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Abstract

For nonsymmetrical targets the unit vectors characterizing the pole residues and the constant-dyadic part of
the magnetic-polarizability dyadic do not in general line up as mutually parallel or perpendicular. For magnetic-
singularity identification of such highly (but not perfectly) conducting targets cne can stll £t the magnetic-
singularity representation of the target (in a target library) to measured data by optimal choice of six real parameters,
Three are rotation angles (Euler angles) for target orientation, two are angles from the observer to the target, and ons

is the distance from the target Besides target identification, target location and orientation are also estimated.




1. Introduction

In magnetic-singularity identification (MSI) of highly (but not perfectly) conducting targets (of finite size)
we have the general form of the magnetic-polarizability dyadic as [1-4]
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s = 0+ j@ complex frequency or Laplace - transform variable
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This magnetic-polarizability dyadic can also be expressed in time-domain (as a convolution operator) in various

forms appropriate to delta-function and step-function response.

In [3, 4] we found that symmetries in the target could be used to simplify the discrimination of such targets,

The symmetries make the various ;;g line up according to axes and planes of symmetry. This separates the
response into scalar functions of s (each containing a subset of the poles) times a common angular {aspect)
dependence. This allows one to constrain appropriate residues and cigenvalues in the identification process and
reduce the number of allowed arbitrary scalar parameters for fitting the measured data to the taret signatures in the

target library.




Whalt now if there are no special geometrical symmetries (rotation and reflection) in the target? One can

still use the natural frequency set as an identifier. However, what about the scalar M, parts of the residues? Can

these be constrained as part of the identification process?

For present purposes we use coordinates as in Fig. 1.1 where

—r} = (x,y.z) = coardinates for target stored in library

—
r’ = (x',¥".2"} =coordinates based on observer location and chosen orientation (1.2)

The target is located at {roughly centered on) the coordinate origin in the 7 system which we can also designate as

— b d e -
r’o inthe r* system. Note that the various coordinate axes are not in general parallel between the two coordinate

sys:cms since the target orientation is assumed not to be known by the observer a priori.

-
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The observer at 7" = 0 senses the scattered magnetic field which is written as [3, 4]
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1 ; =orientation of sensor coil
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m () 1. =magnetic moment of iransmitter coil
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(1.3)

1 - = orientation of ransmitter coil

__)
R = 7’| =distance of target from cbserver

_)
r . .
RO -= direction from target to observer

Our problem is then to use the scattered magnetic field (either for many frequencies or for a time-domain pulse) to
—
identify the target at unknown location g with unknown orientation with respect to the cbserver. While Fig. 1.1

shows the example of a target buried below the ground surface, this need not be the case. It could be present on

some other nonmagnetic body with low (or no) conductivity. -
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Fig. 1.1 Measurement Coordinates.




2. Symmetries in Magnetic-Polarizability Dyadic

Even with no point symmetries (rotation/reflection) [6] applying to the target, the magnetic-polarizability
dyadic has certain symmetries. Since we have assunted that the target is made of reciprocal media the constitutive-
parameter dyadics must be symmetric (equal to their transpose) as must we have

o =
M5y = M(s) 2.1

reducing the number of distinct elements in a 3 X 3 dyadic from nine to six.

g
Geometric symmetries in the target are characterized by arthogonal dyadics & ¢ (corresponding to group

elements) which wansform coordinates and constitutive parameters (say generically ‘_Ev'('?) Y which transform as [2]
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While the target geometry may have no symmertry the magnetic-polarizability dyadic still has inversion symmetry

1 = {(1), (1)} inversion group

1 00
And -+ = - = -
(1)—'51 = lx1x + 1y1y+ 1z1=|0 1 O
0 01 (2.3)
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(H—= -1
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1 . —1} = group representation
as can be seen from
“— Pt g =1
(=1 M(s} - (—1)= M(s (2.4)
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This is a consequence of the fact that M{(s) is not a functionof r .




3 Rotation of Target Coordinates

. . . , . .
For a target in our library with M (s) expressed in terms of (X, y, z} coordinates, we need o rotate it 1o
R . . . . -+ R
express it in terms of (x*, ¥, z") coordinates. Since the location r’g is not included here we need only rotate the

target coordinates to align the coordinate directions {unit vectors).

We have rotation matrices describing rotations about the coordinate axes by an angle yras [5, 6]

1 o o
(C,Si,},(l;f)) = |0 cos{y) -—sin{y)| = positive rotation by yraround Tx
0 sin(p) cosly)

cosly) O sinly) .
(C,(,?,",),(yf)] = 0 i 0 = positive rotation by around 1y .1

~sin{y) O cos(y)
cos(y) -sin{y) 0O
{(z) = | < _ - . -
(Cn_m(;tf)) = | sin(ly) ocos(y) 0| = positive rotation by waround 1
0 0 1

Each of these is an crthogonal matrix and is a group element in O; (=S0(2)) for continuous rotations about the .

indicated axes (with 0 < y< 27, or any real 2x interval). This does not imply that our target has such symmetry.

Every proper rotation (no reflections) in three dimensional Euclidean space can be represented in terms of

what are called Euler angles [S]. These can take various forms. For present purposes we can define
(08w w2 wa)) = (cva)) - (wa)) - (ihw)) 32

corresponding to successive rotations by iy, ¥, and 3 using axial rotations in (3.1). Note that
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from which we find
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This is then an orthogonal matrix and is a group element in O; (=80(3)) . It can be written as a single matrix as

(Or(t-:;(':”h'a"z- Va)) =
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This matrix can be used rotate the 7 coardinates to be parallel t¢ the corresponding r° coordinates, or
—
conversely. In order to express an orientation in the 7 systemn in terms of r* directions one reverses the process

so that
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U = (05ww2ys) - Ly (.6)
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The magnetic polarizability dyadic is then expressed in the * system as

& T &
M'(s) = (0 w1.w2.w3)) - M) - (05w 1. w2.v3)
—5
= magnetic-polarizability dyadic expressed in terms of r* coordinates (3.7

This can be applied termwise to the vectors in (1.1) as
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This gives us three real scalar parameters to vary each over a 2z interval to attempt to fit the Mo of a library

target to the measured data.

&
Related to the inversion symmetry of M in (2.3) we can also note that (0,(,*',',),) can be replaced equally

well by —(O,(,"‘;,),) in the above formulae. If the library target has geometrical symmetries we may expect there to be

muitiple choices of the angles in optimally fitting the library target to the darta.




4, Position of Target Relative to Observer

—_
. Rewrning to Fig. 1.1, we also need to consider the position r’g of the target with respect (o the observer.
—_
This is present in (1.3)in Rand 1 g which we need to fit the data to the targets in the library.

For this purpose we have the usual cylindrical ("¥’, ¢", z") and spherical (#", #, ") coordinates related as

x = ¥Ycos(¢’) . ¥ = ¥isin(g)
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. Since 1 g points from the target to the observer we have
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this gives two parameters 8¢ and ¢4 for fitting data to library targets. If we know something about the target
location a priori (e.g. buried in Fig. 1.1 so that #/2 < 85 < ) then the range of these angles can be limited from
the generalcase of 0 £ fp = mand 0 £ 9 < 2.

There is one more scaling parameter, the coefficient in (1.3), i.e.
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Knowing A4} (5) {the transmitter swength) then knowledge of By gives

= {inc)
R = ‘r-’—zuz__i {real and positive) (4.5)
161° Fg ()

Since R > 0 we can use R as a real scaling parameter in fitting the data to the library targets. Such is more

constraining than varying Ps{j@) over the complex numbers.




5. Concluding Remarks

Summarizing, for general norsymmetric targets, there are six real parameters for use in fitting targer
magnetic-singularity signatures to measursd data:

3 for targer crientation: Wi, Wa, ¥'3
2 for direction from observer: 83, ¢§

1 for distance from observer: R

The angies have a finite range while R has a semi-infinite range. In practice the range of R is lirnited by the distance
at which a target can be detected. If one is successful in identifying such a target then estimates of target location
and orientation are also obtained. (In [3] this is also obtained for a class of symmeitrical targets.)

By comparison targets with a 3-fold (or greater) symmetry axis (Cp for N 2 3) can be characterized by
only two real scaling parameters without simultaneously obtaining target orientation and location [4]. The six-
parameter fitting for nonsymmetrical targets makes it generally easier to fit a library target signature than does a
two-parameter fitting. Perhaps this drawback can be compensated by the inclusion of more poles (greater

bandwidth) in the representation of the target in the library and in the data collected.

In (1.3) there are two measurement parameters ?c (transmitter ¢oil orientation) and ?, (sensor coil
orientation) which can be varied to obtain more than one broadband measurement. By judicious choices of this pair
of unit vectors, say utilizing all three of the coordinate directions in the ? system, one can obtain six independent
measurements (noting reciprocity). Requiring that the library target parameters fit the data with the same set of the
six parameters (i.e., only one value of each of the six parameters used for fitting all the data) should make the target
discrimination more robust. The actual target, after all, does not change its orientation and location as one uses

- * . 4 q
various combinationsof 1. and lg.
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