural frequencies 5, (resonances) described by '

detl{((Fp m(sa Nuy) = 0 (4.1

at which frequencies the system can have a nonzero response ((F’;,(:a My) with zero forcing function
((S’H,,,m(sa Nuv) @ ((l:’un")(sa Dy y)- The interaction matrix as in (2.14) corresponds to the BLT I form, but one

can also use cther forms as in [7] (along with other forms of the forcing function).

Define righf and left natural-mode vectors via

((Tem(SaDuy) © @)da = (Opmduy)

((Up)y)e @ ((Tnm(sa)),,_v) = (Opm)uv) (4.2)
{(ralda @ ({(£4)y)a = | (optional normalization)

Following the general development for poles in the singularity expansion method (SEM) [11], we have

(] Eu.m(s))u,v ) = ((Tn,m(s))u,v )-l
= 2 Walt)walltuals—sa 1™
o

+ possible entire function {4.3)

- d ~
Wo! = (t)da @ = {(Tpmuy)| 8 Glla
ds =S5
where we have assumed first-order poles. Higher-order poles, when present, can be included using results in [12].

In time domain (4.3) becomes

(Kn ) = D Falld)a {€n)n) g €@ uld)

a

+ possible entire function (lemporal form) (4.4)

The early-time behavior, including any entire function, is discussed in Section 3. Convolving this termwise with the

forcing function gives what is called the class-2 form of the poles as




W)
=Y HaUn)dan)da © [(Sumuy )l @ KFal)oe™= u(s)] (4.5)
(74

+[[possible entire function]s] @ [(Spm(Muy)l © 47 W)y)

After the time that all the convolution integrals have been completed (after all the sources have been turned
off plus some additional time} one is left with 2 sum of damped sinusoids to characterize the network response. This
is related to the class-I form of the poles as

AW
= Hallmalltdda @ GamlaDuy) O (Fulsa))) €4 u()
[#4

+ singularity terms from forcing function {4.6)
+ paossible entire function

This form is generally easier to compute than the class-2 form due to the elimination of various convolution

integrals. However, as one backs up toward early timne more terms arc required than in the class- 2 case.
The properties of the two forms and associated entire fimctions have been studied at length for the case of

electromagnetic scattering as described by appropriate integral equations [5]. ‘This may give us some insight into the
possible role of entire functions in the temporal forms of the various BLT equations.

15




5. Concluding Remarks

The BLT3 equation developed here by manipulation of the BLT! equation into a series form is appropriate
for early-time and associated high-fequency (RHP) computations. Perhaps computer codes like CRIPTE will

someday implement this alternate form.

For late-time computations the SEM forms of appropriatc BLT cquations is more efficient. This leaves
some theoretical questions concerning how early in time SEM can be appropriately used. This also involves the

entire-function issues.

Perhaps yet more BLT forms will emerge with their own special applications.
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