Interaction Notes
Note 542
July 20, 1958

On Identifying Conducting Objects Using Low Frequency Magnetic Fields
Theory and Measurements

Lloyd 8. Riggs, Jon E. Mooney, Daniel E. Lawrence
Electrical Engineering Department
Auburn University

J. Thomas Broach and Anh H. Trang
U.S. Army NVSED
Ft. Belvoir, Virginia

Abstract

This note addresses identification of conducting objects based on their response to low frequency
magnetic fields. Real time identification was carried out in a2 laboratory setting on seven simple geometries
consisting of aluminum and copper cylinders, and an aluminum ring, block, and square cylinder. The low
frequency transfer function of these objects was measured in a concentric coaxial coil configuration. Data was
taken for both cardinal and arbitrary orientations of the magnetic field with respect to the planes of symmetry
of the objects {i.e. for different polarizations). The distinct negative real axis poles (singularities} associated
with each object formed the basis for our real-time identification algorithm. Several different techniques were
explored to extract poles fraom the measured data including: 1.) Prony's Method, 2.} Matrix Pencil Method,
3.) Differential Corrections, and a 4.) Genetic Algorithm. We compare and contrast the performance of
these methods when the data is contaminated with white Gaussian noise {WGN) and demonstrate that the
differential corrections method yields estimates of the singularities with variance approaching that of the
Cramer-Rao lower bound. We also demonstrate through simple examples that when the difference between
two competing sum-of-damped-exponential models (one with fewer poles than the other) approaches the
standard deviation of the noise, the pole extraction methods mentioned above could only axtract the poles
from the simpler maodel - the one with fewer poles. Recognizing the identification problem as one of inference
from incomplete information, calling for a full application of ﬁmba.b'ﬂ.ity theory, we employ Bayes theorem
to develop a generalized likelihood ratio test (GLRT) as a solution to the M-ary hypothesis testing problem
of interest here. Lastly, the performance of the GLRT detector is examined as a function of the npumber
of poles assigned to each object and as a function of the organization of the pole library with respect to
polarization. Best performance, measured through Monte Carlo simulation presented in terms of percent

correct identificaiion versus signal-to-noise ratio, was obtained with a single pole per object per orientation.
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1. Iniroduction

In the past. attempts to use low frequency electromagnetic induction (EMI} techniques for military and
humanitarian demining efforts and for the removal of unexploded ordnance (UX0) have met with limited
success due in large part to the many false alarms generated by metallic clutter. For example, the Army's
only fielded mine detector, the AN/PS5SS-12, is quite sensitive and can detect mines with metallic content
substantially below the gram level. Unfortunately, however, in highly cluttered environments the detector
is rendered useless, for all intents and purposes. In short, a metal detector is not a mine detector! Some
effort is underway today to exploit the quasi-mmagnetostatic response characteristics of metallic objects in
order to distinguish between mines and metallic clutter. Baum in Interaction Note 499 [1] has demonstrated.
within the framework of the singularity expansion method (SEM} [2], that low frequency scattering from
permeable and highly conducting objects is chavacterized by natural frequencies that are negative and
real. Equivalently, the time domain response is characterized by a sum of weighted exponentials. Unique
correspondence between an objects and its singularities forms the basis for identification and therefore clutter
rejection. Aptly enough, the term Magnetic Singularity Identification (MSI) has been applied to techniques
employing this identification methodology [3].

A clear exposition of the physics of quasi-magnetostatic scattering, as presented in Note 499 {1],
although certainly necessary, does not alone provide a sufficient foundation upon which to construct a
solution to the clutter problem. We adopt the point of view that the problem is really one of inference from
incomplete information, calling for a full application of probability theory. For example, object response
measurements are unavoidably contaminated by noise. If the measured response is contaminated by additive
white Gaussian noise (WGN) , an increase in the standard deviation of the noise will eventually result in
an inability to distinguish among objects or between object classes based on their measured signatures.
It short, the physics of the problem tells us the characteristics of the signature in the absence of noise
(provides the model) while probahility theory, through the application of Bayes Theorem, instructs us as to
exactly how the data should be manipulated so as to optimally choose between or among the hypotheses
of interest (e.g. a mine is present, a mine is not present) {7, 8, 17]. We point out that other researchers
have successfully applied a Bayesian-theoretic approach to the landmine detection problem using EMI data
from both time- and frequency-domain sensors. The work presented here differs from the above in that
we have examined the M-ary hypothesis problem (which of a set of M mines is present) whereas previous
researchers have concentrated on the binary hypothesis problem (mine or no-mine question). Additionally,
the work presented here addresses the impact that polarization issues have on the identification process.
Finally, this work and that previously mentioned should be compared to other less rigorous discrimination

methods reported elsewhere [9].

In the following section, the phenomenology associated with low-frequency magnetic field scattering




from conducting objects is reviewed, and the measurement apparatus and procedures are presented. Section

3 addresses the challenges that exist and techniques used in extracting real poles from measured data. Four .
pole extraction methods are compared, and a statistical characterization in terms of the variance of the
estimated model parameters is presented. Section 4 presents the GLRT used in the identification algorithm.
The identification algorithm's performance depends heavily on the organization of poles in the library and

the signal-to-noise ratio (SNR) of the measured data. The final section of the paper will demonstrate the

varying performances of the identification algorithm in noise for different pole library organizations.




2. Phenomenology

In this section we briefly review low frequency scattering from finitely conducting bodies with the end goal
being a description of the test apparatus employed in our real-time identification experiments. Fortunately,
Baum {1] and others [4, 3] have already provided a particularly cogent description of the relevant phe-
nomenolegy. We horrow from these works here and refer the reader to the exhaustive list of references

therein.

Metallic object detection and identification depend on one’s ability to sense the magnetic feld
radiated by eddy currents induced on and within a metallic object by an applied excitatory magnetic field.
Two methods are commonly used to excite eddy currents and sense the resulting scattered magnetic fields:
1.) the pulse induction method (a time domain technique} and 2.) a frequency domain or continuous wave

{CW) technique.

With pulse-induction methods, an electric current Aowing through a transmit coil establishes 2 mag-
netic field in nearby conducting objects. The waveform shape of the excitatory current often includes abrupt
transitions to zero (e.g. square or triangle waveforms). When the excitatory current and corresponding
magnetic feld are extinguished, eddy currents are established throughout the object in accordance with
Faraday's law of induction and the geometry and constitutive parameters of the object [3]. As elaborated
upon later, eddy currents decay exponentially at a rate varying, approximately, inversely with object condue-
tivity and some characteristic dimension of the object squared [3]. A sensing coil, often located concentrically
with the transmit coil, is used to detect the decaying magnetic field radiated by the eddy currents. Some
pulse-induction systems are designed to minimize direct coupling between transmit and receive coils so that
only target-radiated magnetic fields are measured [5]. In this case, 2 band-limited target impulse response

may be obtained by deconvolving the incident waveform from the receive coil response.

CW methods employ sinusoidal excitation currents that induce sinusoidal eddy currents resuiting in
sinusoidal scattered magnetic fields. With zero coupling between transmit and receive coils, the amplitude
and phase of the receive coil signal relative to that of the transmit coil yields the object’s transfer function

at frequency f.

Figure 2.1 shows the experimental test setup used in our real-time metallic object identification
demonstration. The setup consist of a Hewlett Packard 89410A vector signal analyzer, Tektronix TMG502A
current probe, Analog Devices 524AD instrumentation amplifier, and coaxially positioned solenoidal exci-
tation and receive coils. The measurement technique described here follows closely to that found in [10].
Swept frequency excitation provided by the vector analyzer drives a sinusoidal current through the exterior
solenoid producing an axially-directed sinusoidal magnetic field that is appraximately uniform within the

excitatory coil. The receive coil has its axis coincident with that of the transmit coil and consists of N
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Figure 2.1. The equipment used in the experimental setup.




clockwise and counterclockwise turns making up what is sometimes referred to as a “bucking coil”. As long
as perfect symmetry is maintained, no voltage will exist at the output of the receive coil since the voltage
induced across the clockwise turns will be of equal magnitude but opposite sign to that induced across the
counterclockwise turns. As shown in Figure 2.2, a sample of the excitatory current measured by the current
probe is applied to Channel One of the analyzer, whereas the output of the receive coil is applied to the input
of the buffer amplifier. Finally, the output of the buffer amplifier connects to Channel Two of the analyzer.
(The bufer amplifier is operated at unity gain and is used to present a large input impedance to the sensing
coil.} Recall that the receive voltage is zero under symmetric conditions. Symmetry is broken by an object
placed in the receive coil. The object’s transfer function may be obtained by programming the analyzer to

compute the ratio of the signal at Channel Two to the signal at Channel One at discrete frequencies over

the band of interest.
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Figure 2.2. Block diagram of the experimental setup.

it is a simple matter to demonstrate that the experimental setup just described provides a means
of determining the quasi-magnetostatic transfer function of a metallic object. For simplicity, take a simple
short-circuited wire loop as the object of interest. A straightforward extension of the loop result, to be
presented later, gives the desired general solution for an arbitrary finitely conducting metallic object. First,

by Faraday's law, the voltage induced around the loop will be proportional to the time rate of change of




the magnetic flux passing through the loop (assume that the magnetic flux density vector and loop axis are
aligned). The magnetic flux produced by the excitatory coil is in turn proportional to the excitatory current
S0 one may write

Vobjee: (Jw) X jw Isource (jw) (2.1)

with time differentiation replaced by multiplication by jw (w =radian frequency of oscillation = 2z f.) At
low frequencies, the quasi-magnetostatic approximation allows one to model the loop as a lumped parameter

circuit consisting of a resistance R in series with an inductance L leading to a loop impedance
ZObJect (.TW) = R + jwl (22)

Loop current and voltage are related by

Vobjeet (Juw) _ Juwdseuree (§oo) (2.3)

{object (Juw) = - = -
d G Zobsect (Juw) Zogject {jw)

Loop currents give rise to a “scattered” magnetic field which in turn induces a voltage in the receive coil.

again in accordance with Faraday's Law as in (2.1)

— (JL:J) (J“J) Isource (JLJ)

v . . . _ _
Recewe (Jw) o€ juw IOchct(Jw) Zonyeet o)
or
. . VRecerwe (Jw) VReceive (Jw) Jw
H (jw) = Loop Transfer Function oc - : = - = = - 2.4
(J ) P Jw Isource (JW) VOb;’ect (JW) ZObject (Ju) { )

Clearly, the ratio (2.4) depends only on frequency and loop equivalent circuit elements (resistance R and

inductance L) and may therefore be considered the transfer function of the loop.

Substituting (2.2) into (2.4) and performing a few steps of algebra leads to

2

[4 4
] 2.3
1-;-.9:2'*"’1-!-0:2 (2:5)

H (jw} =

with a = wlL/R = wr. As shown in Figure 2.3 and in accordance with (2.5), the loop transfer function is
high pass, so as the dimensionless parameter & increases (increasing frequency} the real part of the transfer
function approaches unity while the imaginary part approaches zero as 1/a. Real and imaginary parts of

the loop transfer function are equal at the crossover frequency where aa = 1 or

= —. (2.6)

Serossover =

At the crossover frequency the transfer function phase is equal to 45° and its magnitude is approximately

3 dB below its asymptotic value. As a practical matter, the object's response is difficuit to meagsure at low
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Figure 2.3. The response of a metallic object by a low-frequency magnetic field as given by (2.5).

frequencies since the transfer function approaches —co dB as f approaches zero and noise will compromise
the fidelity of the measurement. One can improve the quality of the measurement by averaging, but there is

a practical limit here too since many averages at very low frequencies requires a substantial amount of time.

Sower [4] has shown that the time constant of the loop, 1, is proportional to the square of the wire
radius {and to the conductivity} and varies only slightly with loop size whereas the the amplitude of the
loop response varies with the cube of the loop radius and varies only slightly with wire radius, It therefore
becomes possible, at least to first order, to independently adjust the crossover frequency and ampiitude of
the loop response. Taking advantage of this feature, one mé.y approximate the response of an arbitrary
metallic object with a simple wire loop opening up the possibility of develcping mine decoys (or simulants).
As another application, a family of wire loops might be constructed so as to uniformly stress metal detectors.
At one extreme, a loop of large radius constructed of low gaunge wire would he very easy to detect, At the

other extreme, a small radius loop made of 2 thin, high-gauge wire would be extremely difficult to detect.

Sower [4] shows that a pair of coaxial loops has a transfer function consisting of two terms like that




of (2.5) above with

Ly + M Lo+ A
" o= Ty = 22 7 2.7
! R, z Ry (2.7)

where R), Ry and Ly, Ly are the resistance and inductance of loops 1 and 2. respectively, and M is the
mutual inductance between the loops. Arbitrary bodies can be viewed as being made up of a number of
loops of different size resulting, in general, in a infinite number of terms as in {2.5) each with a different

amplitude. Therefore, our final medel for the objects of interest here becomes

¥ (jw) = ZJ [ ]+vqu (2.8)

where a; is the real valued coupling coeflicient of the ith mode, o; is the pole term of the ith mode, and

V(jw) is additive white Gaussian noise which is an inevitable consequence of the measurement process.

Before moving on to the next section, we reiterate that the general form of the response presented
above is correct unly for non-permeabie objects. Baum [1, 6] gives the step-function gquasi-magnetostatic

scattering polarizability dyadic as

% Mis) = f M) +5 Me M M. [s — sa]”" (2.9)

&
where M(0) is the D.C. magnetic polarizability term required to correctly represent the response of permeable

objects. Alternatively, the §-function response [1, 6] takes the form

5 o -
M(s) = M(co) + D MaMa [s — 85]7" (2.10)

&
with M{o0) the magnetic-polarizability dyadic of a perfectly conducting target: Observe that by adding
a constant term to (2.8) and multiplying this sum by frequency (jw), one obtains a scalar from of (2.9).
Specifically,
P — Vv 2.11
Y(w) = m(0) + ZJ o =2+ Vi) 211

is just (2.8) corrected to account for non-permeable objects that have a finite D.C. response {m(0)).

For completeness, Figure 2.4 shows the response of a 2.5 inch diameter ferrous sphere. (The sphere
was not used in our identification work.) Comparing Figures 2.3 and 2.4, the most notable difference is that
the real part of the response for the ferrous sphere passes through zero and becomes negative below some
frequency, referred to by some as the crossover frequency {not to be confused with the crossover frequency
as defined above for non-permeable objects). At very low frequencies the imaginary part of the response

approaches zero, just like with non-permeable objects, while the real part continues toward some finite

10




negative value. In the high frequency limit, the real/imaginary part of the permeable response approaches
a finite value/zero in 2 manner identical to that for non-permeable objects. Sower [4] points out that the
step response (time domain) of magnetic spheres has an initial fast rise from zero followed by a2 much slower
decay back to zero. He suggests that the response can be modeled as a series of exponential decay terms,
with the slower decay terms having coefficients of opposite sign to those of the faster terms. This model
agrees with (2.11} above with some coupling coefficients positive and some negative. Using the knowledge
that our test objects were all non-magnetic, made from either aluminum or copper, allowed us to assign a

very low probability to competing models with negative coupling coefficients.
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Figure 2.4. The low-frequency response of the ferrous sphere.
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3. Pole Extraction

3.1 Introduction

Once the model for an object’s response is known, the next step is to extract the model parameters from
the measured data. This can present a challenge because the response contains only real poles which corre-
spond to non-oscillatory exponential decays in the time domain, Without oscillation, 2 response containing,
maultiple poles can be approximated reasonably well under certain conditions by a response with fewer poles.
Furthermore, if the approximation error is sufficiently smaller than the noise in the measured data, then the
lower order (approximated) response is sufficient to characterize the underlying model. For exampile, let the

true response be a sum of two exponential decays in the time-domain.
f(t) = a1’ + azefr! (3.1)
where p i3 the ratio of the two poles. Let the approximated response be a single exponential decay,
fapp(t) = aappe’er?t (3.2)

where
are”! + aze"’)

Qapp == a1 + 83 and Cepp oy ln
Gapp

The measured response z(t) in the presence of noise v(#) can be written as

z(8) = f(£) + u(t) (3.3)
= fapp(t) +-el(t) +v(t) (3.4}
where, e(t) = f(t) — fapp(t), is the approximation error. ¥or a; = ag = 0.5, the maximum value of this

error is plotted versus p in Figure 3.1. Experimentally, it was found that when the maximum error is less
than the standard deviation of the noise, the methods described in the next section could not identify the
two original poles but could only extract the pole from the approximated response. For an SNR of 30dB,
the allowable standard deviation for the noise is about 0.01. Thus, as shown in Figure 3.1 for this SNR, a
pole ratio {p) less than about 1.75 will cause the pole extraction algorithm te return the approximate pole
instead of the two original poles. This occurrence i3 even more pronounced when more poles are present. As

a second example, let the true response be a sum of six equally weighted decays

_ 1 o0t . 1 s00e 1 —1oo0r , 1 _—so00e . 1 10000t . 1 _20000:
Fit) = e + = + = +'6f_’. + ge + ge (3.5)
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and the approximated response be a sum of three exponential decays
Japp(t) = a1e”t + aze” + aze” (3.6)

Using the Differential Correér.ions method described in section 3.2.3, the parameters for the approximated
response are found to be a; = 0.180, a3 = 0.327, a3 = 0.468, o1 = —104.5, o3 = —739.3, and o3 = -9177.0.
The true response is plotted in Figure 3.2, and the approximation error is plotted in Figure 3.3. Note that the
maximum error is around 0.01, implying that the noise standard deviation must be less than 0.01 to extract
the original poles. Otherwise, the approximated response is sufficient to characterize the true underlying
model. Experimentally, it was found that only two or three poles can be extracted from measured data even
when more poles are present. Hence, when more than three poles are present in the measured data, the
extracted poles are best thought of as characteristic values that reproduce the object’s response rather than

the actual poles of the system. These results apply to both time-domain and frequency-domain data.
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Figure 3.1. Maximum approximation error versus p.
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3.2 Methods for Pole Extraction

Several methods of extracting characteristic values, or poles, from measured data were evaluated including
Prony's method, Matrix Pencil Method, Differential Corrections, and a Genetic Algorithm. The frst two
are time-domain methods, while the latter two can be used on time-domain or frequency-domain data. The

following is a summary of each approach,

3.2.1 Prony Method

Given a time-domain impulse response of an object in the late-time, Prony’s method can be used to determine
the parameters of the exponential model [11]. Since the continuous time signal must be sampled, the discrete-

time exponential model becomes

y(n) = Zasz with z, = ™! {3.7)
k=L
Recognize that the discrete-time model is a solution to the following homogeneous difference equation whose

roots are equal to the poles of the discrete-time model in (3.7),

N
> znoxyln—k) =0, zn =1 (3.8)
k=0

Since the data is given, this equation represents a system of equations that can be solved for z;’s. Finally,

the pole locations are estimated as the roots of the following polynomial,
N
X(z) = zi2* (3.9)
k=0

Note that this procedure is applicable to frequency domain data through Fourier Transform techniques.
Due to the inherent noise in measured data, the z4's solved for in (3.9} will not be exact. Furthermore,
small perturbations in the z,'s can produce large perturbations in the root locations which implies that this
method of extracting poles from measured data is highly sensitive to noise. An improved Prony method for
extracting poles, cailed the Total Least Squares (TLS) Prony method, accounts for noise in the data and
provides better performance than the traditional Prony method [12]. However, the most significant factor
limiting the performance of the Prony method is the lack of structure in the data. When more than two
poles are present in the data, the Prony method occasionally returns poles that are unreasonable from a
physical standpoint, such as unstable or complex poles. Due to this performance deficiency along with the
fact that the Prony method is not a direct frequency-domain method, other methods were found to have

better performance on frequency-domain data with real poles.
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3.2.2 Matrix Pencil

Similar to the Prony method. the Matrix Pencil method assumes the measured data to be of the form given
in (3.7), and the poles are found by solving a generalized eigenvalue problem. One advantage this method
has over the Prony method is that an estimate of the number of poles can be obtained by performing a
singular value decomposition on the data matrix defined in [13]. The number of poles, N, in the data is
determined by the number of singular values above a given threshold. See [13] for further details on this
approach., As with the Prony method, the Matrix Pencil method performs poorly when the data contains
multiple, real poles. Furthermore, this method is a time-domain method and is not directly applicable to

frequency-domain data.

3.2.3 Differential Corrections

Since the model for the frequency domain data is known, the Differential Corrections technique is an iterative
method which performs a nonlinear least squares fit of the data to the model in order to extract model
parameters [14]. To simplify exposition, assume a frequency-domain model with two distinct poles, o; and
oz

Jo Juw

— + da - (3.10)
oy + Juw gq + Juw

F(a;,ﬂ'}, D-!.,O-?'rw) =a)

With initial estimates of the model parameters given, improved estimates are obtained by increments,
Lh(new) = Ck(old) T Aar and Ckinew) = OTkloid) + Aci. Expanding the model in a Taylor series about

the initial parameter estimates and neglecting higher order derivatives gives,

oF aF aF oF
_ or or o Z2) Aca (801
F F(ak(o;d],ak(am,w) + (Bal)ou AG}_ + (aag)dd Aﬂz -+ (aa[ )ald AO’]_ + (aﬁ'g)old a2 ( )

where the subscript “old” indicates that the expression is evaluated at the old parameter estimates. To

improve the parameter estimates, the following error function is minimized:
error = 3 ([Re(z) — Re(F)]* + [Im(z:) — Im(F;)]z) (3.12)
1

where z; are measurements at w;, and F; is the new fit function at w;. As will be discussed in section 3.3,
the parameters that minimize this error function are the maximum likelihood parameter estimates when the

noise has a Gaussian distribution. Minimizing the error requires that

S{error) 8(error) 8{error) S{error)
I —_— —_— —_— =0
Bar =0 Tam 0 a2 T,
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Expanding the first condition leads to

a

B_m Z ([RE(Zi) h RE(F’)]z + [Im(2:} - Im(Fi)]z) =0

3 (2Re(zn) - RetP) [—%f—”] + 2[Im(z;) — Im(Fy)] [ S )]) =0

1
Substituting (3.11) for the first and third F; in the above expression and simplifying gives one equation with

four unknowns (Aaj,Aaz2.00).A03),
A1Aa +AipAas + A13Ao; +-1 Aoy = B (3.13)

Expanding the partial derivatives with respect to the other parameters will give four equations and four

unknowns that can be organized in matrix form as

A Az Aln Ay Aaq By
Ay Azz Azz Aag Aasg - Ba (3.14)
Az) Azz Azz Az Aoy B3
A Ager Ay Ay Aoy By

where ]
=3 ORe(F;) JRe(Fy) , BIm(F;) Olm(F;)

i=1,2andk=1,2
aﬂ‘._-,. 505; aa,- Bak for ! an

.

'1_;5: = Z —BR.E(Fi) BRE(FJ +_aIm(F1) aIm(Fl)'

Saj  Jok—z Ja; Oox—z | for =1,2and k =3,4

for j=34and k=12

A, = Z [ 6Re(F;} 8Re(F;) alm(Fi) SIm(F;) ]
sk = | 80,2 Bax 80_,_2 day,

Jor =3, 4and k=34

o [ORe(F;) 8Re(F;}  8Im(F;) JIm(F;)]
Ak = Z | 8o,-2 Bok_2 + Bo,_y Oog_a |

8 i )
B =% ([Re(z;) — Re(Fow)] BP;ECEJF) + [Im(z:) — Im(Foia)] %}F)) for j=1,2

i

JRe(F) BIm( )) for j=3.4

B; = Z ([Re(zi} — Re(Foud)] 57— B0, s + [Im(z:) IIII(FoIdH B,

Solving this system of equations for the “differential” parameters and adding them to the previous estimates
will give better estimates of the parameters. After several iterations, the parameters should converge. Note
that this method requires initial guesses of the parameters, including the number of poles N. When the
number of poles in the model exceeds the actual number of poles in the data (or the number of poles

required to reconstruct the data), the parameters do not converge because the equations in (3.14) are no
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longer linearly independent. This method converges rapidly and works on time or frequency-domain data with
non-uniformly sampled data points. As with any gradient search scheme, the shortcoming of this approach is
that the converged parameters do not necessarily represent the global minimum of the error function defined
in (3.12). Consequently, this method can be used in conjunction with the Genetic Algorithm described nesxt

to verify that the parameters from a given data set represent a global minimum of the error function.

3.2.4 Genetic Algorithm

The Genetic Algorithm approach is patterned after the natural processes of genetic evolution and survival of
the fittest to provide a global minimum of the error function defined in (3.12). The algorithm encodes each
parameter into a binary sequence, called a gene, and a set of genes defines a chromosome. The chromosomes
undergo natural selection, mating, competition, and mutation to arrive at the optimal solution. Details of
this approach along with Matlab code to implement a genetic algorithm are given in [13]. A drawback of
this approach is the typically slow convergence of the parameters. Furthermore, since the parameters must
be discretized, more accurate representation of the parameters requires longer chromosome lengths which
further increases computation time. Despite these drawbacks, the Genetic Algorithin was used successfully
to verify the results given by the Differential Corrections method and, in some cases, to provide initial guesses

of parameters for the Differential Corrections method.

3.3 Statistical Analysis of Pole Extraction Methods

Of the methods mentioned in the previous section, the Differential Corrections method in conjunction with
the Genetic Algorithm were used to extract poles from measured frequency-domain data. Before these
results can be presented, however, justification of the error function defined in (3.12) and the variance of the
extracted parameters must be addressed. A desirable estimator for the model parameters of (3.10) is one that
provides an efficient estimate, achieving the Cramér-Rao (CR) lower bound [21]. If such an estimator exists,

then it is the maximum likelihood estimate (MLE) and can be obtained by minimizing the log-likelihood

function,
8Inp(Z|®) =0 forj=1,....n (3.15)
38.7 E,:éjm‘ "
where Z = [z1,23,...,2z] is the measured data vector and @ = [f;,...,8,] is the parameter vector. The

measured data can be expressed as the model plus noise, v;
z; =F(81,...,9n,ui)+u,-=F,-+Ui (3.16)

Since a statistical characterization of all the noise sources is not known, and for mathematical tractability,

the noise is assumed to be (complex) white Gaussian noise with zero mean and variance o2. With this
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assumption the likelihood function can be written [18],

L 1 i— 't 2
p(Z|®)=]] (11'0'2 exp -E’TfLD (3.17)

=1

and the iog-likelihood function becomes

1 1 & 2
v o=l

Minimizing this expression with respect to each parameter gives the maximum likelihood estimates.

3 (i lz — A1)
a6,

=0 for j=1,...,n (3.19)

Note that this is equivalent to minimizing the error function defined in (3.12) with respect to each parame-
ter. Thus, with the additive white Gaussian noise assumption, finding the maximur likelihood estimate is

equivalent to the nonlinear least squares solution [16].

The Cramér-Rao lower bound on the parameter estimates for the multiple-parameter case is given
by
var (é;) >ty {3.20)

where é.- is the ith parameter estimate and 1;; is the iith element of the n % n matrix ¥ = J ! |, with J

given by

dlnp(Z{@) dInp(Z|®)
ae, a9,

J,-J=E|: ] for t1,7=1,...,n (3.21)

The matrix J is referred to as the Fisher information maetrix [21]. Note that this matrix, and thus the CR
lower bound, depends on the parameter values, data length (L), and the noise variance (o2). The CR lower
bound for several typical two and three pole models with generated noise, o2 = 0.0001 and L = 1200, were
computed numerically and are shown in Table 3.1. Different noise variances will simply scale these results.
Since a closed form solution does not exist for the ML parameter estimates, the variance of the estimates
were found through 100 runs in & Monte Carlo simulation. The Differential Corrections method was used to
extract model parameters {identical to those in Table 3.1) from generated noisy data. The variance of the
extracted parameters using this method are given in Table 3.2. Since the variances are very close to the CR
lower bound values, the ML estimate provides a neer efficient estimate. The Monte Cario simulation was
repeated with a higher noise variance, o2 = .01, and produced similar results. It should be notcd that the

Prony Method does not coincide with the ML estimate in the presence of noise [16}.
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[ Model # ar ) az as gy o2 o3
1 0.6 (1.98e-5) 0.2 (8.06e-6) 0.2 (3.166.6) 300 (7.18) 2000 (2.90¢3) . 12000 (1.3d¢1)

2 0.7 (4.87e-6) 0.2 (4.23e6) 0.1 (4.19e-6] 500 (6.66) 4000 (6.62e3) 20000 (2.98e5)
3 0.8 (2.41e-6) 0.1 (2.17e-d) 0.1 {2.13e-4}] 1000 (9.90) 10000 {7.47e5) 25000 (5.58e6)
4 0.7 (1.29¢-6) 0.3 (8.96e-7) 2000 (26.0) 15000 (5.82e3)
5 0.8 (4.60e-7) 0.2 (3.48e-7) 1500 (8.59) 20000 (1.87ed)

Table 3.1. Cramér-Rao Lower bound for decaying exponential model parameters with ¢2 = 0.0001 and
L = 1200. {Lower bound on variances are in parentheses)

[ Model # a; az a3 _ o1 o9 o3 1l
1 0.6 {1.43e-5) 0.2 (0.78-6) 0.2 (3.23e-6) 300 (7.10) 2000 (2.40c3) 12000 (1.16e1)
2 0.7 {5.32¢-6) 0.2 [4.55e-6) 0.1 (4.10¢-6) 500 (6.66) 4000 (6.97e3) 20000 (2.95¢5
3 0.8 (2.48e-6) 0.1 (2.32e-4) 0.1 (2.27e4) 1000 (11.2) 10000 (7.45e5) 25000 (6.32e6)
4 0.7 {1.33e-6) 0.3 (1.00e-6) “2000 (29.3) 15000 (5.55e3)
5 08 {4.21e-7) 0.2 (3.58e-T) 1500 (8.28) 20000 (1.74ed)

Table 3.2. Maximum Likelihood estimate variances for decaying exponential model parameters with o2 =
0.0001 and L = 1200. {(Variances are given in parentheses)

3.4 Poles Extracted from Objects

Poles and residues (the o; and a; of (3.10))for seven different objects were extracted using the Differential
Carrections approach. The objects and their dimensions are listed in Table 3.3 and shown in Figure 3.4.
Two or three poles were found for each object in each cardinal orientation as well as for arbitrary orienta-
tions. Before extracting the characteristic values from the objects, the data collected from the Vector Signal
Analyzer was normalized by the largest data value to give residue values between 0 and 1. Table 3.4 contains
the extracted poles with the associated residues for different orientations of each object. Note that most of
the weight, or the largest residue value, lies in the lower order poles indicating that these poles are the most
significant. As shown in Table 3.1, the lower order poles also have significantly smaller variances than the
higher order poles. Figure 3.5 is a plot of the extracted poles without any residue information. The vertical
axis corresponds to the value of the pole or characteristic value for the objects listed along the horizontal
axis. BEach 'x’ marks the location of a pole. Each set of poles (indicated by a vertical dashed line) for a
particular object represents a different orientation. For example, the aluminum block has three cardinal
orientations given by the first three sets of poles followed by two sets of arbitrary orientations. Similarly, the
square aluminum tube has only two cardinal orientations giveﬁ by the first two sets of poles and is followed
by a set of poles from an arbitrary orientation. Presentation of pole sets for the other objects follow this

same pattern. An expanded view of the lower order (most significant) poles are also presented in Figure 3.5.

Note that the lowest order poles remain relatively constant for different orientations of an object,
but differ from object to object. This result indicates that discrimination of different objects based on the
object’s lower order poles is possible. Note, as expected, that similar objects have similar poles. For example,

the large aluminum cylinder and the aluminum cylinder that is 80% of the length of the large aluminum
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cylinder (but with the same diameter} have almost identical poles. When different objects have similar poles.

then as anticipated, discrimination becomes more difficult. The copper cylinder and the aluminum block .

have similar poles which indicates that these two objects might also be difficult to discriminate Letween.

An object’s dimensions, material properties, and orientation with respect to the excitation field influence its

pole locations, so that a variation in dimension can be compensated for by a change in material properties

or orientation to vield similar poles. Thus, a given set of pules do not necessarily represent a unique objert,

Nevertheless, most objects do have different pole locations and can be identified based on their low frequeney

TESPOMnSe,
I Object | Dimensions
Aluminum Block 1.5"H, 2"W, 2 7/16"L
Square Al. Tube 3"L, 1.5"W on ea. side, 0.125"thick
Aluminum Ring 13/16"L, 2.5"0D, 0.25"thick)
Al. Cyl. (Big) 1.5"dia., 2 5/8"L
Al. Cyl. (80% Big) 1.5"dia., 2"L
Al. Cyl. (Sm. Dia.} 7/8"dia., 2 5/8"L
Copper Cyl. 2 1/16"dia., 1 1/32"L
Table 3.3. Objects and Dimensions.
| Object Orientation a; as as oy T2 oy
Aluminum Lg. Side Up | 6.312e-01 1.950e-01 1.337e-D01 3.184e+02 1.766e+03 1.265e-+14
Block Md. Side Up | 6.481e-01 1.757e-01 1.335e-01 3.918¢+02 2.210e+03 1.362e+04
Sm. Side Up | 6.511e-01 1.758e-01 1.334e-01 4.170e+02 2.424e4+03 1.419e+04
Arbitrary 6.256e-01 1.941e-01 1.367e-01 3.490e+02 1.005e+03 1.300¢+04 |
Arbitrary 6.292e-01 1.897e-01 1.385e-01 3.675e+02 1.994e+03 1.321e+04 I
Square Al Parallel 8.676e-01 9.953e-02 1.066e+03 1.975e+04
Tube Perpendicular | 7.721e-01 8.465e-02 1.062e-01 1.028e+03 5.624e+03 2.181e-+04
Arbitrary 8.366e-D1  6.390e-02 7.180e-02 1.108e+03 1.026e+04 2.772e+04
Aluminum Parallel 8.121e-01 1.43%e-01 7.667e+02 1.280e+04 h
Ring Perpendicular { 6.920e-01 2.502e-01 1.925e+03 1.502e-+04
Arbitrary 7.160e-01 1.,393e-01 1.065e-01 8.460e+4-02 §5.181e+03 2141e+04
Al. Cyl. Parallel 7.272e-01 1.582e-01 8.641e-02 5.74%9e+02 4.684e+03 2.347e+U4
(Big) Perpendicylar | 7.010e-01  1.777e-01 1.015e-01 5.531e+02 4.025e+4+03 2.183e+04
Arbitrary 7.094e-01 1.672e-01 9.571e-02 5.735e+02 4.303c+03 2.226e+04
Al CylL Parallel 6.8378e-01 1.731e-01 1.01de-01 6.118e+02 4.252e+03 2.10le+04
(80% Big) Perpendicular | 6.738e-01 1.876e-01 1.065e-01 5.837e+02 3.932e+03 2.105e+04
Arbitrary 6.914e-01 1.814e-01 1.003e-01 6.246e+02 4.475e+03 2.292e-+04
AL Cyl Parallel 8.610e-01 2.356e-01 1877e+03 2.544e+04
(Sm. Dia.) Perpendicular | 8.066e-01 2.372e-01 - 1.485e+03 1.571e+04
Arbitrary 8.204e-01 2.296e-01 1.605e+03 1.839¢+04
Copper Cyl. Parallel 6.621e-01 1.768e-01 1.152e-01 2.366e+02 1.380e+03 1.056c+04
Perpendicular | 7.075e-01  1.645e-01 9.364e-02 3.792e+02 2.988e+03 1.74de+04
Arbitrary 6.766e-01 1.707e-01 1.113e-01 3.164e+02 2.004e+03 1.310e+04

Table 3.4. Extracted Poles {Note: Parallel/Perpendicular designations refer to the orientation of the cylin-
der’s axis relative to that of the applied feld.)
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Round Aluminum Ring

Copper Cylinder

Aluminum Block

Figure 3.4,
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Poles for Different Objects & Orientations
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Figure 3.5. Pole Locations.
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4. Identification Algorithm

The problem of interest here is to discriminate among a set of permeable, highly (but not perfectly) con-
ducting objects using their low-frequency response. In order to simplify this problem, several assumptions
are made. First, we assume that a target has been detected and that only a single target is responsible for
the response. Furthermore, we assume that the target generating the return belongs to a group of targets
for which we know a priori the poles (decay rates) of each. Based on these assumptions, we will develop a

generalized likelihood ratio test (GLRT) to discriminate among a set of M known targets.

4.1 Problem Formulation

As mentioned previously, the concept of using a target’s poles to perform target ID is based on the singularity
expansion method (SEM) representation of the quasi-magnetostatic scattering from permeable and highly
conducting scatterers [1]. Assuming a target exists and it"s from a family of Af possible candidates, then
the SEM representation of the low-frequency response from the k-th target in the presence of noise can be

written as

N (%)
Y (juw) = }:jw [T?_”} + V(Gw) 1<k<M (4.1)
(=3

where a{i” is the real valued coupling coeflicient of the ith mode, orf“ is the pole term of the ith mode, and
1"{jw) is additive complex white Gaussian noise with zero mean and variance o;. The assumption that the
noise is complex white Gaussian is reasonable for two reasons. First, it creates a mathematically tractable
problem. Often, we will use a sub-optimal model for the randomness in the noise in order to obtain a final
solution. Second, the assumption that the noise is white is reasonable unless there is strong evidence that it

is highly correlated {18].

The signal model portion of equation (4.1) can be separated into its real and imaginary parts to

yield

Y{jw) = z": a.Ek)

i=1

w? + wcrgk)
(crl(.k))? + w? (O.U‘))z + w2

} + V{jw). (4.2)
i

The purpose of separating the signal portion of (4.1) into its real and imaginary parts will be addressed later.
Regardless of their form, equations (4.1) and (4.2} lead to the major question addressed in this section. That
is, if we know a target belongs to a family of M targets, and we know the poles of the target, then what is

the likelihood the target generated the return Y (jw)?
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4.2 Algorithm Development——

4.2.1 Discretization

For convenience as well as for practical implementation using DSP hardware, we denote the various signais

in (4.2) by their samples:

Y (jwi) 8 (jun) w® (jwn) V(jun)
ve }’(J:Uz) | &= E"’(_jwz) ’ e ! ng) ; ve V'(j.w-z)
Y (jusg) ] B (g vl qu) V(jwq)
where , )
8¥ (jew) = w“"?ﬁ wi® (jw) = ﬁﬁﬁ (4.3)

and g is the total number of samples. Thus, the return signal vector Y under target £ can be written in

parametric form as

H; : Y = (D +ijP)A; + V (4.4)
where the unknown vector is _ _
ﬂk 1
1
af
A.k = Gg
k
- an < {Nx1)
and the known signal modes are
P, = [ E ok ... 4k
3 ®7 @5 PN (ax )
= Y
Wi [tb] & VN ](qu

For the analysis presented here, Ay is an unknown parameter vector in the identification of target &. The Ay
are treated as unknown since in real applications, the coupling between the object-and the source will vary
due to object burial depth. The only known parameters are the poles and the frequency range of interest
which determine ®; and ¥;, and the measured return Y. Our task is to construct a robust detection
method to determine which of the M known targets is most likely to generate the received noisy signal Y

that depends on an unknown, but deterministic vector A.
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4.2.2 Hypothesis Testing

Having developed a model structure, it is now pessible to apply hypothesis testing to generate a general-
ized likelihood ratio test {GLRT). However, before developing a GLRT, a brief review of the principles of
hvpothesis testing will be given. A complete discussion of this topic ig provided in a number of textbooks
including Van Trees [19], Poor {20], and Srinath {21]. Much of the discussion below parallels the discussion
provided in Van Trees and Srinath.

The fundamental idea behind hypothesis testing is the following: given an observation or set of
observations (Y), develop & decision rule to decide among a set of alternatives (hypotheses} describing the
observation(s). Almost always, these observations are imperfect. Hence, hypothesis testing addresses the
issue of inference based on incomplete information and provides a mathematically rigorous approach to the

target identification problem.

To simplify the discussion of hypothesis testing, consider the case in which only two murtually
exclusive hypotheses exist, H; and H,. In terms of the target identification problem. H; is viewed as the low
frequency response of target 1 and Hy as the low-frequency response of target 2. The essential components
of the binary hypothesis problem are illustrated in Figure 4.1. The first component is a source whose
output is either H) or Hz. The second and third components are the probabilistic transition mechanism
and observation space, respectively. Depending on which hypothesis is true, the probabilistic transition
mechanism maps the source output to the observation space according to some probability law. Generally,
the probabilistic transition mechanism can be viewed as the component that distorts or corrupts the source
output. When the distortion is random, probability theory can be applied to develop two conditional
probability density functions (pdf}: p(Y|H;) and p(Y|H,). (The notation p(Y|H;) is read the probability
of Y given that H; is true.) Each point in the observation space is mapped according to these two density

functions. The final aspect of the hypathesis testing problem is the decision rule which assigns each point in

Observation
Space

o(Y IH ) Choose H;
1

H o
1, Trans:t:_on
Source Mechanism
H s p(Y | H)

Choose H,

Figure 4.1. The fundamental aspects of a binary hypothesis testing problem.
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the observation space to one of the hypotheses. The decision rule basically divides the observation space into
two regions. If an observations falls in the region Zi, hypothesis H, is chosen. Similarly, if an observation .

falls in the region 23, hypothesis Hy is chosen.

One can think of a number of ways to develop a decision rule. However, a decision rule that is
optimal in some sense would be preferred. To develop an optimal decision rule, all possible decisions rmust
be considered. For the binary hypothesis problem, there are four possible outcomes:

s Choose H, when H,; is true.

e Choose H, when Hj is true.

Choose H, when Hg is true.

Chouvse H; when H, is true.

Next, a cost is assigned to each outcome. The purpose of defining a cost is to assign some degree of impartance
to each outcome. The cost C,; is the cost of making a decision D; when hypothesis H; is true. For example,

12 i8 the cost of choosing hypothesis A, when hypothesis H; is true.

To develop a decision rule, a Bayes criterion is applied. The Bayes criterion seeks to minimnize the

average cost. The average cost can be written as

C = C. P(Dy, H;) + C12P{D|, Ha) +Co1 P(Dq, H1) + Caa P(D2, Ha}) (4.5)

where P{D,, H,) is the probability of deciding H, and H; is true. By applying Bayes Theorem, the average

cost becomes
C =CuP(D\|H\)P(H )+ Ci2P(D|H)P(Hz) + Coy P(Da|H)P(Hy1) + Coa P(D2[H3) P(Ha)- (4.6)

The conditional probability P{D;|H;) is determined by integrating the conditional probability density func-

tion p(Y|H;) over the region Z;. In doing so, the average cost becomes

¢ = CuP(H1) p(Y|H)dY + Ci12P{H3) S p(Y|Hy)dY
Z1 1

+CaPUL) [ p(YIH) Y + CaP(Hy) /z p(Y{Hy) dY. (4.7)

The average cost is minimized by appropriately choosing the decision regions Z) and Z;. Although not
derived here {see Van Trees [19)] for complete details), the appropriate choice of the decision regions leads to

the following decision rule

ply | target 1) T PH)(Ca - Cu) _ (4.8)
ply [target 2) 5, P(H2)}(Ciz — Caa) '
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Equation (4.8) is referred to as a likelihood ratio test {LRT). The right side of the LRT is known as the
threshold 7 and is a function of the prior probabilities and the cost. If we assume that all targets are equally
probable and when uniform cost (zero for a correct decision and one for an incorrect decision) is assumed,
then the threshold is equal to one. If the left side of the LRT is greater than 7, then we say hypothesis A,
is true, or equivalently, target 1 is present. Similarly, if the ratio of the two likelihood functions is less than

7, then target 2 is present. For multiple targets (M > 2}, multiple LRT’s need to be tested.

4.2.3 Generalized Hypothesis Testing

In order to apply the LRT to the problem of interest, the conditional probability density functions p(Y|H,)
must be defined. This can be done by considering the pdf of the noise ¥ (jw) in (4.4). Because the noise has

been characterized as being white and Gaussian, the probability density funciion for V can be expressed as

- ! 1 vH
p(V}) = reodT &P (_Ea_zv v) (4.9)

o

where g represents the total number of samples and H denotes the Hermitian operator. If we know that
target k is present, then the probability of getting Y is simply the probability that the noise V would make
up the difference. Thus, by using (4.4), we can write the conditional probability density function of ¥ given

target k as
1 1 . .
p(Y | target k) = —— exp (——2 [Y — (2 + GE)ALT[Y — (@0 + 5 DA}, (410
WQJV 20’,,

The conditional probability density function in (4.10) is a function of the unknown parameter A; and is

often referred to as the likelihood function.

In order to use the LRT in (4.8) for the two-target case, the likelihood functions must be evaluated
based on known ®$,.A; and ¥, A,. This in turn requires that we have complete knowledge of the noiseless
signal. Although the LRT is a very useful tool in a number of applications, target identification can not
benefit directly since orientation dependency results in an unknown parameter vector Ai. In shore, simple

Bayesian hypothesis testing is not directly applicable to our problem.

One method of remedying this situation is to manipﬁlate the LRT to see if the test does in fact
depend on knowledge of A; and Ag. If the LRT does not depend on knowledge of A and Aj, then the test
is said to be uniformly most powerful {UMP) [19]. In this particular case, it can be shown that a UMP does

not exist.

Since a UMP test does not exist, an alternative solution is to estimate A; assuming target 1 is
present, and then estimate A, assuming target 2 is present. These estimates are then used in the LRT as if

they were correct. If the maximum likelihood estimates are used, then the resulting LRT is referred to as a
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generalized likelihood ratio test (GLRT) [19]. The GLRT can be written in a form similar to the LRT as

maxga, p(Y |target 1) 5
maxa, p(Y |target 2) 5

GLRT : 7 {4.11)
The maximum lkelthood (ML) estimate A; is that value of A, that maximizes the likelihood function
p(Y |target 1). According to Kay [22], “The rationale for this approach is that, because Y was observed, it
must have been very likely. Hence, the value of A; that yields the largest probability for the observed value
of Y is probably close to the true value.” Once an ML estimate has been obtained, then p(Y | target 1) is
evaluated using A,. An identical procedure is used to obtain the denominator of (4.11). The ML estimate is
preferred because it is a very practical estimator and it is easy to implement. Furthermore, the ML estimator
has the beneficial property of being efficient provided an efficient estimator exists. An efficient estimator is
one that achieves the Cramér-Rao lower bound on mean square estimation error [19]). Thus, if an efficient

estimator exists, the ML estimator will produce it [18].

To obtain an ML estimate, the likelihood function p(Y | target &) must be maximized under the

assumption that target & is present. Maximizing the expression

oxp [~ 25 (1Y - (B4 + 520 AT 1Y = (@0 +5T0) AL |

|4

is equivalent to minimizing || Y — (®¢ + 7 T,) A |2, hence yielding a least squares solution to Y =
(Pr +J¥i)Ax as
Apmax = [T, + ¥T9,]7" (8T Re{Y} + T Im{Y}). (4.12)

The estimate for the unknown parameter vector A, is purely real. Since the Ay were defined to be real,
the estimator was constrained to vield only real estimates. By separating the signal model into its real and

imaginary parts in (4.2), we were able to develop an estimator to meet this constraint.

Substituting the least squares solution into the GLRT for the simple two target case (with 7 = 1)

yields after some manipulation the decision rule

Ha
1Y = (@1 + JC) Armax | 2 1Y = (&2 + 5%2) Az max |l - (4.13)
H, .

The test in (4.13) simply states that the estimate which produces the smallest error is chosen as the cor-
rect target. If we maintain the conditions of equal prior probabilities and uniform cost, then for multiple

hypothesis testing, the above decision rule can be generalized for M target discrimination as

decide {V(jw)} = target kif || Y — (Ps 4 5 Fy) Ay max || i8 minimum. (4.14)
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4.3 The Algorithm and the Pole Library

The structure of the identification algorithm is illustrated by the flow chart in Figure 4.2. As one can see, the
structure of the algorithm is relatively simple and easy to implement. The heart of the program essentially
involves repeated use of equations (4.12) and (4.14) for each target in the target library. As will be discussed
in this section and section 4.5, the organization of the poles in the target library is a very critical aspect of

the identification algorithm.

Before discussing the pole library, it is pertinent to describe the basic nature of the identification
algorithm. Once a response Y has been retrieved from the HP83410A vector signal analyzer, the algorithm
uses a maximnum likelihood estimator (eq. {4.12)) to estimate the coupling coefficients based on knowledge
of Y and the poles in the target library. Thus, if there are M targets in the library, M estimates of the
coupling coefficients are made. The target whose poles produce the estimate that yields the best fit to the

response Y is selected as the correct target. This statement is expressed mathematically in {4.14).

Ore simple and straightforward method of organizing the pole library for the targets described in
the previous section is shown in Table 4.1. The poles for all orthogonal orientations of an object are stored
under a single target description. This method of organizing the poles essentially ignores information about

the orientation of the target. The major problem in structuring the library in this manner is that it gives

|| Target Description Poles

3.1843e+02 1.7668e+03 1.2659e+04

Large Aluminum Block 3.9180e+02 22104e+03 1.3620e+04
4.1706e+02 2.4240e+03 1.4198e+04

Square Aluminum Cylinder || 1.0661e+03 1.9755e+04 1.0285¢+03
5.6243e+03 2.1813e+04

Round Aluminum Ring 7.6673e+02 1.2807e+04 1.9256e+03
1.5028e+04

Large Aluminum Cylinder 5.7490e+02 4.6849e+03 2.3477e+04
5.5311e+02 4.0257e+03 2.1834e+04

Small Aluminum Cylinder 6.1187e+02 4.2525e+03 2.1018e+04
5.8373e+02 3.9326e+03 2.1053e4+04

Thin Aluminum Cylinder 1.8771e+03 2.5441e+04 1.4849e-+03
1.5714e+04

Copper Cylinder 2.3660e+02 1.3801e+03 1.0565e+04
3.7929e+02 ~2.9885e-+03 1.T44let04

Table 4.1. One way of organizing the pole library.

too much freedom for the ML estimator. Through experimentation, it was discovered that given four or five
poles from any one of the M targets, a response from any of the other targets could be “fitted” well. For
the library shown in Table 4.1, each object contains a minimum of four poles. When all the discriminants

(poles) fit the data well, this obviously creates problems with the identification process. The primary reason
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Figure 4.2. Flowchart for the identification algorithin.
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why four or five poles will fit any response well is because of the nature of the responses under consideration.
The low frequency responses from permeable, highly conducting objects contain very little structure, i.e. no

Zero crossings.

As an illustration, suppose the target library consists of the following two objects: the aluminum
ring and the large aluminum cylinder. Furthermore, the pole library is arranged as described above and
demonstrated in Table 4.1, Next, assume that the response Y is from the aluminum ring oriented with the
open side of the ring perpendicular to the magnetic field. Figure 4.3 shows the real and imaginary parts
of the low frequency response. Also, shown on Figure 4.3 is the real and imaginary parts of the estimated
response which was obtained using the all the known poles of the aluminum ring. Figure 4.4 also shows
the same response Y, but the estimated response was obtained by using the poles of the large aluminum
cylinder. Using (4.14), the error between the actual and estimated responses of Figure 4.2 is computed to
be 0.0581. The error for the responses in Figure 4.4 is 0.0479. Thus, in this case, the wrong target (large

aluminum cylinder) would have been selected as the correct target.

To improve performance, the pole library was rearranged to limit the freedom of the ML estimator.
This was accomplished by organizing the pole library in terms of target description as well as orthogonal
orientation. Table 4.2 displays this structure for the objects being studied in this report. Organizing the
library by target description and orientation effectively treats each orthogonal orientation of an object as a
different {or distinct) target. The obvious drawback to this method is that the size of the library more than
doubles. However, as will be shown in the foliowing section, the performance of the identification algorithm
significantly improves. Furthermore, section 4.5 demonstrates that this method has superior performance

on noisy data.

To demonstrate how the restructuring of the pole library improves performance, consider once again
the two-target case considered earlier. Figure 4.5 shows the real and imaginary parts of the response Y from
the aluminum ring oriented with its open side perpendicular to the magnetic field. Shown on the same figure
is the estimated response which was found by using only the poles of the aluminum ring corresponding to
the magnetic field perpendicular to the open side of the ring (row 6 of Table 4.2). Figure 4.6 shows the
same response Y, but the estimated response was obtained by using only the poles of the large aluminum
cylinder corresponding to the perpendicular to end orienta.tiop (row 8 of Table 4.2). Applying (4.14), the
error between the actual and estimated responses in Figure 4.5 is 0.0585 whereas the error between the
actual and estimated responses in Figure 4.6 is 2.8007. In this case, aluminum ring would be selected as the
target present which is indeed correct. Estimating the response Y using the poles from the other orientation

of the large cylinder could be carried out; however, one would find the error to still be greater than 0.0585.
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Figure 4.3. The response [rom the aluminum ring oriented with its open end perpendicular to the magnetic
field. The estimated response was obtained using all the known poles of the aluminum ring,.
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Figure 4.4. The response from the aluminum ring oriented with its open end perpendicular to the magnetic
field. The estimated response was obtained using all the known poles of the large aluminum cylinder.
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- Target

Description Orientation w.r.t Magnetic Field Poles
1 to large side 3.1843e+02 1.7668e4-03 1.2659e+04
Large Aluminum Block | L to medium side ) 3.0180e+02 2.2104e-+03 1.3620e+04
L to small side 4.1076e+02 2.4240e+03 1.4198e+04
Square Aluminum Tube | L to open end 1.0661e+03 1.9755e+04
1 to side of tube 1.0285e+03 5.6243e+03 2.1813e+04
Round Aluminum Ring | L to open side 7.6673e+02 1.2808e+04
L to side of ring 1.9256e+03 1.5028e+04
Large Aluminum Cyl. L to end of cyl. 5.7490e+02 4.684%9e+03 2.3477e+01
L to side of cyl. 5.5311le4+-02 4.0257e+03 2.1834e+04
Small Aluminum Cyl. L to end of ¢yl 6.1187e+-02 4.2525e+03 2.1018e-+04
L to side of cyl. 5.8373e+02 3.9326e+03 2.1053e+04
Thin Aluminum Cyl. L to end of cyl. 1.8771e+03 2.5441le+04
1 to side of ¢yl 1.484%e+03 1.5714e+04
Copper Cylinder L to end of cyl. 2.3660e+02 1.3801e+03 1.0565e+04
L to side of cyl. 3.7929e+02 2.9885e+03 1.7441e+04

Table 4.2. The pole library organized by target description and orientation.
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Figure 4.5. The response from the aluminum ring oriented with its open end perpendicular to the magnetic
field. The estimated response was obtained using only the poles from line 6 of Table 4.2
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Figure 4.6. The response from the aluminum ring oriented with its open end perpendicular to the magnetic
field. The estimated response was obtained using only the poles from line 8 of Table 4.2,
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4.4 Results

Tables A.1 through A.17 in appendix A show the results of the identification algorithm for a large number
of responses. For every object in Table 4.2, a response from each of the cardinal orientations was tested
against the identification algorithm. In each case, the algorithm was able to select the correct target. The

target whose poles produced the best estimate is highlighted in boldface in each of the tables.

Of the results displayed in Tables A.1 through A.15, there are two cases which produced some
interesting nurnbers. The first case involves the response from either the large aluminum block or copper
cylinder. In Tables A.I through A.3 where the response is from the large aluminum block, one can see that
the copper cylinder is competing with the large aluminum block for selection as the correct target. Similarly,
in Tables A.14 and A.15 where the response is from the copper c¢ylinder, the poles of the large aluminum
block are producing good estimates. Although these two targets are made of different materials, their poles

are very similar. As a result, discriminating between these two objects is difficult.

The next case of interest is when the response is from either the large aluminum cylinder or small
ajluminum cylinder. Asshown in Tables A.8 and A.9, when the response is from the large aluminum cylinder,
the small aluminum cylinder is competing for selection as the correct target. Similarly, in Tables A.10
and A.11 where the response is from the small aluminum cylinder, the poles of the large aluminum cylinder
are producing good estimates of the actual response. This case simply illustrates the challenge ir trying to

discriminate among objects with slightly different characteristics.

Another interesting feature of the results can be observed in Tables A.6 and A.7. In these results,
the measured response is from the aluminum ring. As discussed above, the wrong orientation of a particular
target competes, in general, favorably with the correct orientation. However, this trend does not hold true

for the aluminum ring because the poles for the two cardinal orientations are very different.

Tables A.16 and A.17 show the performance of the identification algorithm when the response is from
an object in an arbitrary orientation. For the results displayed in Table A.16, the arbitrary response is from
the large aluminum block. In this case, the identification selects the copper cylinder as the correct target. As
stated earlier, the copper cylinder and aluminum block both have similar poles. When the response is from
an arbitrary orientation of one of these two objects, there is enough similarity among the poles to produce

an incorrect decision.

Table A.17 displays the results for the case when the response is from an arbitrary orientation of
the large aluminum cylinder. In this case, the identification algorithm is able to select the correct target.
However, the small cylinder, whose poles are similar to those of the large cylinder, is competing for selection

as the correct target.
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4.5 Algorithm Performance with Noisy Data for Various Pole Libraries

As stated earlier, the organjzation of the pole library is a critical part of the identification algorithm. When
the pole library was organized such that the ML estimator was given too much freedom (e.g., too many
poles were used to represent a given object), the identification algorithm was shown to perform poorly.
Consequently, limiting the freedom of the ML estimator by reducing the number of poles used to represent
an object improves the [D algorithm performance. This result intimates the following question: Why not
limit the ML estimator further by representing each object's cardinal orientations by only one or two poles? In
order to compare the performance of different library organizations, the algorithm was applied to noisy data
for varying signal-to-noise ratios {SNR) through Monte Carlo simulations. The measured data contained
some noise already (around 60dB SNR), and complex white Gaussian noise was generated and added to
the measured data to give the appropriate SNR values. As a performance measure, the percent correct
identifications for 1000 trials at each SNR value were recorded for libraries containing one, two, and three
poles per object orientation. The library organization is illustrated for the three pole case in Table 4.2. (Note
that some objects can only be represented by two poles.) Results of this sitnulation are shown in Figure 4.7,
Note that the one pole representation performs better than either the two or three pole representations for
all SNR values. This indicates that for the seven objects used in this simulation, a one pole representation

provides the best discrimination capability.

In addition to the number of poles used to represent a particular object in the library, the organization
of poles in the librarv alse influences the performance of the ID algorithm. Recall the library organization
shown in Table 4.1 performed poorly hecause the estimator was free to adjust ell the coefficients such that
any response could be fitted well. Theoretically, an object's cardinal orientation poles should be adequate
to characterize the object in any orientation. When an object is oriented arbitrarily with respect to the
applied magnetic field, the response can be represented as a linear combination of the cardinal orientation
poles, Furthermore, the ratio of coefficients of the poles from a particular cardinal orientation should remain
constant. For example, an object with a set of poles from one cardinal orientation given by &, and o2 with a
coefficient ratio, g1, and a set of poles from a second cardinal orientation given by o3 and oy with a coefficient
ratio, pz, can be represented as

Jw Juw ' Jw Ju
= A + A + - 4.15
Flw) = A (crl 4+ jw +p!0'g +jw) 2 (03 + Jw pzm —i—]w) { )

where 4, and A3 will vary depending on the orientation of the object. When the object is in a cardinal
orientation, the coefficient for that set of poles will be a maximum and the other coefficient will be zero.
Hence, there are now only two unknowns, 4; and As, which should reduce the freedom of the ML estimator.
With this in mind, the pole library was organized such that each object was represented by a single set of

poles which are a combination of the objects’ cardinal orientation poles as in Table 4.1. In addition, the

40




09r-

0.8+

% Correct ID
o o
B n

o
L

0.2

QiF

One Pole
- - = Two Poles
s = Three Poles

1
10 20 30 40
SNR (dB)

{
2]
[&]

1
—
o
o

Figure 4.7. Performance of different library pole orders.

41

S0




coefficient ratios from each of the cardinal orientations were included. Monte Carlo simulations were run
to determine the relative performance of this approach. Figure 4.8 and Figure 4.9 show the performance
of libraries containing one and two poles for each cardinal orientation, respectively. Note that the libraries
containing cardinal pole sets separately perform better than those containing a single set of poles for each
object. This result occurs despite the fact that pole coefficient ratios were known in the latter case. It is
suspected that the reason for this is that there is still too much freedom in the ML estimator when using a
single set of poles for each object. Accordingly, the best performance for a GLRT is still obtained when the

pole library contains one pole per object orientation.
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Figure 4.8. One pole representation comparison.

Improved performance over the one pole representation can be achieved, however, when information
about the coefficients of the objects’ poles are known. Knowledge of the objects' coefficients obviates the
need to find ML estimates of the unknown parameters. Consequently, the GLRT can be replaced with 2
simple LRT, and the deecision rule becomes equation {4.14) where the Az’s are known. For the coeflicients
to be known and constant for each measurement, an object’s orientation and coupling between the object
and receive coil must remain the same. This situation occurs when the measuring environment is the same

for each measurement. To demonstrate the performance of this approach, only cardinal orientations of the
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objects were considered since the coefficients for arbitrary orientations were not known. The librarv was

constructed such that each cardinal orientation of an object was represented by a single cocfficient and pole. .
Results of a Monte Carlo simulation are shown in Figure 4.10. The performance of this approach exceeds

that of any other and can be viewed as a best case scenario for the seven objects considered.

0.1 . -

1 1 1 1 1
=30 =20 -10 0 10 20 30 40 50
SNR (dB)

Figure 4.10. Performance of single pole cardinal orientations with known amplitudes.
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5. Conclusion

This paper has demonstrated the feasibility of using metallic objects’ [ow frequency responses as a means for
object discrimination. The inherent challenge in using the low frequency response for discrimination results
from the lack of structure in the response. It was discovered that most responses can be characterized
within the tolerance of the noise by only two or three poles. Furthermore, from an identification standpoint,
representing each object by only one pole {per cardinal orientation) provides the best performance. When
information about the magnitude of each object’s response is known, the ID algorithm provides almost
perfect digscrimination down to 0dB SNR. These results indicate that, as a general rule, limiting the freedom

of the ID algorithm improves performance.

Further study is warranted to extend these results to smaller metallic objects such as those found in
low-metal content anti-personnel mines. The challenge here lies in both measuring and extracting accurate
poles from the response. The magnitude of the response from a small metal object will be small. and the
decay rates {poles) will be large. From section 3.3, larger poles have larger variances which makes accurate
pole extraciion more difficult. Results from this paper could also be extended to permeable objects, such as

the ferrous sphere described in section 2.
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Appendix A. Tabhular Results of Identification Algorithm

Poles
Object Orientation w.r.t Magnetic Field | || Y — (®x + 7 Ps) Akmax Il )
Large Aluminum Block Perpendigr.ﬂar _t.o_la_r_ge side 0.4281
Large Aluminum Block Perpendicular to medium side 1.296
Large Aluminum Block Perpendigula,r to small side 1.965
Square Aluminum Tube Perpendicular to open end 43.20
Square Aluminum Tube Perpendicular to side of tube 39.51
Round Aluminum Ring Perpendicular to open side 18.89
Round Aluminum Ring Perpendicular to side of ring 91.77
Large Aluminum Cyl. Perpendicular to end of cyl. 8.116
Large Aluminum Cyl. Perpendicular to side of cyl. 7.382
Small Aluminum Cyl Perpendicular to end of cyl. 10.89
Small Aluminum CylL Perpendicular to side of ¢yl 9.472
Thin Aluminium Cyl. Perpendicular to end of eyl 90.67
Thin Aluminium Cyl. Perpendicuiar to side of cyl. 67.32
Copper Cylinder Perpendicular to end of cyl. 2.219
Copper Cylinder Perpendicular to side of cyl. 0.6825

Table A.1. The response Y is from the large aluminum block oriented with the large side of the block
perpendicular to the magnetic field.
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Poles
Object Orientation w.r.t Magnetic Field | || Y — (8 + 7 ¥&) Ag.max |
Large Aluminum Block Perpendicular to large side 1.072
Large Aluminum Block | Perpendicular to medium side 0.3129
Large Aluminum Block Perpendicular to small side 0.3994
Square Aluminum Tube Perpendicular to open end 20.79
Square Aluminum Tube Perpendicular to side of tube 27.76
Round Aluminum Ring Perpendicular to open side 10.98
Round Aluminum Ring Perpendicular to side of ring 74.52
Large Aluminum Cyl. Perpandicular to end of cyl. 3.475
Large Aluminum Cyl. Perpendicular to side of cyl. 3.044
Small Aluminum Cyl Perpendicular to end of cyl. 5.322
Small Aluminum Cyl. Perpendicular to side of cyl. 4.395
Thin Aluminium Cyl. Perpendicular to end of cyl. 73.30
Thin Alaminium Cryl. Perpendicular to side of cyl. 52.16
Copper Cylinder Perpendicular to end of cyl. 4.537
Copper Cylinder Perpendicular to side of cyl. 0.4735

Table A.2. The response Y is from the large aluminum block oriented with the medium side of the block
perpendicular to the magnetic field.
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Poles
Object Orientation w.r.t Magpetic Field | || Y = (&5 + 7 %4) Apomas |
Large Aluminum Block Perpendicular to large side 1.572
Large Aluminum Block Perpendicular to medium side 0.3796
Large Aluminum Block | Perpendicular to small side 0.2974
Square Aluminum Tube. Perpendicular to open end 24.26
Square Aluminum Tube Perpendicular to side of tube 23.77
Round Aluminum Ring Perpendicular to open side 8.811
Round Aluminum Ring Perpendicular to side of ring 68.70
Large Aluminum Cyl. Perpendicular to end of cyl. 2,416
Large Aluminum Cyl. Perpendicular to side of cyl. 2.081
Small Aluminum Cyl. Perpendicular to end of cyl. 3.955
Small Aluminum Cyl. Perpendicular to side of cyl. 3.189
Thin Aluminium Cyl. Perpendicular to end of cyl. 67.41
Thin Aluminium Cyl. Perpendicular to side of cyl. 47.19
Copper Cylinder Perpendicular to end of cyl. 5.357
Copper Cylinder Perpendicular to side of cyf - 0.7473

Table A.3. The response Y is from the large aluminum block oriented with the small side of the block
perpendicular to the magnetic field.
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Poles
Object Orientation w.r.t Magnetic Field | {| Y — ($x + j W) Ag.max |
Large Aluminum Block Perpendicular to large side 22.52
Large Aluminum Block Perpendicular to medium side 26.11
Large Aluminum Block Perpendicular to small side 24.34
Square Aluminum Tube | Perpendicular to open end 0.1521
Square Aluminuf;l Tube Perpendicular to side of tube 0.2661
Round Aluminum Ring Perpendicular to open side 7.180
Round Aluminum Ring Perpendicular to side of ring 19.06
Large Aluminum Cyl.r Perpendicular to end of cyl. 14.90
Large Aluminum Cyl Perpendicular to side of cyl. 15.24
Small Aluminuni CyI N Perpendicular to end of cyl. 11.65
Small Aluminum Cyl. Perpendicular to side of cyl. 12.70
Thin Aluminium Cyl. - Perpendicular to end of cyl. 18.47
Thin Aluminium Cyl. | Perpendicular to side of cyl. 5.562
Copper Cylinder Perpendicular to end of cyl. 28.64
Copper Cylinder Perpendicular to side of cyl. 27.35

Table A.4. The response Y is from the square aluminum tube oriented with the open end of the tube
perpendicular to the magnetic fleld.
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) Poles

Orientation w.r.t Magnetic Field

Perpendicular to side of cyl.

Object ) Y — (B, + 7 ¥%) Agnax |
Large Aluminum Block Perpendicular to large side 22.52
Large Aluminum Block Perpendicular to medium side 19.41
Large Aluminum Block Perpe_nd_i_c_ula_r to small side 17.99
Square Aluminum Tube Perpendicular to open end 0.1582
Square Aluminum Tube | Perpendicular to sidc_e of tube 0.0536
Round Aluminum Ring Perpendicular to open side 4.881
Round Aluminum Ring Perpendicular to side of ring 18.48
Large Aluminum Cyl Perpendicular to end of cyl. 10.51
Large Aluminum Cyl. Perpendicular to side of cyl. 10.72
Small Alyminum Cyl. Perpendicular to end of cyl. 7.934
Small Alyminum Cyl. Perpendicular to side of cyl. 8.719
Thin Aluminium Cyl. Perpendicular to end of cyl. 17.42
Thin Aluminium Cyl. Perpendicular to side of cyl. 5.840
Copper Cylinder Perpendicular to end of cyl. 21.64
Copper Cylinder 20.39

Table A.5. The response Y is from the square aluminum tube oriented with the side of the tube perpendicular

to the magnetic field.
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Poles
Object Crientation w.r.t Magnetic Field | || Y - ($+ + 7 ©;) Ak,mu I
Large Aluminum Block Perpendicular to large side 17.17
Large Aluminum Block Perpendicular to medium side 11.72
Large Aluminum Block Perpendicular to small side 9.934
Square Aluminum Tube Perpendicular to open end 8.429
Square Aluminum Tube Perpendicular to side of tube 6.392
Round Aluminum Ring | Perpendicular to open side 0.0584
Round Aluminum Ring Perpendicular to side of ring 51.08
Large Aluminum Cyl. Perpendicular to end of ¢yl 2.800
Large Aluminum Cyl. Perpendicular to side of cyl. 3.226
Small Aluminum Cyl. Perpendicular to end of cyi. 1.410
Small Aluminum Cyl. Perpendicular to side of cyl. 1.997
Thin Aluminiym Cyl. Perpendicular to end of ¢yl 50.41
Thin Aluminium Cyl. Perpendicular to side of cyl. 26.97
Copper Cylinder Perpendicular to end of ¢yl. 22.89
Copper Cylinder Perpendicular to side of cyl. 13.99

Table A.6. The response Y is from the round aluminum ring oriented with the open side of the ring
perpendicular to the magnetic feld.
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Poles

Object Orientation w.r.t Magnetgield Y — (;In.- + L) Agmax ||
Large Aluminum Block Perpendicular to large sict_ 13.14
Large Aluminum Block Perpendicular to medium side 15.14
Large Aluminum Block Perpendicular to small sic_le_ 15.30
Square Aluminum Tube Perpendicular to open end 10.36
Square Aluminum Tube Perpendicular to side of tube 8.223
Round Aluminum Ring Perpendicular to open side 17.45
Round Aluminum Ring | Perpendicular to side of ring 0.3440
Large Aluminum Cyl. Perpendicular to end of cyl. 14.76G
Large Aluminum Cyl. Perpendicular to side of ¢cyl. 13.72
Small Aluminum Cyl. Perpendicular to end of cyl 12.89
Small Aluminum Cyl. Perpendicular to side of cyl. 12.50
Thin Aluminium Cyl. Perpendicular to end of cyl. 0.8575
Thin Aluminium Cyl. Perpendicular to side of cyl. 2.375
Copper Cylinder Perpendicular to end of cyl. 7.105
Copper Cylinder Perpendicular to stde of cyl. 13.45
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Table A.7. The response Y is from the round aluminem ring oriented with the side of the ring perpendicular
to the magnetic field.




Poles
Object Orientation w.r.t Magnetic Field | | ¥ — (®4x + 7 ¥&) Akmax |
Large Aluminum Block Perpendicular to large side 7.391
Large Aluminum Block Perpendicular to medium side 3.631
Large Aluminum Block Perpendicular to small side 2.622
Square Aluminum Tube | Perpendicular to open end 19.31
Square Aluminum Tube | Perpendicular to side of tube 16.35
Round Aluminum Ring Perpendicular to open side 2.944
Round Aluminum Ring Perpendicular to side of ring 68.50
Large Aluminum Cyl. | Perpendicular to end of eyl. 0.1874
Large Aluminum CyL Perpendicular to side of ¢yl 0.2075
Small Aluminum Cyl Perpendicular to end of ¢yl 0.4548
Small Aluminum Cyl. Perpendicular to side of cyl. 0.2752
Thin Aluminium Cyl. Perpendicular to end of cyl. 67.39
Thin Aluminium Cyl. Perpendicular to side of cyl. 42.20
Copper Cylinder Perpendicular to end of cyl. 13.33
Copper Cylinder Perpendicular to side of cyl. 5.148

Table A.8. The response Y is from the large aluminum cylinder oriented with the end of the ecylinder
perpendicular to the magnetic feld.
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Foles _
Object 7 Orientation w.r.t Magnetic Field | || Y — (®x + j ¥x) Ak .max ||
Large Aluminum Block Perpendicular to large side 6.433
Large Aluminum Block Perpendicular to medium side 3.079
Large Aluminum Block Perpendicular to small side 2.193
Square Aluminum Tube Perpendicular to open end 19.24
Square Aluyminum Tube | Perpendicular to side of tube 16.43
Round Aluminum Ring Perpendicular to open side 3.246
Round Aluminum Ring Perpendicular to side of ring 67.01
Large Aluminum Cyl. Perpendicular to end of cyl. 0.2577
Large Aluminum Cyl. | Perpendicular to side of cyl. 0.2388
Small Aluminum Cyl. Perpendicular to end of cyl. 0.6270
Small Aluminum Cyl. Perpendicular to side of cyl. 0.3979
Thin Aluminium Cyl. Perpendicular to end of cyl. 65.71
Thin Aluminium Cyl. Perpendicular to side of ¢yl 41.48
Copper Cylinder Perpendicular to end of cyl. 11.82
Copper Cylinder Perpendicular to side of cyl. 4.409

Table A.9. The response Y is from the large aluminum cylinder oriented with the side of the cylinder
perpendicular to the magnetic field.




Poles

Object Orientation w.r.t Magnetic Field | | Y — (®x + § %) Apmax ||
Large Aluminum Block Perpendicular to large side 8.308
Large Aluminum Black Perpendicular to medium side 4.760
Large Aluminum Block Perpendicular to small side 3.708
Square Aluminum Tube | Perpendicular to open end 12.78
Square Aluminum Tube | Perpendicular to side of tube 10.63
Round Aluminum Ring Perpendicular to open side 1.273
Round Aluminum Ring Perpendicular to side of ring 53.66
Large Aluminum Cyl. Perpendicular to end of cyl. 0.4017
Large Aluminum Cyl. Perpendicular to side of ¢yl 0.5063
Small Aluminum Cyl. | Perpendicular to end of cyl. 0.1653
Small Aluminum Cyl. Perpendicular to side of ¢yl 0.2102
Thin Aluminium Cyl. Perpendicular to end of ¢yl 52.34
Thin Aluminium Cyl. Perpendicular to side of cyl. 31.32
Copper Cylinder Perpendicular to end of cyl. 13.01
Copper Cylinder Perpendicular to side of cyl. 6.179

Table A.10. The response Y is from the small aluminum cylinder oriented with the end of the cylinder

perpendicular to the magnetic field.
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7Pioiles

Object Orientation w.r.t Magnetic Field | | Y — (®x + 7 ¥1) Ag.max ||
Large Aluminum Block | Perpendicular to large side 7.297
Large Aluminum Bleck Perpendicular to medium sidc_: 3.988
Large Aluminum Block Perpendicular to small side 3.036
Square Aluminum Tube Perpendicqlar to open end 14.14
Square Aluminum Tube Perpendicular to side of tube 11.91
Round Aluminum Ring Perpendicular to open side 1.793
Round Aluminum Ring Perpendicular to side of ring 55.71
Large Aluminum Cyl. Perpendicular to end of cyl. _ 0.3007
Large Aluminum Cyl. Perpendicular to side of cyl. 0.3561
Small Aluminum Cyl. Perpendicular to end of eyl 0.2570
Small Aluminum Cyl. | Perpendicular to side _of cy_l._ 0.2122
Thin Aluminium Cyl. Perpendicular to end of cyl. 54.33
Thin Aluminium Cyl. Perpendicular to side of cyl. 33.13
Copper Cylinder _ Perpendicular to end of cyl. 11.93
Copper Cylinder Perpendicular to side of cyl. ) 5.207

Table A.11. The response Y is from the small aluminum cylinder oriented with the side of the cylinder

perpendicular to the magnetic field.
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Poles
Object Orientation w.r.t Magnetic Field | || Y — (& + 7 %) Ak max ||
Large Aluminum Block Perpendicular to large side 32.29
Large Aluminum Block Perpendicular to medium side 34.17
Large Aluminum Block Perpendicular to small side 33.96
Square Aluminum Tube | Perpendicular to open end 19.01
Square Aluminum Tube | Perpendicular to side of tube 16.15
Round Aluminum Ring Perpendicular to open side 29.66
Round Aluminum Ring Perpendicular to side of ring 6.055
Large Aluminum Cyl Perpendicular to end of eyl 30.71
Large Aluminum Cyl. Perpendicular to side of cyl. 29.73
Small Aluminum Cyl. Perpendicular to end of cyl. 27.64
Small Aluminum Cyl. Perpendicular to side of cyl. 27.62
Thin Aluminium Cyl. | Perpendicular to end of cyl. 5.707
Thin Aluminium CylL Perpendicular to side of cyl. 7.510
Copper Cylinder Perpendicular to end of cyl. 2232
Copper Cylinder Perpendicular to side of eyl. 32.30

Table A.12. The response Y is from the thin aluminum cylinder oriented with the side of the cylinder
perpendicular to the magnetic field.
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Poles

Copper Cylinder

Object Orientation w.r.t Magnetic Field | | Y — (B« + F ¥) Ak |

Large Aluminum Block Perpendicular to large side 22.48
Large Aluminum Block Perpendicular to medium side 22.47
Large Aluminum Block Perpendicular to small side 21.87
Square Aluminum Tube | Perpendicular to open end 6.424
Square Aluminum Tube | Perpendicular to side of tube 4.832
Round Aluminum Ring Perpendicular to open side 14.73
Round Aluminum Ring Perpendicular to side of ring 3.794
Large Aluminum Cyl. Perpendicular to end of cyl. 17.44
Large Aluminum Cyl. Perpendicular to side of cyl. 16.99
Small Aluminum Cyl. Perpendicular to end of cyl. 14.81
Small Aluminum Cyl. Perpendicular to side of cyl. 15.10
Thin Aluminium Cyl. Perpendicular to end of cyl. 2.877
Thin Aluminium Cyl. | Perpendicular to side of eyl. 0.9446
Copper Cylinder Perpendicular to end of ¢yl 15.10

Perpendicular to side of ¢yl 16.82

Table A.13. The response Y is from the thin aluminum cylinder oriented with the side of the cylinder

perpendicular to the magnetic field.
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Poles
Object Orientation w.r.t Magnetic Field | || Y — (@ + j%s) Awmax |l
Large Aluminum Block | Perpendicular to large side 3.969
Large Alumimum Block | Perpendicular to medium side 9.807
Large Aluminum Block | Perpendicular to small side 12.21
Square Aluminum Tube | Perpendicular to open end 86.08
Square Aluminum Tube | Perpendicular to side of tube 79.97
Round Aluminum Ring | Perpendicular to open side 47.95
Round Aluminum Ring | Perpendicular to side of ring 152.8
Large Aluminum Cyl. Perpendicular to end of cyl. 27.37
Large Aluminum Cyl. Perpendicular to side of cyl. 25.66
Small Aluminum Cyl. Perpendicular to end of cyl. 32.65
Small Aluminum Cyl. Perpendicular to side of cyl. 29.82
Thin Aluminium Cyl. | Perpendicular to end of cyl. 152.2
Thin Aluminium Cyl. Perpendicular to side of cyl. 119.9
Copper Cylinder Perpendicular to end of cyl. 0.3676
Copper Cylinder Perpendicular to side of cyl. 6.752

Table A.14. The response Y is from copper cylinder oriented with the end of the cylinder perpendicular to
the magnetic field.
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Poles

Copper Cylinder

Object Orientation w.r.t Magnetic Field | || Y — ($x + 7 %4) At.max |l
Large Aluminum Block | Perpendicular to large side 0.5725
Large Aluminum Block | Perpendicular to medium side 0.4810
Large Aluminum Block | Perpendicular to small side 0.9416
Square Aluminum Tube | Perpendicular to open end 44.58
Square Aluminum Tube | Perpendicular to side of tube 40.25
Round Aluminum Ring ! Perpendicular to open side 17.97
Round Aluminum Ring | Perpendicular to side of ring 99.63
Large Aluminum Cyl. Perpendicular to end of cyl. 6.665
Large Aluminum Cyl. Perpendicular to side of cyl. 5.911
Small Aluminum Cyl. Perpendicular to end of cyl 9.435
Small Aluminum Cyl. Perpendicular to side of cyl. 7.982
Thin Aluminium Cyl. Perpendicular to end of cyl. 93.83
Thin Aluminium Cyl. Perpendicuiar to side of cyl. 71.70
Copper Cylinder Perpendicular to end of cyl. 4.860
Perpendicular to side of cyl. 0.2389

Table A.15. The response Y is from the small aluminum cylinder oriented with the side of the cylinder

perpendicular to the magnetic field.
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Poles

Object Orientation w.r.t Magnetic Field [ || Y ~ (®: + j ¥i) Agmax ||
Large Aluminum Block | Perpendicular to large side 0;55
Large Aluminum Block Perpendicular to medium side 0.6142
Large Aluminum Block | Perpendicular to small side 0.9744
Square Aluminurﬁ 'i‘ul;é Perpendicular to open end 32.78
Square Aluminum Tube | Perpendicular to side of tube 29.69
Round Aluminum R_m_g Perpendicular to open side 14.30
Round Aluminum Ring | Perpendicular to side of ring 81.04
Large Aluminum Cyl. Perpendicular to end of cyl. 5.435
Large Aluminum Cyl. Perpendicular to side of ¢yl. 4.874
Smail Aluminum -CyI. Perpendicular to end of cyl. 7.682
Small Aluminum Cyl. Perpendicular to side of cyl. 6.549
Thin Aluminium Cyl. Perpendicular to end of cyl. 79.85
Thin Aluminiurﬁ Cyl. Perpendicular to side of cyl. 58.08
Copper Cylinder - Perpendicular to end of cyl. 3.180
0.4056

Copper Cylinder

Perpendicular to side of cyl.

Table A.16. The response Y i5 from the large aluminum block in an arbitrary orientation.
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Poles
Object _ | Orientation w.r.t Magnetic Field | || Y = ($4 + § %4) As.max ||
Large Aluminum Block Perpendicular to large side - %".187
Large Aluminum Block Perpendicular to medium side 3.608
Large Aluminum Block Perpendicular to small side 2.633
Square Aluminum Tube | Perpendicular to open end 17.86
Square Aluminum Tube | Perpendicular to side of tube 15.12
Round Aluminum Ring Perpendicuiar to open side 2.624
Round Aluminum Ring Perpendicular to side of ring 64.85
Large Aluminum Cyl. | Perpendicular to end of cyl. 0.1R83
Large Aluminum Cyl. Perpendicular to side of cyl. 0.2147
Small Aluminum Cyl. Perpendicular to end of cyl. 0.3885
Small Aluminum Cyl. Perpendicular to side of cyl. 0.2397
Thin Aluminium Cyl. Perpendicular to end of ¢yl 63.62
Thia Aluminium Cyl. Perpendicular to side of cyl. 39.63
Copper Cylinder Perpendicular to end of cyl. 12.68
Copper Cylinder Perpendicular to side of cyl. 5.043

Table A.17. The response Y is from the large aluminum cylinder in an arbitrary orientation.
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