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This paper deals with probabilistic modeling of the EM response of cables inside a complex
cavity subjected to well-overmoded EM penetration. Theoretical studies indicate that the field
amplitudes and cable currents squared both should have a chi square distribution with two degrees
of freedom, but our observations indicate that a log normal fit is empirically better unless the data,
if experimentally obtained, is first passed through a carefully tailored trend-removing filter. If a
cable model is driven by statistically simulated enclosure fields, similar extreme care must be taken
with the numerical generation of these driving fields. The major innovation reported here is the
development of a Monte-Carlo algorithm which models cable-drive fields simultaneously Laving
a chi square power flux distribution, and the physically mandated local autocorrelation at a spatial
point as frequency is swept or at a fixed frequency as the power flux sensor is moved around to map
the cavity response. Nature is quite adept at creating a cable drive with these simultaneous
attributes, but computer emulation had proved very exasperating. Our algorithm, as an unplanned
bonus, also has the capability to transform random numbers from one distribution to another. For
instance, one can input normally distributed power flux values and obtain as the output chi square
or log normally distributed power flux values. The reverse transformations are also allowed.

1 g}% \a(/)%ré(lwas supported by the U. S. Air Force Phillips Laboratory under Contract F29601-

pFRL/DE - 2T



Interaction Notes
Note 544

September 1998

STATISTICAL RESPONSE OF EM-DRIVEN CABLES INSIDE AN OVERMODED
ENCLOSURE!

Richard Holland and Richard St. John
Shield Rite, Inc., P. O. Box 8250, Albuquerque, NM 87198, (505) 842-6018

Abstract

This paper deals with probabilistic modeling of the EM response of cables inside a complex
cavity subjected to well-overmoded EM penetration. Theoretical studies indicate that the field
amplitudes and cable currents squared both should have a chi square distribution with two degrees
of freedom, but our observations indicate that a log normal fit is empirically better unless the data,
if experimentally obtained, is first passed through a carefully tailored trend-removing filter. If a
cable model is driven by statistically simulated enclosure fields, similar extreme care must be taken
with the numerical generation of these driving fields. The major innovation reported here is the
development of 2 Monte-Carlo algorithm which models cable-drive fields simultaneously having
a chi square power flux distribution, and the physically mandated local autocorrelation at a spatial
point as frequency is swept or at a fixed frequency as the power flux sensor is moved around to map
the cavity response. Nature is quite adept at creating a cable drive with these simultaneous
attributes, but computer emulation had proved very exasperating. Our algorithm, as an unplanned
bonus, also has the capability to transform random numbers from one distribution to another. For
instance, one can input normally distributed power flux values and obtain as the output chi square
or log normally distributed power flux values. The reverse transformations are also allowed.

g’ék‘u% \%%réclwas supported by the U. S. Air Force Phillips Laboratory under Contract F29601-




Introduction

This paper reports accomplishments in statistical modeling of the electromagnetic (EM) field
and cable response of an enclosed system in the presence of radio frequency (RF) leakage and
penetration. The problem of predicting cable or pin currents in an enclosed, leaky system under RF
illumination or other RF interference (RFI1) at a frequency where the enclosure is many (>6)
wavelengths on a side (i.e., well overmoded) is all but impossible to solve deterministically.
Moreover, even assuming a supercomputer and state-of-the-art finite-volume time-domain (FVTD)
code were available, one could logically claim a deterministic solution would be of no value. This
claim could be made because, in such a scenario, a 1° rotation of the enclosure or a 1 percent shift
in frequency could alter the response at any given pin or circuit device by 20 dB. Additionally, the
interior of a satellite, aircraft, or missile has wiring of almost inconceivable complexity as viewed
by an FVTD practitioner who is used to zero or one (two if he is really heroic) conductors passing
through each FVTD cell.

To solve this sort of problem deterministically, one not only needs to track the fields in 10°
to 10° FVTD cells, but also to model the drive these fields impose on each conductor (or even each
1C) passing through or located in each cell. The final nightmare is that each of these conductor and
IC currents must then be fed back through the FVTD version of the curl H equation (Ampere’s law)
to drive the algorithm which advances the FVTD field solution. Despite 25 years’ experience with
FVTD and finite-difference time-domain (FDTD) codes, it is our conviction that this problem is at
least two computer generations from tractability, even assuming a deterministic solution could be
of any use.

Given this dark and bleak outlook on deterministic analysis, the RFIl community was
thoroughly awakened by a statistical approach worked out by Price and Davis which appeared in
1988.[1,2] A statistical treatment, unlike a deterministic treatment, actually thrives on complexity.
In many situations, the statistical confidence interval depends on the inverse square root of the
amount of data provided.[3,4] The statistical approach develops a probability density function
model for the fields inside an enclosure which is not a hair-trigger function of frequency,
illumination angle, wiring configuration, or any other parameter. The most elementary probabilistic
models use the assumption that the distribution of electric or magnetic field squared (i.e., power flux
projected on a dipole antenna’s cross-section) are chi square distributed with two degrees of
freedom,; i.e., exponentially distributed. This distribution is characterized by a single parameter, p
the mean value.[1,3]

In this paper, we work out relationships for determining the statistics of the driving fields to
apply to a circuit analysis code representing part of an enclosed system’s wiring. This modeling
must be achievable from a very minimal amount of information, such as just the empirically
observed average power flux or dipole antenna energy pickup in the enclosure of interest. We also
address other aspects, such as limited spatial and frequency coherence, which a statistically based
field drive model must have. After all, there is some small distance Ar and some small frequency
shift Aw below which the RFI response at a wire or pin in the enclosure will not change
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significantly. It proves to be non-trivial to generate field models which simultaneously include the
proper field distribution and coherence.

Statistical and Empirical Background

The cable power or EM field power flux versus frequency plot made by a sensor inside a
resonant, overmoded cavity will, in general, lock like the highly irregular lower curve in Figure 1.
There are two classes of factors which contribute to the fluctuation seen in this sort of measurement.
The first are slowly varying effects or “trends”, such as frequency-dependent { inside the cavity and
cable attenuation in the measuring setup. The second are rapidly varying effects, such as a 1%
frequency shift causing the sensor position with respect to the standing wave pattern to shift from
a field or current peak to a field or current null, The same distinct types of fluctuation occur if sensor
position instead of illuminating frequency is the independent variable. The trend on a data set
obtained as Figure 1 corresponds approximately to the slowly varying spatial function g{r")
introduced by Price and Davis [1,2] at their Eq. (5). It also corresponds to the field nonuniformity
observed by Hill [5] in a stirred-mode reverberation chamber, and shown in his Figures 8 and 9.
(We have not personally worked with data where the driver or observer position changes, although
this sort of study was reported in [5].) In this article, we are only interested in effects and statistics
of the second class of fluctuations. Separating or factoring the trend from the rapid fluctuation is
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Figure 1. Cable current squared (power) as seen on a cable inside an
enclosure (the EMPTAC aircraft shell) illuminated by overmoding
conditions.




referred to as “detrending”. We implement it as follows:[6]

Start with the data array P, (n= 1,... N). Let L ,be the log of P, Then, convolve the L amray
with a truncated filter of the form C, = (sin an)/(21man), where the truncation is symmetrically set
to include the central lobe of C, and two sidelobes (the first positive-going and the first negative-
going) in each direction. Let us imagine for a moment that the data is actually a function of time
(not frequency), with each point separated by 1 s. Let NV, be the number of points inside or at the
truncation limits of C,. Then convolution of the L, array with the C, array corresponds to passing
L, through a low-pass filter of cutoff frequency 1., = 3/(N, - 1). The low-pass convolution output is
the trend of L,, M,. The smooth lower curve in Figure 1 represents exp(Af ), the trend of the original
array. Thus, (L, - M) is the detrended data array in the log, domain, and P, = exp (L, - M,) is the
actual detrended data, which is represented by the upper irregular curve of Figure 1. Note that the
original lower, rapidly varying curve in Figure 1 is the product of the upper curve and the lower
smooth curve. For the Figure 1 data set, we empirically found 91 to be the best value for N,; this
corresponds to £, = 0.033. The variable « is then adjusted so at(V, - 1) =3m; i.e,, . =0.1047. The
optimum value of N, might be expected to vary dramatically from experiment to experiment, and
to depend strongly on how every data set is obtained. We have, somewhat to our surprise, however,
found N, = 91 to work well on data sets of all experiment types (four enclosed systems) we have
sought to detrend.

This concurrence of N, = 91 for four different experiments is probably serendipitous. On the
other hand, a highly skilled experimentalist may (pardon us) have an intuitive feel for how densely
to sample data so that nothing is lost, but alsc nothing extraneous is recorded, and may
subconsciously or deliberately set his recording equipment so N, = 91 is consistently optimum for
detrending power flux data taken at just the right spacing.

There exist rationale and precedent for dealing with the log arrays, as opposed to the original
arrays. For instance, if {#,} is a chi square ensemble with two degrees of freedom, then Var{in{z,)}
is always m%6.[7] Thus, taking the variance of a log array is a simple test to reveal whether the
original array is, at least by one standard, approaching chi square. In Figure 1, the quantity o, is
given. This is the variance of the filtered {In(u,)}
array normalized by ©%/6. Aside from a somewhat subjective examination, the selection of an
optimum N, associated with the filtering of a family of data sets is determined by choosing a value
which makes the average 0, of all the data sets in the family closest to unity.

In a simple, ideal world, we would like not to have to remove trends. It has been established
that, if we could devise an experiment with trends absent, the power picked up by a dipole antenna
in an overmoded cavity would obey a chi square distribution with two degrees of freedom. (At
present, we do know how to deal with trends, but this subject is beyond the introductory material we
are presenting in this paper.) This statement is true under cw conditions, and would apply whether
the observations are made at a fixed observation point while frequency is swept or whether the
observations are made at a fixed frequency while the sensor probe is translated or rotated.{1,2,6,8]
It also appears to be true for a mode-stirred reverberation chamber where the paddle angle is the
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independent variable.[9-11] As already discussed, however, this ideal result depends on the cavity
not having 2 frequency-dependent Q and on all parts of the cavity being equally shielded (i.e., no
subenclosures within the enclosure, no regions with closely spaced walls which could act like a
waveguide below cutoff, and no field observations made at points significantly illuminated by direct
radiation from the driving source). If these postulates are not obeyed, the received antenna power
distribution usually appears log normal instead.[6,8).*

In general, for real-world problems, conditions are not ideal, and the dipole antenna response
contains a "trend", as well as a rapidly varying response associated purely with the electromagnetic
statistics. Then it becotnes necessary to filter out this trend if one wishes to see the chi square
statistical behavior [6,8]. Price, et al. [1], have published a thorough derivation of the physics and
statistics responsible for the chi square attribute of the squared fields (power flux). However, there
is a simple approach which relies somewhat on intuition for reaching the same conclusion.
Essentially, at any point in the enclosure, the field projected on any dipole consists of two
components in phase quadrature, each of which approaches a normal distribution when the enclosure
is sufficiently overmoded to begin to have blackbody-like characteristics. (This distribution is a
consequence of Bose-Einstein statistics, which describe blackbody radiation.) The power picked up
by a dipole antenna is proportional to the summed squares of these quadrature components.
(Alternatively, it could be viewed that the power picked up is the summed squares of the waves
going backwards and forwards.) However, this sum is exactly the definition of a function which
has a chi square distribution with two degrees of freedom.

(Reference [1] originally appeared as a corporate memorandum [2], which has become
somewhat of a classic opus despite its initially invisible release. Unfortunately, both [1] and [2] drop
a V,,(r') in the denominator of their Eq. (7), which is never picked up, and renders much of their
following work not even dimensionally correct. Their conclusion about power flux having a chi
square distribution with two degrees of freedom is not impacted by this error, however.

(Another publication by Hill, er a/. [13], presents a nice summary of the interior responses
of aperture-driven chambers as they relate to easily accessible electromagnetic quantities, such as

Almost any data set which depends on a bunch of somewhat random factors will have an
approximately log normal distribution. This approximate relationship may be inferred from
the Central Limit Theorem. If each of the random factors has an identical distribution, the
approximate relationship becomes precise. To be more specific, any sum of M variates u,,
m=1,.Mwhere E{u,} and Var{u,} exist will itself converge to a normal distribution as M
goes to infinity. (Cauchy's distnibution {4,12] is an example where E{u,} and Var{u,} do
not exist, and where a sum of variates does not converge to 2 normal distribution.)
Consequently, the log ensemble of a data set with a bunch of random factors, where each
factor has the same distribution, will approach a normal distribution, as the log operator
converts the product of factors to a sum of components. This means the original cFata set
itself will have a distribution which is (approximately) log normal. To be even more general,
if the different variates making up a sum all have ditferent distributions but with E{x,,} and
Var{u,} existent for each variate, the Central Limit Theorem still applies, even if the
individual variate distributions themselves are different. [12]
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the chamber volume ¥ and Q. This paper is much lighter reading than the Price work [1,2], as it is
closer to being deterministic, with concise engineering approximations, and does not bog down with
tedious probabilistic expectation derivations.)

An empirical result we have observed about data pertaining to the power (current squared)
carried by a cable inside an enclosure is that it also obeys a chi square distribution with two degrees
of freedom after the power is detrended (see the probability plot of Figure 2).> However, if the
power is viewed as the summed squares of two phase quadrature currents, there is no surprise in this
observation. (There is an experimentally prompted assumption here that the unsquared phase
quadrature current components also have a normal distribution. In this case, however, this
assumption is merely ad hoc, and we do not claim our simplistic appeal to Bose-Einstein EM field
statistics extends to cable currents.)
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Figure 2. Probability plots of observed, trend-removed
EMPTAC cable powers show good fit vs a y* distribution.
See Footnote 3.

3 A probabilitK plot is a means of comparing an assumed distribution with an observed data
set. Let us hypothesize that the assumed cumulative distribution is defined as p = ®(w),
meaning a fraction p of the points in the data set have value w or smaller. Let there be N
points in the data set. Let the data set be ordered so the nth smallest value has index n. Then
evaluate @°'((n-Y2)/N) = U,. Make a dot at #, on the horizontal (observed data) axis, and at
[/, on the vertical (assumed inverse probability function) axis. If ®(w) is the correct
distribution, all N of the dots will then lie close to a 45° line, where the individual point
deviation of the dots from this line goes to zero as the number of points goes to infinity. It
is also possible to perform confidence tests, of which the Kolmogorov-Smirnov test Fﬁ] is
[;l)_li_?bab y the best, which bound the 45° line with upper and lower confidence curves [1,2].

e spacing between these bounds with respect to the 45° line diminishes in inverse
proportion to the square root of the number of points in the data set.
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The Chi Square Distribution with Two Degrees of Freedom

In particular, if we have a cable inside an enclosure carrying a sinusoidally varying current
with » and v the current phase quadrature components, the cable power will be of the form

r=x +ty =+ v? (1)

In many actual situations, we can measure empirically the probability density function of z, which
we denote A(z). From A(z), we need to back out the probability density functions of x and y. This
can be done as follows: define the Fourier transform H(w) of #(z) as

o0

H) = f h(z)e 9 dz (2)

—_—o

where, in probability terminology, H(w) is the characteristic function of the distribution of z.[3,12]
If x and y are statistically independent, it can be shown that the probability density function A(z) is
related to the probability density functions of x and y, f{x) = Ay) by

h(z) = f Fx)fz - x)dx (3)
so that f{x) is related to A(z) by
_ 1 ws
£6) = z—n_f [F (@)% e dz @

where care must be taken in evaluating the square root in (4) by placing the complex-plane branch
cuts so as to give physically meaningful results.

In general, if ¥ and x are related by the ransformation function

u = g(x) (5)

where, if g(x) is a single-valued, monotonically increasing function, the probability density functions
of # and x are related by

-1
ew) = flg "'y LB (®)
du

This last relationship is generally true if the underlying distribution of z is anything reasonable (i.e.,
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chi square, normal, or log normal). If g(x) is a multiple-valued function, as is the case here

glxy = = (x)* = u (7)

(x must be positive, but « is bipolar). (6) must be modified so e(u) implies a symmetric probability
density function over its positive and negative branches, while still having an integral of unity over
its entire range, - v <y <o

-1
%f(g"(u))% u >0

e(u)= 8
agw| ., @

v g "))

In the special case of z having a chi square distribution with two degrees of freedom, we have

h(z) = e”m‘/pc z>0
9)

=0 z<0

and we find, from (2)-(4) and a bit of symbol manipulation which is moderately easy to work out,
but is set down in [14], that f{x) can be evaluated in closed form,

1 e B
Jix) = — (10)
VT X,
and. thus, e(x) becomes
P wz."p‘_
e(u) = (11)

In (9)-(11), . is the mean of z.

We thus see that, if the cable power (current squared) obeys a chi square distribution with
two degrees of freedom, the phase quadrature components have a normal distribution with zero

mean,

*uzl(ZU':)

(12)

e(u) =




where the p, (the mean of z) and o, (the standard deviation of ) are related by

M, = ZUi (13)

{Statistical parameters relating to a chi-square distribution are subscripted with a ¢, while those
relating to a normal or Gaussian distribution are subscripted with a g.)

Forcing of Autocorrelation
If a cable is within A/2 of a conducting wall, the drive per unit length on the cable is a zero-
impedance voltage source per unit length of value
dH

E, = —ph—= 14
dr Ko ar (14)

where % is the separation between the wall and the cable centerline, and H,, is the component of the
surface current density on the wall flowing parallel to the cable. H, is related to the fields in the
center of the cavity by H"r-\/f H. This relationship is based on energy considerations and differs
from the factor of 2 seen for specular reflection of a plane wave.

Test data referenced here (see Figure 1) was obtained at the Air Force Research Laboratory's
(AFRL) EMP effects EMPTAC [EMP Test AirCraft] facility. The EMPTAC is essentially a gutted
720 airframe with interior dimensions resulting in an f;,, of around 20 MHz; illumination of the
cavity at frequencies above 100 MHz ensures the results are those of an overmoded cavity.
Excitation of the EMPTAC interior is by external illumination (using the AFRL Laboratory’s
Ellipticus Antenna) with EM energy leaking in through deliberate and inadvertent apertures, and by
antenna feed cables. Before detrending, EMPTAC cable powers and EM power flux densities tend
to appear log normal in distribution. The squares of the time-derivative of B were actually measured.
Subsequently, a signal processor performed integrating corrections to reverse the derivative effect
and also performed other manipulations to correct for frequency dependence of the probe. At no
time was phase information obtained.

Our first attempt to model the effects of a chi square power distribution incident on a cable
was performed by constructing a transmission-line computer model based on the cable physically
tested in the EMPTAC. The computerized transmission-line model and the actual EMPTAC cable
were both terminated in their characteristic impedance (about 30 ). Also, the model cable length,
20 m, was selected to approximate the actual EMPTAC cable length. Similarly, in the computer
model, the cable standoff k approximated the standoff of the actual EMPTAC cable standoff, #=15
cm. (No modeling was attempted of the sightly irregular standoff present in the real EMPTAC
cable.) The cable transmission-line model was given an inductance per unit length L of 1 pH/m, and
a corresponding capacitance per unit length C which would cause propagation at ¢. For the computer
model, the cable was divided into 200 segments, the ith denoted by i, i = 1.../ = 200, and excited at
1000 different frequencies the sth denoted by », n = 1...N = 1000, exponentially stepped between
100 MHz and 1 GHz. The phase quadrature magnetic driving fields on each segment were randomly

9




chosen variables from a normal distribution with a zero mean and a standard deviation of 0.01 A/m.
(This value was selected for o, in view of (13), as we had experimental EMPTAC magnetic-field
data for p, typically placing it around 2x10.) In particular, each cable model segment was driven
by a random field of the form

H (n,i) = [A(n,i) cos w, 1 + B(n,i) sin w, 1] (15)
where A(n,i) and B(n,i) were obtained from
(4 or B)(n,i) = G u(ni) (16)

with g, = 0.01 and u(#n./) evaluated from a Monte Carlo simulation designed to give a variate with
normal distribution with unity standard deviation and zero offset:

u(n,i)
1

R(ni) = —— f e "2y (17)
T i

— 00—

Here, R(n,i) is a random number uniformly distributed from 0 to 1. Also,  is the cable segment
index, 7 is frequency index of w,, and the random number R{#,i) used to obtain A(x,i) is completely
uncorrelated with that used to obtain B(n,i) [so that (3) and (4) apply]. Equation (1) was then used
to convert the magnetic driving field into the actual driving electric field in the model's transmission
line equations.

Unlike actual experimental data, application of (17) did not result in a cable power
distribution which was chi square, even after filtering for trend removal. The problem was the A(7.7)
or B(n,i) generated in this manner had no local autocorrelation, either between adjacent frequencies
or between adjacent cable segments. Thus, the resulting simulated cable powers, unlike the
experimentally observed EMPTAC cable powers (see Figure 3), also had no autocorrelation between
adjacent frequencies. (It turns out that we don't know how non-iteratively to generate an ensemble
of drivers which simultaneously and automatically has a prescribed probability density function ard
autocorrelation. Nature does this for us with the experimentally generated real-world drivers, but
in our virtual reality, we here have a very difficult time replicating nature.)

It is known that the spatial autocorrelation of any component of the fields (with frequency
fixed) should depend on the separation of the two observational points, 4r = [r, -4, as [15-17]

o ) sin(k[(r, - 1, [} (18)
r,.r,) = - :
e klr,—r,])
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and the frequency autocorrelation (with observer position fixed) should depend on the spectral
separation of the two frequencies, Aw = w, - w,, as [16]
1

(@, w,) =
P 1 2 1 + B((&)I _ QI)IQZ (19)

where f} is a constant which depends in a complex way on the chamber dimensions. However, we
re-emphasize that knowing what the autocorrelation and distribution of the electromagnetic fields
should be does not trivialize their computerized simulation.

The first attempt to rectify this problem and to introduce autocorrelation consisted of
massaging the u(r,f) given by (17). With the Monte Carlo R(#,7) still a random number uniformly
distributed between O and I, we associated a u,,,(n.7) with each R(n,7) through (17), setting u(n,i) =
Uy (P,1).

We then defined an intermediate new u(n,{) = g, (n,7) through a formula empirically
selected from a half dozen possible choices to force spatial autocorrelation between nearest-neighbor
segments

—Zu(n,i-1) + Jopace ¥ D)

uspnct(n’ i) = JL" - ' (20)

~ f;’pace

Al

where u(n,i - 1) is the u(n,i) for the previous cable segment 7 - 1, Al is the cable segment length, and
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Jipace 18 @ number around 10. (Actually, this selection is not totally empirical: it has the desired
property. that, for cable segment length constant, coherence between segment drives is high at long
wavelengths, but decreases as wavelengths become small, with the tum-over point occurring around
A, = Al) At the left end of the cable, u(n,1) was seeded as 2. Makingf., zero results in total
correlation between adjacent segments; making it >1000 results in no noticeable correlation between
adjacent segments; 1.€., no change between u,,,(1,{) and u,,,.(n.0) closely approaching the EMPTAC
experimental noise floor. We then obtained a new u(n.i) = u,,(n,7), locally autocorrelated over both
space and frequency, through a formula to force autocorrelation between adjacent frequencies
A’Z
L(Tl)n ti(n—-1,i) + );.uq uspa"(n,i)
uf"q(n,i) = {(21)

Here u(n - 1,i) is the w(n,i) for the previous frequency # - 1, L is the linear dimension of the cable
extent, AA is the change in wavelength between adjacent frequencies, and f;., is another number
around 10. [At the lowest frequency, «(1,/) was again seeded as ¥2. Making f,., zero results in total
correlation between adjacent frequencies; making it >1000 results in no noticeable correlation
between adjacent frequencies. The actual u(#n,i) used for cable drive in (15) and (16) is, in the first
approximation, u,,(n,i) of (21).]

This procedure succeeds in introducing an approximate simulation of the physically
occurring autocorrelation in cable power over position and frequency {compare Figure 4 with Figure
3). Unfortunately, it also succeeds in distorting the normal distribution that we desire the array of
u(n,i)'s to possess, especially at the tails (see Figure 5). Additionally, the standard deviations g,, i.e.,
1 -
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Figure 4. Numerically simulated cable power auto- Figure 5. Forcing autocorrelation on the driver ensembles
correlation after forcing autocorrelation onto cable drivers. makes distribution tails non-normal and reduces o by ~.3.
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average amplitudes of the driver ensemble matrices u(#,i) and v{n,i), are reduced from .01 to about
.003.

Restoration of the Normal Distribution

The normal distribution of the 1(»,i) may be realized along with an approximate satisfaction
of the desired autocorrelation attributes of (18) and (19) by the following process: Let us begin by
generating the two-dimensional ensemble or matrix of numbers along the spatial and frequency axes
according to (16)-(21). [Actually, we need two ensembles, one of which will eventually become
Al(n,D) of (15), and the other of which eventually will become B(#,7).] Then pick a particular spatial
point or cable segment / and examine the one-dimensional array or sequence which characterizes the
drive versus frequency at this point. To the element of this sequence having the lowest value, assign
the index m = 1; to the next, assign m = 2; etc.; upto m=m,, = N.

In general, the elements of this array (and even the elements of the array of indices m listed
versus frequency) will be in a sequence containing autocorrelation information, but the actual values
of the elements of this array will have been speciously altered away from a normal distribution in
the process of introducing the autocorrelation [(19) and (20)]. We shall now reverse this alteration
without destroying the autocorrelation by utilizing the concept that even the array of indices m
contains some residual autocorrelation information,

Let us associate a fraction with each point in the one-dimensional array:

fo =(m - ¥a)Ym = (m - KN (22}

If, for fixed spatial position i, this array actually had a normal distribution with zero mean and g,
variance, it would be true that, if u(m,7) were the value of element m,

D (u(m,i)fo) = f, (23)

where @ (u(m,i)/o,) is the cumulative normal probability distribution function. Since this should
be true, we shall force it to be true: Rescale each u(m,?) to obey

um,i) = 0, @.'(f,) (24)

where ®;' (f.,) is the inverse of the normal cumulative probability distribution function.

Note that this rescaling does not undo the autocorrelation because the m's themselves contain
some autocorrelation along the frequency axis. (Very negative numbers tend to be adjacent to other
very negative numbers, etc.) It is interesting to point out that this procedure can be used to transform
the u(m,i)'s into an array with any desired distribution, irrespective of the underlying initial
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distribution used to find uy,, (m,7} in (17). For instance, if @;' () of (24) is replaced by the inverse
chi square or log normal cumulative distribution function, the #{(m,i)'s emerging from (24) will
become chi square or log normal in distribution.

The following observations now seem in order:

1. This rescaling procedure must, of course, be repeated for the 1D array at each of the spatial drive
points. '

2. Autocorrelation also existed along the spatial axis before rescaling by virtue of (20) and (21).
Since we merely rescale, not resequence, this rescaling will also preserve this autocorrelation
along the spatial axis.

3. If we impose a rescaled normal distribution on the u(n,i)'s along the frequency or » axis, and if
this rescaled distribution is obtained in the same manner for each spatial point, the distribution
of a 1D array taken in the other direction along / (frequency constant, spatial positton variable)
will also approach a normal distribution as the number of spatial and frequency observation
points both become large.

4. In this entire operation of rescaling the 2D ensemble, there is no reason we cannot reverse the
roles of the frequency and the spatial axes across the ensemble.

5. Even if the problem is extended to three spatial (and one frequency) dimensions, rescaling needs
to be done only in one direction.

Now let us reinforce some of these ideas with results. A normal random-distribution
generating process set to give zero mean and 0.01 standard deviation was used to initialize all the
ensembles which follow. Likewise, £, and J, were always set to 10, [which gives a fair
approximation to the autocorrelation actually observed in the EMPTAC test data we are trying to
mimic; see Figures 2 and 3, and (19).] Figure 6 illustrates the probability plot for z(n,?) = u(n,i)* +
v(n,i)’ being chi square in distribution over # (frequency) with i (position) constant when the (#,7)
and v(n,f) matrix ensembles are created with bidirectional autocorrelation using (17)-(21). On this
probability plot, we overlay the result before and after rescaling. It is apparent that the z(#,/) matrix
ensemble based on rescaled u(n,i) and v(n,?) is nearly chi square over n, but the z(n,/) matrix
ensemble based on u(n,i) and W(n.i) before rescaling is much more deviant. Figure 7 illustrates how
far outside the Kolmogorov-Smirnov (K-S) 90% confidence limits for being chi square over » with
0, = .01 (p = .0002) the z(n,i) matrix ensemble is before rescaling, and how close it is after
rescaling. (The rescaled array very nearly passes the K-S 90% test, especially in comparison to the
unscaled array.} All plots discussed in this paragraph and in the rest of this article are based in i
(position) unchanging, with statistical manipulations and conclusions referring to n (frequency)
dependence, although the same approach would pertain were the roles of the two variables reversed.
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Summary of Algerithm to Generate the Cable-Drive Field Matrix

Let us now summarize now algorithm for generating the cable-drive fields in an overmoded
enclosure. First of all, we need two field-drive matrix ensembles 4(n,/) or B(n,i) to represent the two
phase-quadrature components of the field at each frequency » and at each cable segment /. These
two ensembles are to be completely uncorrelated with each other. The generation procedures for the
two ensembles are identical, so we shall only discuss A(n,7). The initial step is to generate a random
number matrix having elements R(r,7) uniformly distributed between 0 and 1. The matrix R(#,i) still
is to be N x [, so all frequencies and cable segments are represented.

One next maps R(»,7) onto 4(n,i} in the manner described by (16) and (17). These particular
equations result in an 4(»,/) ensemble with a normal distribution having zero mean and g, variance.
If some other distribution is desired, that distribution should be substituted for the normal in (16) and
an.

The next step is to force local coherence on A(n,7) as functions of # (frequency) and
(position). This coherence should approximately replicate (18) and (19) (see Figures 3 and 4),
although we have found the results with respect to simulated cable current response to be quite
forgiving if these two correlation formulas are not precisely matched. It is only important that the
central lobe of the autocorrelation function be approximately the same width as that experimentally
observed or suggested by (18) and (19). Equations (20) and (21) describe one transformation which
can be used on A(n,i) to enforce this autocorrelation. Values around 10 usually work for £ ., and

pace
fﬁ!?'
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This enforced transformation will distort the original distribution placed on the original A(»,#)
matrix. It is thus necessary to restore this distribution. Use of (23} and (24) will accomplish this.
If one decides that a distribution other than normal is desired, at this point, one needs only substitute
the alternative inverse cumulative distribution for ®;' () in (24).

Especially if £, and f;., are chosen smaller than 10, application of (24) may destroy some
of the autocorrelation. In this case, one iterates the generation of A(n,7) by reapplying (20) and (21),
and then (23 and (24). This iteration process may be cycled until further iteration no longer alters
the A(n,i) matrix ensemble. Up to 50 iterations are required for very small £, and £, .

It may occur that, even after all this work, a small growth trend as a function of # (frequency)
will remain on the matrix. If this occurs, the technique for eliminating this trend is subsequently
described in (26)-(30).

The major source of difficulty stems from the requirement of producing a given distribution
and correlation in both the frequency and spatial dimensions. A simpler approach recommended by
Ted Lehman is the use of the Karhunen-Loeve expansion [18] over the spatial dimension for each
frequency of interest. While this process achieves the proper distribution and correlation for the
drivers in space, their relationship from one frequency to the next is random. This results in
predictions that can be compared with measurements from one point to the next at a given frequency,
but it doesn’t allow comparisons to be made at a point over several frequencies; thus half the
predictive power of the approach is ignored. It was felt that as much comparison with experiment
should be achieveable with the approach and the two-dimensional distribution/correlation procedure
described above was retained.

Resulting Cable Current Responses

The above results give the impression that rescaling fixes the u(n,#) and v(#n,i) cable-driver
matrix ensembles. Consequently, we next examined the real and imaginary distributions of the
phase quadrature components of the simulated EMPTAC cable currents. Figure 8 shows that the
cable current quadrature components do not fit a normal probability plot. Figure 9 is a Kolmogorov-
Smirnov 90% confidence test of the cable power distribution (after filtering to remove the trend).
As anticipated from Figure 8, the cable power distribution does not pass the Kolmogorov-Smirnov
test for being chi square, even after being run through a trend-removing filter. Figure 10 shows,
however, that the unfiltered cable power distribution is excellently matched by a log normal
probability plot. At this point, we considered the fact that we had not introduced any mechanism
to put the cable current into thermodynamic equilibrium with the electromagnetic environment. To
accomplish this, we computed the radiation resistance per unit length of a cable with centerline /2 (of
5 c¢cm) over a ground plane and diameter small compared to a wavelength:

1 - J (kh 2
ol ;( )| ”;"’(mz - pomz(i) (25)

R =pu
° A
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Figure 8. The phase quadrature cable currents resulting Figure 9, The cable power distribution does not fit a K-S
from rescaled drive do not fit a normal probability plot. test for being chi square, even after filtering.

The EMPTAC tests we are trying to match were performed with frequency swept from 100 MHz
to 1 GHz. At 317 MHz, the above formula leads to a radiation resistance of 120 {I/m.
Consequently, this resistance was next inserted in our cable model. (Part of the justification for
doing this was the knowledge that an actual cable at some fixed observation point only responds
[correlates] to the driving field over a range of a wavelength or two. Another method to this
madness invokes reciprocity: if the cables cannot radiate fields, fields cannot couple to and drive the
cables.) Figure 11 shows a considerable improvement for the resulting cable current quadrature
components matching a normal distribution (compare with Figure 8). Also, the cable power
distribution with trend removed is now closer to being chi square (compare Figure 12 with Figure
9), although it still leaves much to be desired. The unfiltered cable power distribution does still look
much more log normal than chi square, however (see Figure 13).

After all the above procedures had been carried out, a tendency (trend) for the cable drive
amplitude, and resulting cable current amplitude to grow with frequency was still present. This trend
was eventually traced back to the cable drive-field generating equations (17)-(21). We observed that
if the drive-field advance equations were made over constant frequency increments (Af, A%/(LAML)
constant), this equation could not contribute to this drive amplitude shifting: Previously, we had
always used an exponentially expanding Af. Making Afconstant implies that the relative proportions
of old and new values, i.e., the effective f,,, cannot change during the generation of the drive-field
ensembles.

A similar procedure cannot reasonably be applied to the equation which advances the drive-

field along the position axis, as keeping (A/AJ) constant requires using a different cable segmenting
scheme (different A/) at every frequency.
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This additional precaution leads to an even more improved (but still not perfect) approach
of the » and v ensembles to a normal distribution (compare the probability plots of Figure 14 with
those of Figures 8 and 11). Also, the filtered cable power distribution now approaches chi square
much more closely (compare Figure 15 with Figures 9 and 12). Moreover, the unfiltered cable
power distribution finally begins to pull away from the ubiquitous log normal form (compare Figure

16 with Figures 10 and 13).
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There is still some growth trend remaining on the #(#,i) and v(»n,/) magnetic field matrices
as a function of frequency, however (see Figure 17). The last of this growth trend is removed by
fitting the absolute magnitudes of the all the local extrema (all points with magnitudes of w(n,i), U
(n,7), which are both preceded and followed along # by points of lesser magnitude) to a least-squares
linear fit: if U, (n,7) is made to match
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Figure 16. Constant Af drive-field generation finally Figure 17. The amplitudes of the u(7.)) ensemble members
causes the cable power distribution to deviate from log still have 2 growing trend as frequency increases, even
normal. with constant Af,
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Uz.tr(n’i) = a.lf;r * '31 (26)
in a least-squares sense, one minimizes

S, = Y (U0 -af, - B) (27)

n at ext

and finds

D, (U md) - U N, - )]
o = n at ext - -
_ 2
DCAESD (28)

!

I31 = Ue,rr(n’i) B at}-

In (26)-(28), note is made that U_.(n,i) does not exist at all », only at n values of locally maximal
U.(n,0). Also, quantities with an overhead bar represent quantities averaged over »n (frequency).
One then pivots all the points in the ensemble about the center frequency f.

(u(n,3) = u(®) = (u(n,i) - u(@)) - (u ()u(n,0) (29)

and obtains a new driver ensemble matnx u(n,{)’

(u(r, iy — u(Ne [, + B,
alfﬁ + Bl'

w(n,i)) = w(iy +

(30)

This forces the extremal points envelope to lie in a flat [ine with other points placed between them
in appropriate ratios. In this way, we finally compel #(n./) and v(»,i} to become trendless (see Figure
18). Upon applying the pivoted cable drivers to the cable model, we obtained cable quadrature
currents with even better fits to the normal probability plots (see Figure 19). Also, the cable power
distribution induced by the pivoted drivers comes still closer to passing a 90% Kolmogorov-Smirnov
confidence test for being chi square (see Figure 20),
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Conclusions

An electromagnetic enclosure driven well into the overmoded regime will have a power flux
distribution which (as seen by a dipole antenna) is chi square with two degrees of freedom if the
observer is fixed and frequency is swept, or if the frequency is fixed and the sensor is translated or
rotated. The same power distribution will also be seen incident on cables and conductors within the
enclosure. To obtain this distribution, the enclosure must not have a frequency-dependent { or
shielding which varies throughout the enclosure volume. If either of these {or similar) situations
oceur, the power and power flux distribution densities generally distort towards being log normal.

{There are two mutually exclusive schools of thought as to why the cable powers should have
a chi square distribution. Karzas [19] has claimed that the cables effectively sum the incident
electric fields all along the cables, and thus the Central Limit Theorem applies to the phase-
quadrature cable current components. We think this argument has a flaw: it does not pertain in the
presence of radiation resistance that all illumination points on a cable contribute equally to the
resulting driven current, irrespective of the separation between the drive peint and the current
observer. By reciprocity, in the absence of radiation resistance (no feedback from the cable currents
to the chamber fields), the chamber fields could not couple to and drive the cables.

(It is our belief, on the other hand, that for a cable in a more-or-less statistically uniform field
environment, radiation resistance prevents a cable current from being influenced by fields on the
cable at a distance of more than a wavelength or two. If this is the case, the chi square nature of the
driving field is immediately and locally transferred to the cable current. Moreover, the Karzas theory
leads to cable powers which depend directly on the square root of the cable length [19]. Our theory
leads to cable powers which are independent of the cable length past a wavelength or two: this
second result is what one normally sees from electromagnetic cable tests.)

This entire set of statistical phenomena may be numerically simulated provided one is very,
very careful. For instance, one cannot merely apply normally distributed random electric fields
{(which correspond to chi square power fluxes) to drive the cables and conductors. The cable-drive
fields must be generated so they are additionally endowed with local autocorrelation along spatial
and frequency axes as seen in actual experimental data. Also, it is necessary to put a radiation
resistance per unit length on the cable to simulate factors which put the cable and the enclosure into
electromagnetic thermodynamic equilibrium. Additionally, one must be cautious that the cable-drive
fields are free of all trends, including those which may arise from the process of enforcing a local
autocorrelation onto the cable-drive field ensemble.
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