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Abstract

For buried targets and associated lossy dielectric half space with O, symmetry (vertical rotation axis and
axial symmetry planes, infinite in number} there is a two-fold degeneracy of the natural modes (for m2 1 in the
cos(m¢). sin(mg) decompesition), both with the same natural frequency. If the symmetry is not perfect, there is a
splitting of these natural frequencies. Such asymmetry can come from many sources including target tilting and

ground inhomogeneities.




1. Introduction

A recent paper [4] has introduced a target signalure based on continuous two-dimensional rotational
symmetry with axial symmetry planes (Cn., =0z symmetry). For wavelengths on the order of the target

dimensions, this is sufficient to give zero backscattering cross polarization in the usual radar k, v coordinates where

the axis of rotation is perpendicutar to-the T}, «direction: - Furthermore this property remains as the radar is moved
around the target. For on or under the ground surface, this also allows for a vertically stratified earth which
maintains the above symmetry. Note that it is the lack of something (the A, v backscattering) which is the signature.
As such this can be referred to as a vampire signature, a vampire not seeing its reflection in a mirror (in this case the
h, v mirror), at least according to legend. This signature has now been experimentally observed {8). Note that for
SAR (synthetic aperture radar) measurements the O, symmetry is important since measurements are made from

many azimuthal angles around the target.

As this signature is exploited. one should consider various theoretical and experimental aspects. No
measurement is perfect, various scurces of noise {errors) are present. One needs to quantify the amount of cross
polarization present in the data, and compare it to the A, & and v, v components. This can be approached via the
norms discussed in [6]. Furthermore, the target may not possess the O; symmetry in perfect form, particularly when

one considers the larget’s relation to the nearby soil which may not be uniform (e.g., rocks) and may not bave the

ground surface perfectly perpendicular to the target's rotation axis. This last problem is considered in this paper.




2. Ideal Case of Perfect O; Symmetry

Summarizing from [4] we have a target such as illustrated in fig. 2.1. In general, the backscattering dyadic

takes the form {2 x 2 considering only transverse coordinates)
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1; = direction of incidence (radar to target)
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19 = direction of scattering (target to radar) (2.1)
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Here we have
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1z = | sag = rotation axis of target and ground (2.2)
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For the h, v coordinales aligned as in fig. 2.1., with 1y and 1; parallel to a symmetry planc of the target
(and the radar) the backscattering dyadic reduces to
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This is the vampire signature. As one rotates the radar around the O, symmetric target (keeping 1 5L 1) this

signature is retained.

As discussed in [4] the eigenmodes and natural modes are doubly degencrate for m21 in the cos(mg),
sin(md) of all these modes due 10 the O, symmetry. As illustrated in fig. 2.2, these two modes can be taken as

symmetric and antisymmetric [12] with respect to some plane (the y, z plane in this case). One mode can be taken
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Fig. 2.1. Target and Radar Coordinates.
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Fig. 2.2. Modal Degeneracy for C.; targets form=1.




as a 90° rotation of the other mode to form a convenient basis. These two modes share common natural frequencies
(associated with a doubly degenerate eigenvalue of the scattering integral equation [3]). For m > 1, the natural
frequencies, being doubly degenerate, appear in both A, A and v, v polarizations, albeit with generally different

residues.

For the case of m = 0, there is only a single natural mode to consider for each natural frequency (except for
accidental degeneracies not associated with the symmetry [4]). Each such natural freqguency appears in exactly one

polarization (A, A or v, v, but not both).

S0, beyond the zero crosspol one can analyze the hh and v,v scattering to find sets of natural frequencics

with properties as just described. Thereby one can proceed further in the identification of the target.




3. Target Axis of Revolution Tilted with Respect to Ground Surface

Suppose now that our target is now lilted somewhat with respect to the ground surface as indicated in fig.
3.1. While the target itself still has O, symmetry, the combined target with environment does not. However, in

tilting the target we are still left with a symmetry plane $ which contains the target axis of revolution (direction

—
1 1 g ) and is perpendicular to the ground surface (z = 0 plane). For gonvenience we can take the coordinate origin

—
( _r" = 0 ) on the target axis of revolution. and S as the y, z plane (x = 0).

Define the usual cylindrical (*F, 0, ¢} and spherical (r, 8, $) coordinate systems via

H
u

Weos(g) . y = ¥sin(g)

reos(8) , W = rsin(6) G-

~
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Our radar is located at some azimuth ¢, . The radar is assumed to have a vertical symmetry plane aligned with a
plane of constant ¢=¢,. As one rolates the radar around the target (varying ¢, ) one will find two values of ¢,,
say ¢; and ¢, for which ¢, corresponds to the symmetry plane S of the target. In these two cases the backscatter

cross polarization will be zero. Only a2 common symunetry plane is required for this property to hold [2, 4, 11].

With this symmetry alignment the v, v part is symmetric and the Ak, £ part antisymmetric. Whereas in [4]
these two parts have modes (eigenmodes and natural modes) that are pure 90° rotations (due to the O; symmetry),

now such modes are in general slightly different (for small tll angle yr). Associated with this mode splitting 2 single

(=)

natural frequency s, Is split into two closely spaced natural frequencies which we can designate 55”7 and st(:s).

Now move our radar such that ¢, = ¢;,¢, . In this case the crosspol is in general nonzero. However, the
natural frequencies, being solutions of the scattering equations with no incident field, remain the same and appear in
genera! in all in-line and cross polarizations. Of course. for small y we may expect small crosspol but this may
require detailed calculations and/or measurements. This kind of perturbation of natural frequencies has an analog in
quantum mechanics where energy levels are perturbed by breaking symmetry as in the Stark and Zeeman effects {9,
10].

For m = 0, as discussed in [4], there is no double modal degeneracy. For O; symmetry (no tilting) such

modes are ¢ independent with components expressed in cylindrical or spherical coordinates. Each mode is either
symmetric (no ¢ componeni of electric current density) or antisymmetric (only ¢ component of electric current

density), but not both. So certain natural frequencies s,(;‘v ) appear in only v, v polarization and others :gu) in only




h, h polarization. In this case, tilting the target a small angle y changes these modes a small amount and shifts the

natural frequencies a small amount, but does notsplit the 5, into two where there was one.
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Fig. 3.1. Tilted Body of Revolution on/in Layered Earth.




4. More general Symmetry Breaking

The previous section considered a special kind of symmetry breaking, namely tilting, which left reflection
symmetry R, instead of O; symmetry. In this case the mode splitting for m > 1 can be described by symmetric and
antisymmetric modes with respect to the symmetry plane 5. However, there are more general types of symmetry
breaking that one encounters. These also split the doubly degenerate modes and natural frequencies.

The deviations from ideal O; symmetry may include:
non-flat ground surface (including rough surface)

ground inhomogeneities other than vertical layering (e.g., rocks)

imperfections in the target (intentional or accidental)

a0 o op

non-ideal target placement (e.g., tilting as in Section 3)
A realistic situation may include all of the above.

A peneral approach to such problems is perturbation theory in which the deviation from O; symmetry is
small in an appropriate sense. In this procedure, one first solves for the case with O; symmetry, finding natural

frequencies and modes (say using a superscript 0). Then one writes the natural frequencies and modes as

5a=3g)) +A5a
(4.1)
P N () B s
Ja(r)=Ja—(r)+AJa-(r)

the idea being to solve for the As, for small excursions from O; symmetry. One appraoch to this consists in sctting
up an integral equation with incident field set to zero (natural frequencies being values of s which admit solutions

—_
(natural modes) j a(_;) with no forcing function). This homogeneous integral equation is then cast in two forms:

perturbed and unperturbed. The perturbed problem can involve a perturbed Green'’s function (e.g., accounting for

medium inhomogeneities) and/or a perturbed domain of integration {presence or lack of soil at earth surface or

change in medium parameters). Expanding the Green’s function n a Taylor series about sg)) the equations can be

manipulated to obtain an equation for smatl As, . At this point, one can note that there can be more than one As,

. -(0) &
corresponding to the degree of degeneracy of the j ., '( 7).




With the generai problem being numerically complex, some simpler cases have been solved which can
shed some light on the present problem. In [1] the perturbation of the thin-wire poles by a mirror thin-wire is
constdered. This shows the case of splitting double degeneracy for mirror objects in free space. One of the
solutions (antisymmetric) corresponds to a thin wire in the presence of a perfectly conducting plane. In [7] the
general perturbation formulas for a set of bodies are presented. This approach can be applied, for example, to the
problern of a buried target in the presence of a rock (not too close} using the Green's function for auniform or
layered-soil half space. In {5] the effect of the soil-haif-space surface on the natural frequencies of a buried target is
considered. Numerical results are presented for a thin wire showing how the perturbation of a natural frequency
depends on the tilting of the wire with respect to the ground surface. These canonical results can be usaed to get

some physical understanding of the perturbation process, and lead 1o additional canonical calculations.
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5. Special Case of O; Symmetry

One can also have a target with O; symmetry (orthogonal symmetry in three dimensions). Such a target can be a
perfectly conducting sphere, a uniform dielectric sphere, or 2 more general form as discussed in [3]. In this case any

f—
axis can be taken as the rotation axis 1 . For such 2 target buried in the ground there is no sense in trying to tilt it,

—,
Just align 1, perpendicular to S, and we evidently have a case of O; symmetry, the O; symmetry being broken by

the ground surface. This remains O as long as the ground retains Qp symmetry (e.g., layered).

This type of target buried in an appropriate halfspace then retains the vampire signature, no matter what it’s

orientation or location (e.g., protruding through the ground surface).




6. Concluding Remarks

Symmetry analysis has shown how the two-fold modal degeneracy (for m > 1) for a buried target and
environment with O, symmetry is split into two distinct modes and naturai frequencies by breaking the Oy
symmetry. This is a qualiiative result, not giving quantitative values for the natural-frequency shifis. However, i1 is
a starting point for such a quantiative analysis. In particular the O; symmetry results can be used as a first term in a
perturbation analysis which can be considerably simpler and give more physical insight than z purely numerical

solution.

While some perturbation analyses exist for thin wires in the presence of lossy dielectric half spaces, such
analyses need to be extended to O, targets such as conducting and dielectric circular disks and truncated circular

cylinders, as well as more realistic target-representative shapes,
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