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In identifying a target based on information contained in the scattered field one would like to avoid the
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Abstract

In identifying a target based on information contained in the scattered field one would like to avoid the
complications introduced by the medium around the target to the extent feasible. By concentrating on the properties
of the Green functions with both source #nd observer on the target (i.e., the scattering integral-equation operatcr) we
are abte to define targer-vicinity scattering parameters which are less sensitive to the clutier away from the target (by
a few target dimensions). These are independent of the incident field and the distant measured scattered field. We
are also able to solve a simpler scattering problem (the canonical problem) for a first approximation to these

problems. The change or difference from this simpler problem can be addressed via perturbation theory.




1. Introduction

The scattering of an electromagnetic wave from a target in a complex nonuniform medium, and using the
scattered fields to identify the target is quite a challenging problem. Even with a finite library of target types (e.g.,
mine or unexploded ordnance (UXO) the various types of clutter (e.g., rocks rough ground surface, eic.) can greatly
distort the signal one is trying to receive from the target. One would like 1o separate the clutter signals from the

target signals to the exient possible.

One approach to this problem (as in fig. 1.1) is to separate out the scattering phenomena at the target
{volume V,) and in its immediate vicinity V,, from the scattering of both incident and target-scattered fields at
more distant positions (clutter, ground surface, etc.). So we would like to concentrate on parameters which are

associated with the target itself, and not the propagation to and from the target through a scattering medium. We can

call such parameters targer-vicinity parameters. Of course, such parameters still have to be measured by the

scattered field as received by our antennas.

In the analysis let us assume that the target vicinity V,, as in fig. 1.1 has a simple or “uncluttered”
characteristic. It might be unjform and isotropic, or at least of a simpler character than that of the medium farther
away. In our approach to this problem we will define a canonical or background problem and compare this to the

more realistic problem with the clutter. By such we may be able (o see what remains the same, or nearly so. This

can even lead to a perturbation analysis to approximately quantify the changes.
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Fig. 1.1, Target and Vicinity.




2. Green Functions and Integral Equations

Here we are concerned with some of the general properties of Green functions and integral equations for
scattering [9], not the details required for a numerical computation. For a set of electric- and magnetic-current-
density sources we can write the resulting electric and magnetic fields as integrals (symmetric products) of the form

(in complex-frequency domain)

E(?,S)=( BL? P 7 ? )+ 31.2(?._;.5).7“7’-:))
= o .5 , & .3 ,
H(T .5 ={ B2a(F. 7 T e (7 )+ { D22(7.7 ,s}:?h(_?.n)

~ = [Laplace transform (2-sided} over time ¢ (2.1)

s = Q + jw = Laplace-transform variable or complex frequency

-
At this point (2.1) is merely a statement of linearity. The Dp,; represent the fields from discrete sources (spatial
deita functions) and can be regarded as Green functions. Their detailed mathematical form depends on the
properties (inhomogeneity, anisotropy, etc.) of the medium of concern, as well as radiation conditions (causality in

time domain) where appropriate,

The Maxwell equations with constitutive relations give

= & — S
fo‘(r.s)-.—.r,u(r,s) H{r.s ) 2.2)
o O 35
VX H(F.5) =[F(7 .5 +s (7.5 E(T.5)

where we have limited ourselves to the simple form of inhomogeneity and anisotropy above (avoiding, for exampie,

—
chirality). Applying this to (2.1) gives (away from sources, 7 # )

& - - o
D11(7.9) = [O(7.9) +sE(F. 017" - [Vx D21(7.9)]

& - - &

D12(7.5) = [G(7.5) +s€(F.o™ + [Vx D22(7.9)]

S -~ S (2.3)
D21(7.5) = —%‘ﬁ' (7.9 - [Vx D178}

S ~—1 S

D22(7.) = =2 B (7.9) + [Vx D12(F. 9]
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from which wave-like equations for the Dp g can be derived. If one assumes reciprocal media (symmetric

- . . . — -
constitutive-pararneter dyadics) then there is also symmetry on interchange of r and r .

For the simple case of uniform isotropic media (2.3) reduces via

72(s) = SEHIE) + ()] (2.4)

to have all four Green functions satisfy the usual wave equation with ¥ as the propagation constant. In this case the

2

dyadic Green functions can be written down in closed form [2, 4, 5]. This shows 2 singularity as 757 . Thisis
an important phenomenon, which we use later when considering approximations. In the more general case there is
still such a singularity but the complete representation of the Green functions is more compiicated. In some physical
situations with lots of clutter (rocks, ctc.) one may regard these functions as numerically calculable or even

measurable by appropriate experiments.

Applying (2.1) to scattering from a target we separate the fields into incident and scattered components,

noting that the fields in (2.1} are now the scattered fields in

- ~{inc) ~ (5c)
- -
BErs=E (P +E (7.9 25
5 =linc) S(s0) )
H(r.,s) = H (r.s) + H (r,s)
The target contrast (relative to the background medium) is given by
(?c (_r’.s) E 1 ‘&’, (?, s+ :?;(—r?, .r):l - Ii?(?. s)+s{?(_r’. :)] :I
5
(2.6}

S o S o S

HAr,s) = p (r.s)— py(r,s

where a subscript, refers to the target (scatterer). The constitutive parameters of the medium within the target
volume are those that would have been there were the target not present. They are used in defining the Green
functions and we have some latitude in choosing them for our convenience. MNote that the contrast permittivity has

subsumed the conductivity within it for convenience. The electric- and magnetic-curent densities are related to the

target contrast as

S & =
Je (P ) =5 €c(T.5) E(7F.5)

(




o Bl .
Jh -? ? 5)- H(_;. £) 2.7

&
(Fo=sH.
Since the target volume V; is restricted, only over this volume is the contrast nonzerc. The symmetric products in

(2.1) involve integrals only over V,.

Inctude a normalizing impedance Z {ohms, perhaps frequency dependent) such as a wave impedance

together with the magnetic field for convenience. Then the foregoing equations give the scatlering equation

Slinc)y
A — = (0] E (_; 5)
(dp,q(r. risy s ;(inc) "
ZH (r.,s
~ (5¢) - (5€)
= - ~ =3 -
E (r,s A E r.s
=l Stino) ) |-((dpa(F.Fisn © _(,c)( )
= - — -
ZH (r.5) ZH (r.s
- & =52 -
-+ -’ —+ =
={(Fpg(r.r)=(dpg(r,ris) @ E—:}“’-‘)( 79
ZH (r,n
“— s =, , — ’ e ,
(‘;’ 7 —;'.s)) = Dl.l(?.-?vs)'?c(_;»i) 27D 7,7;.0'?6-(7 +5)
Paqiie TR S, S L I S
ZD2)(r, ris): €c(r.s) Dy(r,ris) - u (r.g
— ’ —
- , s
(Spg(r. 7y =| =) 0 2.8
=
0 18(r—r)
And -+ — - — -+ — -
| = ly Ix+1 ¥ 1 y+ lz lz = 3-dimensional iden[ity

’

Noting now that integration includes r =7 ,» on¢ needs to be careful concerning the singularity there [2, 8].

Formally this integral equation is solved by inverting the integral operator involving the superdyadic

— ) > ) ~— v
(8 pg(7 710 = (8pq(F. 70 — (@ pa(F. 7o) 2.9)

and, in turn, operating on the term involving the supervector {6-component) incident field.




Now (2.8) is quite general and special cases simplify it somewhat. If the permeability contrast :El’;. is zero,

&
then (2.8) is reduced to a single 3 x 3 integral equation involving only D)1 from (2.1) together with the permittiv-

ity contrast. If the target is perfectly conducting then we have on the target surface S,

~ (inc) ~ (s¢)
L d — — —
(- |E G+ E (F.9]=0
L N L s SR S
ls(r)=1=15(r) 15(7) (3.10)
—

1,(_;) = unit cutward pointing normal to S at 7 {on S,)

—

&
and (2.B) is again reduced to 2 single integral equation involving only D11 from (2.1), and the integration is now

only over tangential components (2 components) on S, instead of over the volume V.

At this point we can note that (2.8), as stated, includes the incident field which is not a property of the

target. The target information is totally contained in the integral operator over V; (or S,) involving (? p‘q) . So

while we need an incident field to illuminate the target and produce a scatiered field containing information about

the target, it is the information in the integral operator that we seek.

There are various ways to view this operator {2]. The natural frequencies and modes used in the singularity

expansion method (SEM) are solutions of

—_

<(‘§’p_q('r’.?:sa» , (‘e’p<‘r")).c> =0 @1n

=3
This involves integration over the body, but the dp 4 contain information about the external medium. In any event

the natural frequencies and modes are independent of the incident field. One can also consider the eigenvalues and

eigenmodes of the operator used in the eigenmode expansion method (EEM) as




<(‘§’p,q('r".?';sanc? (‘?p(‘r"..r»p) = Ap(s) (Zp(7FoNp

_"" o~ r — :§ ’
<( ¢ p(?.-’))ﬁ 0 (?P’q(?:_; :-’a))> = Ap(s) (¢ P(_‘r’ ) (2.12)
:) ’ —~ ’ lﬂ =ﬂ
<( (7 .np @ (Zp(? "»ﬂz) = ppy = {o c1>rherv:fise
(biorthonormail}

These are also independent of the incident field and can be used to order the natural frequencies and modes. One
can also look at the low-frequency properties leading to polarizability dyadics {4]. For high frequencies one could

look at the asymptotic form of the dyadic operator as s — o in appropriate regions of the complex frequency plane.




3. Decomposition of Green Funetions

Now write the Green functions in the form

& oy 59 aW
Dpgl(r,ris) = Dpg(r.ris) + Dpg(r, r;s

~ , - (c) , ~ (A) ,
(2 pq(P 7380 = (@ pg(F 7o) + (4 pg(7. 759

& — =’ {:’(c) —_ ‘:*(A) —_ = 3
(8 pg{T 7350 = (8 00T T3 + (8 5, (7.7 :5) G-

¢ = canonical or reference problem
A = difference or change

;,(A) RN
(g pqlr riny =—(dpg(r,r;5)

-

Here we have in mind some canonical or reference problemn, which is simpler than the actual problem in important
ways. In particular, we would like the integral cperator (over V;) to be approximately the same for the two
problems so as to give, for example, nearly the same natural frequencies, natural modes, eigenvalues, and

eigenmodes as discussed in Section 2.

Referring to fig. 1.1, let us consider what appropriate canonical problems might be. As a simple example,
let us assume that the external medium (e.g., soil) is uniform and isotropic in the target vicinity with scalar
constitutive parameters o(s), £(s) and Z(s). Extend these same constitutive parameters into V, for defining the
contrast as in (2.6). Furthermore, extend these same spatially independent constitutive parameters to all space,
thereby defining the canonical problem as the target in a uniform isotropic medium for which the Green functions
are well known. In the real problem there may be inhomogeneities (e.g., rocks) outside the target vicinity. Thinking

of these are secondary scatterers then the difference Green functions are small (in V,) if the scattering back at the

target is small.

The canonical problem being defined in terms of the medium in the target vicinity, then the singularity at
7= _.r" (in V,) is contained in the canonical Green functions and is absent from the difference Green functions.

This is advantageous since we would like the canonical Green functions to dominate the target response. Viewing
the difference Green functions as related to a multiple scattering problem, we can see the importance of such
scatterers being sufficiently far away. If the target maximum linear dimension is &, then the linear dimension of
the target vicinity 4, should be somewhat larger, how much larger to be determined. In fig. 1.1, the target vicinity

{on which the canonical problem is based) is shown as bounded by a sphere, but other shapes may also be useful.




Note that there are cases in which this decompesition in (3.1) is not appropriate because the scattering back
to the target is large. Such is the case in which the external medium is lossless and enclosed in a perfectly
conducting cavity. Another example has a reflector in the externai medium focussing the target scattering back onto

the target. Recognizing that there are exceptions, let us continue.

In 2 more general sense the definition of the canonical problem can be based on symmetry [12]. Take the
symmetry inherent in the media in the target vicinity and extend it through the target and on to infinity. The
previous example was a simple case of a canonical uniform isotropic medium. In such a case the target can be
rotated and translated in this medium without changing the canonical natural frequencies, natural modes,

eigenvalues and eigenmodes. We can list some possibilities for the canonical medium in Table 3.1.

Table 3.1. Canonical Media and Associated Symmetry.

Canonical Medium Symmetry
Uniform isotropic All ranslations and rotations
Uniform anisotropic All translations

Layered medium, i.e., variation
in only one Cartesian coordinate
z

isofropic
-also allows anisotropy
with axis paraliel to z

Rotaticns parallel to and translations
perpendicular to z axis

anisotropic (general) | Translations perpendicular to z axis

Commenting on some of these cases the uniform isotropic medium can in principle be chiral, but this
should not be significant for targets in the presence of scil. The layered medium includes as a special case the
uniform isotropic half space such as might model soil in the presence of air. Concerning the symmetry an important
consideration concerns its relation to the target symmetry. If the target symmetry group is a subgroup of the

medium symmetry group then the medium symmetry does not destroy the target symmetry as far as jis
electromagnetic response. An example is a target with a two-dimensional rotation axis (discrete or continuous)

parallel to the z axis defined by an isotropic soil half space in the presence of air.




4, Perturbation of Canonical Solution

[f the difference term in (3.1) is sufficiently small we may consider a perturbation solution. Following the

procedure used in quantum mechanics [1. 10, 11] we introduce a perturbation parameter  and write

g - = =) — =’ :*(A) — =’
(8 pqlr.ris) = (8 ,,(r.ris) + hig, (r.7:is)
o 0= unperturbed or canonical problem “.n
T = perturbed or actual problem
Then the eigenvalues and cigenmodes are expanded in a series as
;1-.‘3(5) = Zhn :1..(5)(5)
n=0
= = N~ n ;(n) —
(Ep(F.ang=2 0" (€p (P 4.2)
n=0
3 ho ~nl
— =
(£p(ToNpg=2 "Ly (F.Np
n=()

The n = 0 terms correspond to the canonical problem, the r = 1 terms give the first order correction for the perturbed

problem, and the n 22 terms give successive higher order corrections.

Substituting these series in (2.12), collect terms according to the powers of h. Far n =0 we have

-(C) ’ -'(0) r - — 0}
(% pqP 750 © (epaFnp) = IQ5) (2 (P.np

5(0) & . - >(0)
(L pa(Fpg © (8,,7.7.0p) = 1w 25 F.np
(4.3)

ale) e 5300
(Lp (_?'.-r))ﬂl @ (—:p 7 SN ) = 18182

=(0 (e} . S0 -
(€p Fp @ (8,, 770 @ &p (Fmp) =P

Note that these parameters are all associated with the canonical (unperturbed) problem only. The “difference” in the

Green functions has not yet appeared. For n =1 we have

11




() ’ (1) . ~(0) .
<('§'p,qc‘r’.‘r’ N @ (ep (‘r’.snﬁz> + <(‘}’p.q(?.?;s)) ° (7, (-;,,))ﬁ>
T oy O =
ﬂ(-ﬁ')(‘-’p(r s))ﬂ+2. (Nep (F.sNg
> AL 50
= (1) “ -+ _, A
<(‘—'p (_r'.s))ﬂ e (qu(r 7 s))> <(fp (7.5) @ (gf,,;(?" s))5> (4.4)
) 30 _,
"A'(g)(-f)(f P (_I! .S))ﬂ + ﬂ.%)(_y)(g P (_? '3)),3

=(0) -’ 3 =(1) =0 -
<(ep (7 .sng @ (?p.q(‘r’.s»,g,> + <up (7.0 © (ep ('F.snﬂz> =0

S0
Operating on the left of the first of these equations by (£ g, p( r .r)}@ or on the right of the second of these by

S(0) —
O (r g.p(7 .5)) gives

© - (©
B = <cep Fonp® (G g7 70 @ @9(F s)m> (4.5)

as our basic perturbation equation. Setting & = 1 gives our perturbation solution for the eigenvalues as

5 = A + V(s +-.-
A P A (4.6)

1‘3’ (s) + 1%) (5)

It

It

For the special case that the Green functions are symmetric (e.g., the impedance (E field) integral equation

[3]) the foregoing simplify somewhat as

& oo alel o o
(8 pglr . ris) = (Spq(r risyT
PRCYNINN VIR

(8 pglrrrish) = (qu(r r -f))

3 = =5 9 S5 =
(£pl(r.shpg = (ep(r Ng (ep(r.s))ﬂ!G?(ep(r.s))ﬁz =18,,8, (orthonormal}

=(n) 5(n)
(£p (Fodg =(Ep (TN
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- 5(0) 3,(0) . S(0) —
A = <c?p (PNp? (8, (P 7@ (C0 (7 ,sn,g)

- "'('0) ’
TP = <£ep (7.Ng® HE,,:( Fm@ (e, ("r’..rnﬁ>
4.7

5(1) - S5(0) - ~5(0) 1)

<(?P Fonp @ (¢p F --')),81> + <(‘e’p (7.5 9 (ep (2 ,s))ﬂ2> =0
]

<(_¢’P (—; -')),BO ( 4 p (r J'))p‘> 0 (orthogonal)

The perturbation analysis can be extended to natural frequencies as in [1]. Here we can define the

unperturbed patural frequencies and modes by

1%1)(,‘%3%,) =0 , ;‘%mﬁ, = natural frequencies

50 o —+(0)
(ep (rusggNs = (ep (r)g
L i = patural modes

=(0) — (0 >0
(€p (rusgpllg =(Lp (r)g,
? sa7p ? ad (4.8)
&) -
<s“(?““:m))9(e (?))ﬁﬁ'>=(0p)
™ W\ =3
(ZP (r))ﬂﬁ' (gp‘(r r:ﬁﬁ' —(Op)
The perturbed natural frequencies are written as
(0) 4.9)

g8 = Sﬂ.ﬁ' + A.rﬁ,ﬁ'

The unperturbed eigenvalues are expanded in a Taylor series about "SJ}?' as

=) _ F0), (0) 4 o
ApBpY = Ap Cpp) * 55t ) 2 Asgpr +
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— 14 70
= d.rzﬁ(s)p,(ﬂ) Asg g + (4.10)

.

Noting that

Aptsp gy = (@.11)

from (4.6) we have

p1eY

= 30
0= Ag(spp) + Ag(spp)
4.12)
REE) W (
= dsl (5) ey Asﬁ"g + il'.ﬁ (sg.p)
B.5
Approximating :i%) by its leading term we have
D D)
Aspp = - BE : (4.13)
_..,1(0) (S)
ds s,

Note here that the first derivative of the unperturbed eigenvalue is assumed nonzero. If this is not the case one can

go to the second derivative etc. in (4.10),
This result can be related back to the integral equation. Differentiating the first equation in (4.3) with

. 30y .
respect to s and operating on the left with (£ gp(r ,N@  gives

(0)( )
“ g,

—_

EP P np® LG0T F o o

(0)
(ep (r "ﬁﬁ'))ﬂ (4.14)

5= sfa%.

0 — (c)—)—;

(¢p (rhpp @ *(spg(r )

(0 —°
O 2, (Fipp
(O

F:ﬁ.ﬂ‘




The eigenvalue perturbation is

(0 - (a) = -
PPy = <(zp (7.5 0p @ (o7 N ® 257 s ))ﬁ>
(4.15)

—3(0) - {A) ’ Q)
= <(z§, (Ppp @ (3,77 s5yn® (2p (7 ))M>

Note that the index set (889 (J'th natural frequency of the fh eigenvalue) can be replaced by a single index ¢ if

desired. Without reference to the eigenvalues, but only natural frequencies and modes we have

o) )] =
(g gy(F 732D ® (@ (e ) = (0p)

-y

<<zp (TN @ (3p2?(_1’"v?;3a))> = (0p)

—_—

=0 0 5
<up (THe® (ep ('r’))a> = (0p) (4.16)

(0 r @
<(ep (PDa® (TN 7 5an® (Tp (7 ))a>

A.s'a-"'-_

(0) 5
Ty (e © -—(qu(r L) @2, (Fa

=S
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5. Target in Presence of Uniform Isotropic Half Space

To illustrate some of the concepts consider a target in the presence of a uniform, isotropic half space such
as might model soil, i.e., 2 lossy dieiectric (with magnetic properties if desired). Asin fig. 5.1A, let the target stradle
the planar boundary 5, between this medium and free space. In this case the target vicinity V contains both media.
As discussed in Section 3 the canonical problem is formed by extending the media through the target making the
half-space and its Green functions the canonical problem. In this form one can investigate various characteristics of
the target in (or near) Sy, including tilting of a body-of-revolution target with respect to the surface normal [7].

Now suppose, as in fig. 5.1B, that the target is in the lossy dielectric half space, and not too close to S,
Then with the target vicinity V, not infersecting with S, one cap take the lossy diclectric medium to define a
canonical problem by extending the medivm throughout all space to give well-known relatively simple Green
functions. Then the free half space {(above S3) can be defined as the difference or change to the problem. This can
then be treated as a perturbation problem as in Section 4, which has been done in [6] for the case of a thin-wire

target.

Conversely, as in fig. 5.1C, the target can be in the free helf space. Then V; is free space which can be
extended through the target and to infinity to define the canonical problem. The lossy dielectric half space can now
be taken as the difference problem. As a perturbation problem this has also been treated in [6] for the case of a thin-

wire target,

As a limiting case the lossy dielectric can be taken as a perfect conductor, in which case §p is an image

plane. This has been treated as a perturbation problem for a thin-wire target in [1].
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Half space as canonical problem
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Fig. 5.1. Target and Uniform Isotropic Half Space.
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6. Concluding Remarks

So, by looking at the medium in V), (the target vicinity), one can extend this medium through the target and
on to infinity to define a canonical scattering problem. Then one can ofien treat the diference from this canonical
problem as a difference problem containing the clutter. Such dist'a.nt contributions can be considered as a smalil
change to the Green functions at the rarget, where both source 7 and observation 7 coordinats are in the target
volume V.. This is reflected in small changes to things like naturai frequencies, natural modes, eigenvalues, eigen-
modes, eic, that are properties of the iniegral-equation operator in the target domain V,. Such are the target-vicinity
scattering pararmmeters. A useful way 1o evaluate the desired insensitivity of the target-scatiering parameters (o dis-

tant clutter is perturbation theory.

Of course, one must measure the scattered fields away from the target at some distance. So the target-
vicinity parameters need to be observable in the distant scattered fields. For example, natural fequencies are
generally observable in the far fields, independent of the incident field conditions and observer location. However,
the strengths of these resonances (the residues) are functions of both of these. Thus there are questions concerning

the incident fields and distant scattering location (waveforms, polarization, etc.) for optimizing the measurement of

target-vicinity pararneters.
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